MW 3x6 / N38 - magnes neodymowy walcowy
magnes neodymowy walcowy
Numer katalogowy 010065
GTIN/EAN: 5906301810643
Średnica Ø
3 mm [±0,1 mm]
Wysokość
6 mm [±0,1 mm]
Waga
0.32 g
Kierunek magnesowania
↑ osiowy
Udźwig
0.20 kg / 1.95 N
Indukcja magnetyczna
598.96 mT / 5990 Gs
Powłoka
[NiCuNi] nikiel
0.295 ZŁ z VAT / szt. + cena za transport
0.240 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?
Dzwoń do nas
+48 888 99 98 98
lub pisz poprzez
formularz zgłoszeniowy
na stronie kontaktowej.
Moc i budowę elementów magnetycznych zobaczysz dzięki naszemu
kalkulatorze magnetycznym.
Zamów do 14:00, a wyślemy dziś!
Szczegóły techniczne - MW 3x6 / N38 - magnes neodymowy walcowy
Specyfikacja / charakterystyka - MW 3x6 / N38 - magnes neodymowy walcowy
| właściwości | wartości |
|---|---|
| Nr kat. | 010065 |
| GTIN/EAN | 5906301810643 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Średnica Ø | 3 mm [±0,1 mm] |
| Wysokość | 6 mm [±0,1 mm] |
| Waga | 0.32 g |
| Kierunek magnesowania | ↑ osiowy |
| Udźwig ~ ? | 0.20 kg / 1.95 N |
| Indukcja magnetyczna ~ ? | 598.96 mT / 5990 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [min. - maks.] ? | 12.2-12.6 | kGs |
| remanencja Br [min. - maks.] ? | 1220-1260 | mT |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [min. - maks.] ? | 36-38 | BH max MGOe |
| gęstość energii [min. - maks.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Temperatura Curie TC | 312 - 380 | °C |
| Temperatura Curie TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅cm |
| Siła wyginania | 250 | MPa |
| Wytrzymałość na ściskanie | 1000~1100 | MPa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 10-6 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Symulacja fizyczna magnesu neodymowego - dane
Niniejsze informacje są wynik symulacji matematycznej. Wartości oparte są na modelach dla materiału Nd2Fe14B. Realne osiągi mogą nieznacznie różnić się od wartości teoretycznych. Traktuj te wyliczenia jako wstępny drogowskaz dla projektantów.
Tabela 1: Siła prostopadła statyczna (siła vs odległość) - wykres oddziaływania
MW 3x6 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg)(gram)(Niuton) | Status ryzyka |
|---|---|---|---|
| 0 mm |
5974 Gs
597.4 mT
|
0.20 kg / 200.0 g
2.0 N
|
bezpieczny |
| 1 mm |
2623 Gs
262.3 mT
|
0.04 kg / 38.6 g
0.4 N
|
bezpieczny |
| 2 mm |
1134 Gs
113.4 mT
|
0.01 kg / 7.2 g
0.1 N
|
bezpieczny |
| 3 mm |
570 Gs
57.0 mT
|
0.00 kg / 1.8 g
0.0 N
|
bezpieczny |
| 5 mm |
205 Gs
20.5 mT
|
0.00 kg / 0.2 g
0.0 N
|
bezpieczny |
| 10 mm |
42 Gs
4.2 mT
|
0.00 kg / 0.0 g
0.0 N
|
bezpieczny |
| 15 mm |
15 Gs
1.5 mT
|
0.00 kg / 0.0 g
0.0 N
|
bezpieczny |
| 20 mm |
7 Gs
0.7 mT
|
0.00 kg / 0.0 g
0.0 N
|
bezpieczny |
| 30 mm |
2 Gs
0.2 mT
|
0.00 kg / 0.0 g
0.0 N
|
bezpieczny |
| 50 mm |
1 Gs
0.1 mT
|
0.00 kg / 0.0 g
0.0 N
|
bezpieczny |
