MW 100x30 / N38 - magnes neodymowy walcowy
magnes neodymowy walcowy
Numer katalogowy 010002
GTIN/EAN: 5906301810025
Średnica Ø
100 mm [±0,1 mm]
Wysokość
30 mm [±0,1 mm]
Waga
1767.15 g
Kierunek magnesowania
↑ osiowy
Udźwig
215.17 kg / 2110.78 N
Indukcja magnetyczna
318.96 mT / 3190 Gs
Powłoka
[NiCuNi] nikiel
650.01 ZŁ z VAT / szt. + cena za transport
528.46 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?
Skontaktuj się z nami telefonicznie
+48 22 499 98 98
alternatywnie napisz przez
nasz formularz online
na stronie kontaktowej.
Właściwości a także kształt magnesów neodymowych skontrolujesz u nas w
kalkulatorze mocy.
Zamów do 14:00, a wyślemy dziś!
Szczegółowa specyfikacja MW 100x30 / N38 - magnes neodymowy walcowy
Specyfikacja / charakterystyka - MW 100x30 / N38 - magnes neodymowy walcowy
| właściwości | wartości |
|---|---|
| Nr kat. | 010002 |
| GTIN/EAN | 5906301810025 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Średnica Ø | 100 mm [±0,1 mm] |
| Wysokość | 30 mm [±0,1 mm] |
| Waga | 1767.15 g |
| Kierunek magnesowania | ↑ osiowy |
| Udźwig ~ ? | 215.17 kg / 2110.78 N |
| Indukcja magnetyczna ~ ? | 318.96 mT / 3190 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [min. - maks.] ? | 12.2-12.6 | kGs |
| remanencja Br [min. - maks.] ? | 1220-1260 | mT |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [min. - maks.] ? | 36-38 | BH max MGOe |
| gęstość energii [min. - maks.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Temperatura Curie TC | 312 - 380 | °C |
| Temperatura Curie TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅cm |
| Siła wyginania | 250 | MPa |
| Wytrzymałość na ściskanie | 1000~1100 | MPa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 10-6 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Analiza inżynierska magnesu neodymowego - raport
Poniższe informacje stanowią wynik symulacji matematycznej. Wyniki zostały wyliczone na modelach dla materiału Nd2Fe14B. Realne osiągi mogą nieznacznie różnić się od wartości teoretycznych. Prosimy traktować te dane jako pomoc pomocniczą podczas planowania montażu.
Tabela 1: Siła prostopadła statyczna (siła vs dystans) - wykres oddziaływania
MW 100x30 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg/lbs/g/N) | Status ryzyka |
|---|---|---|---|
| 0 mm |
3189 Gs
318.9 mT
|
215.17 kg / 474.37 lbs
215170.0 g / 2110.8 N
|
miażdżący |
| 1 mm |
3143 Gs
314.3 mT
|
208.96 kg / 460.68 lbs
208959.6 g / 2049.9 N
|
miażdżący |
| 2 mm |
3094 Gs
309.4 mT
|
202.53 kg / 446.51 lbs
202531.7 g / 1986.8 N
|
miażdżący |
| 3 mm |
3044 Gs
304.4 mT
|
195.98 kg / 432.07 lbs
195982.5 g / 1922.6 N
|
miażdżący |
| 5 mm |
2939 Gs
293.9 mT
|
182.65 kg / 402.68 lbs
182651.7 g / 1791.8 N
|
miażdżący |
| 10 mm |
2657 Gs
265.7 mT
|
149.35 kg / 329.26 lbs
149349.8 g / 1465.1 N
|
miażdżący |
| 15 mm |
2366 Gs
236.6 mT
|
118.41 kg / 261.05 lbs
118412.6 g / 1161.6 N
|
miażdżący |
| 20 mm |
2081 Gs
208.1 mT
|
91.64 kg / 202.03 lbs
91640.5 g / 899.0 N
|
miażdżący |
| 30 mm |
1573 Gs
157.3 mT
|
52.34 kg / 115.40 lbs
52344.5 g / 513.5 N
|
miażdżący |
| 50 mm |
874 Gs
87.4 mT
|
16.14 kg / 35.58 lbs
16140.3 g / 158.3 N
|
miażdżący |
Tabela 2: Równoległa siła obsunięcia (pion)
MW 100x30 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg/lbs/g/N) |
|---|---|---|
| 0 mm | Stal (~0.2) |
43.03 kg / 94.87 lbs
43034.0 g / 422.2 N
|
| 1 mm | Stal (~0.2) |
41.79 kg / 92.14 lbs
41792.0 g / 410.0 N
|
| 2 mm | Stal (~0.2) |
40.51 kg / 89.30 lbs
40506.0 g / 397.4 N
|
| 3 mm | Stal (~0.2) |
39.20 kg / 86.41 lbs
39196.0 g / 384.5 N
|
| 5 mm | Stal (~0.2) |
36.53 kg / 80.53 lbs
36530.0 g / 358.4 N
|
| 10 mm | Stal (~0.2) |
29.87 kg / 65.85 lbs
29870.0 g / 293.0 N
|
| 15 mm | Stal (~0.2) |
23.68 kg / 52.21 lbs
23682.0 g / 232.3 N
|
| 20 mm | Stal (~0.2) |
18.33 kg / 40.41 lbs
18328.0 g / 179.8 N
|
| 30 mm | Stal (~0.2) |
10.47 kg / 23.08 lbs
10468.0 g / 102.7 N
|
| 50 mm | Stal (~0.2) |
3.23 kg / 7.12 lbs
3228.0 g / 31.7 N
|
Tabela 3: Montaż pionowy (ścinanie) - zachowanie na śliskim podłożu
MW 100x30 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg/lbs/g/N) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
64.55 kg / 142.31 lbs
64551.0 g / 633.2 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
43.03 kg / 94.87 lbs
43034.0 g / 422.2 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
21.52 kg / 47.44 lbs
21517.0 g / 211.1 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
107.59 kg / 237.18 lbs
107585.0 g / 1055.4 N
|
Tabela 4: Grubość stali (wpływ podłoża) - straty mocy
MW 100x30 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg/lbs/g/N) |
|---|---|---|
| 0.5 mm |
|
7.17 kg / 15.81 lbs
7172.3 g / 70.4 N
|
| 1 mm |
|
17.93 kg / 39.53 lbs
17930.8 g / 175.9 N
|
| 2 mm |
|
35.86 kg / 79.06 lbs
35861.7 g / 351.8 N
|
| 3 mm |
|
53.79 kg / 118.59 lbs
53792.5 g / 527.7 N
|
| 5 mm |
|
89.65 kg / 197.65 lbs
89654.2 g / 879.5 N
|
| 10 mm |
|
179.31 kg / 395.31 lbs
179308.3 g / 1759.0 N
|
| 11 mm |
|
197.24 kg / 434.84 lbs
197239.2 g / 1934.9 N
|
| 12 mm |
|
215.17 kg / 474.37 lbs
215170.0 g / 2110.8 N
|
Tabela 5: Stabilność termiczna (stabilność) - limit termiczny
MW 100x30 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig (kg/lbs/g/N) | Status |
|---|---|---|---|
| 20 °C | 0.0% |
215.17 kg / 474.37 lbs
215170.0 g / 2110.8 N
|
OK |
| 40 °C | -2.2% |
210.44 kg / 463.93 lbs
210436.3 g / 2064.4 N
|
OK |
| 60 °C | -4.4% |
205.70 kg / 453.50 lbs
205702.5 g / 2017.9 N
|
|
| 80 °C | -6.6% |
200.97 kg / 443.06 lbs
200968.8 g / 1971.5 N
|
|
| 100 °C | -28.8% |
153.20 kg / 337.75 lbs
153201.0 g / 1502.9 N
|
Tabela 6: Interakcja magnes-magnes (odpychanie) - zasięg pola
MW 100x30 / N38
| Szczelina (mm) | Przyciąganie (kg/lbs) (N-S) | Siła ścinająca (kg/lbs/g/N) | Odpychanie (kg/lbs) (N-N) |
|---|---|---|---|
| 0 mm |
492.55 kg / 1085.88 lbs
4 762 Gs
|
73.88 kg / 162.88 lbs
73882 g / 724.8 N
|
N/A |
| 1 mm |
485.56 kg / 1070.47 lbs
6 333 Gs
|
72.83 kg / 160.57 lbs
72834 g / 714.5 N
|
437.00 kg / 963.42 lbs
~0 Gs
|
| 2 mm |
478.33 kg / 1054.54 lbs
6 286 Gs
|
71.75 kg / 158.18 lbs
71749 g / 703.9 N
|
430.50 kg / 949.08 lbs
~0 Gs
|
| 3 mm |
471.01 kg / 1038.40 lbs
6 238 Gs
|
70.65 kg / 155.76 lbs
70652 g / 693.1 N
|
423.91 kg / 934.56 lbs
~0 Gs
|
| 5 mm |
456.15 kg / 1005.64 lbs
6 139 Gs
|
68.42 kg / 150.85 lbs
68422 g / 671.2 N
|
410.53 kg / 905.07 lbs
~0 Gs
|
| 10 mm |
418.11 kg / 921.77 lbs
5 877 Gs
|
62.72 kg / 138.27 lbs
62716 g / 615.2 N
|
376.30 kg / 829.59 lbs
~0 Gs
|
| 20 mm |
341.88 kg / 753.71 lbs
5 314 Gs
|
51.28 kg / 113.06 lbs
51282 g / 503.1 N
|
307.69 kg / 678.34 lbs
~0 Gs
|
| 50 mm |
159.49 kg / 351.61 lbs
3 630 Gs
|
23.92 kg / 52.74 lbs
23923 g / 234.7 N
|
143.54 kg / 316.45 lbs
~0 Gs
|
| 60 mm |
119.82 kg / 264.16 lbs
3 146 Gs
|
17.97 kg / 39.62 lbs
17973 g / 176.3 N
|
107.84 kg / 237.75 lbs
~0 Gs
|
| 70 mm |
89.40 kg / 197.09 lbs
2 718 Gs
|
13.41 kg / 29.56 lbs
13410 g / 131.6 N
|
80.46 kg / 177.38 lbs
~0 Gs
|
| 80 mm |
66.51 kg / 146.64 lbs
2 344 Gs
|
9.98 kg / 22.00 lbs
9977 g / 97.9 N
|
59.86 kg / 131.97 lbs
~0 Gs
|
| 90 mm |
49.50 kg / 109.14 lbs
2 022 Gs
|
7.43 kg / 16.37 lbs
7426 g / 72.8 N
|
44.55 kg / 98.22 lbs
~0 Gs
|
| 100 mm |
36.95 kg / 81.45 lbs
1 747 Gs
|
5.54 kg / 12.22 lbs
5542 g / 54.4 N
|
33.25 kg / 73.31 lbs
~0 Gs
|
Tabela 7: Zagrożenia (elektronika) - ostrzeżenia
MW 100x30 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 44.0 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 34.5 cm |
| Zegarek mechaniczny | 20 Gs (2.0 mT) | 27.0 cm |
| Telefon / Smartfon | 40 Gs (4.0 mT) | 21.0 cm |
| Pilot do auta | 50 Gs (5.0 mT) | 19.0 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 8.0 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 6.5 cm |
Tabela 8: Zderzenia (energia kinetyczna) - ostrzeżenie
MW 100x30 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
15.21 km/h
(4.22 m/s)
|
15.77 J | |
| 30 mm |
22.01 km/h
(6.11 m/s)
|
33.03 J | |
| 50 mm |
26.02 km/h
(7.23 m/s)
|
46.17 J | |
| 100 mm |
35.32 km/h
(9.81 m/s)
|
85.04 J |
Tabela 9: Trwałość powłoki antykorozyjnej
MW 100x30 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
Tabela 10: Dane konstrukcyjne (Strumień)
MW 100x30 / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 269 425 Mx | 2694.3 µWb |
| Współczynnik Pc | 0.40 | Niski (Płaski) |
Tabela 11: Zastosowanie podwodne
MW 100x30 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 215.17 kg | Standard |
| Woda (dno rzeki) |
246.37 kg
(+31.20 kg zysk z wyporności)
|
+14.5% |
1. Montaż na ścianie (ześlizg)
*Ważne: Na pionowej ścianie magnes utrzyma tylko ~20-30% siły oderwania.
2. Efektywność, a grubość stali
*Cienka blacha (np. obudowa PC 0.5mm) wyraźnie ogranicza siłę trzymania.
3. Spadek mocy w temperaturze
*Dla standardowych magnesów krytyczny próg to 80°C.
4. Krzywa odmagnesowania i punkt pracy (B-H)
wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 0.40
Powyższy wykres prezentuje charakterystykę magnetyczną materiału w drugim kwadrancie pętli histerezy. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.
Analiza pierwiastkowa
| żelazo (Fe) | 64% – 68% |
| neodym (Nd) | 29% – 32% |
| bor (B) | 1.1% – 1.2% |
| dysproz (Dy) | 0.5% – 2.0% |
| powłoka (Ni-Cu-Ni) | < 0.05% |
Dane środowiskowe
| recyklowalność (EoL) | 100% |
| surowce z recyklingu | ~10% (pre-cons) |
| ślad węglowy | low / zredukowany |
| kod odpadu (EWC) | 16 02 16 |
Sprawdź inne produkty
Wady i zalety magnesów z neodymu Nd2Fe14B.
Korzyści
- Utrzymują swoje właściwości przez lata – szacuje się, że po dekadzie słabną o symboliczny 1%.
- Charakteryzują się ogromną odpornością na demagnetyzację, nawet w obecności innych silnych magnesów.
- Łączą moc z estetyką – poprzez niklowanie lub złocenie ich powierzchnia jest błyszcząca i prezentuje się elegancko.
- Wyróżniają się bardzo wysoką gęstością pola na powierzchni, co umożliwia silne chwytanie z dużą mocą.
- Mogą pracować w ekstremalnym cieple – wybrane modele znoszą temperaturę do 230°C (zależnie od wymiarów).
- Dają się łatwo formować do specyficznych wymiarów, co ułatwia ich adaptację w skomplikowanych urządzeniach.
- Pełnią kluczową rolę w rozwoju technologii, będąc sercem silników, pamięci masowych i urządzeń ratujących życie.
- Dzięki kompaktowości, zajmują mało miejsca, a jednocześnie zapewniają silne pole.
Minusy
- Ze względu na kruchość, trzeba się z nimi obchodzić delikatnie. Gwałtowne złączenie może je zniszczyć, stąd zalecenie stosowania osłon.
- Gorąco to wróg neodymów – powyżej 80°C tracą właściwości. Do zadań specjalnych polecamy serię [AH], działającą stabilnie aż do 230°C.
- Ryzyko korozji: bez osłony magnes ulegnie utlenieniu na deszczu. Wybierz wersje w obudowie z tworzywa do zastosowań zewnętrznych.
- Magnesy ciężko się obrabia – do montażu śrubowego służą specjalne uchwyty magnetyczne z wbudowanym gwintem.
- Uważaj na małe części – połknięcie wymaga interwencji chirurga. Mogą też być problemem przy badaniach lekarskich.
- Wyższa cena w porównaniu do ferrytów to ich minus, szczególnie przy dużych ilościach.
Parametry udźwigu
Maksymalna moc trzymania magnesu – co się na to składa?
- na bloku wykonanej ze stali konstrukcyjnej, doskonale skupiającej pole magnetyczne
- o grubości przynajmniej 10 mm
- z płaszczyzną oczyszczoną i gładką
- bez żadnej szczeliny pomiędzy magnesem a stalą
- dla siły działającej pod kątem prostym (na odrywanie, nie zsuwanie)
- w temp. ok. 20°C
Udźwig w praktyce – czynniki wpływu
- Szczelina – obecność ciała obcego (rdza, brud, powietrze) działa jak izolator, co redukuje udźwig gwałtownie (nawet o 50% przy 0,5 mm).
- Kierunek siły – parametr katalogowy dotyczy odrywania w pionie. Przy próbie przesunięcia, magnes wykazuje znacznie mniejszą moc (często ok. 20-30% siły maksymalnej).
- Grubość podłoża – dla pełnej efektywności, stal musi być wystarczająco masywna. Blacha "papierowa" ogranicza siłę przyciągania (magnes „przebija” ją na wylot).
- Materiał blachy – stal miękka daje najlepsze rezultaty. Większa zawartość węgla zmniejszają właściwości magnetyczne i udźwig.
- Struktura powierzchni – im równiejsza powierzchnia, tym większa strefa kontaktu i silniejsze trzymanie. Nierówności działają jak mikroszczeliny.
- Temperatura pracy – magnesy neodymowe posiadają wrażliwość na temperaturę. Gdy jest gorąco tracą moc, a w niskich zyskują na sile (do pewnej granicy).
Pomiar udźwigu przeprowadzano na blachach o gładkiej powierzchni o odpowiedniej grubości, przy siłach prostopadłych, natomiast przy próbie przesunięcia magnesu nośność jest mniejsza nawet 5 razy. Co więcej, nawet minimalna przerwa między magnesem, a blachą redukuje nośność.
Ostrzeżenia
Zakaz zabawy
Bezwzględnie chroń magnesy przed dostępem dzieci. Ryzyko zadławienia jest wysokie, a skutki połączenia się magnesów wewnątrz organizmu są dramatyczne.
Niebezpieczeństwo dla rozruszników
Uwaga zdrowotna: Magnesy neodymowe mogą dezaktywować rozruszniki serca i defibrylatory. Unikaj kontaktu, jeśli posiadasz implanty elektroniczne.
Ochrona urządzeń
Bardzo silne pole magnetyczne może usunąć informacje na kartach kredytowych, dyskach twardych i innych nośnikach magnetycznych. Trzymaj dystans min. 10 cm.
Potężne pole
Zanim zaczniesz, zapoznaj się z zasadami. Niekontrolowane przyciągnięcie może połamać magnes lub uszkodzić palce. Bądź przewidujący.
Samozapłon
Pył generowany podczas szlifowania magnesów jest łatwopalny. Unikaj wiercenia w magnesach w warunkach domowych.
Uczulenie na powłokę
Badania wskazują, że nikiel (typowe wykończenie magnesów) jest silnym alergenem. Jeśli masz uczulenie, wystrzegaj się trzymania magnesów gołą dłonią lub wybierz wersje w obudowie plastikowej.
Łamliwość magnesów
Choć wyglądają jak stal, neodym jest delikatny i nie znosi udarów. Nie rzucaj, gdyż magnes może się rozpaść na ostre, niebezpieczne kawałki.
Temperatura pracy
Uważaj na temperaturę. Ekspozycja magnesu powyżej 80 stopni Celsjusza zdegraduje jego domenę magnetyczną i udźwig.
Kompas i GPS
Urządzenia nawigacyjne są niezwykle podatne na pole magnetyczne. Bliskie sąsiedztwo z silnym magnesem może zniszczyć czujniki w Twoim telefonie.
Niebezpieczeństwo przytrzaśnięcia
Uważaj na palce. Dwa duże magnesy złączą się z ogromną prędkością z siłą kilkuset kilogramów, niszcząc wszystko na swojej drodze. Bądź ostrożny!
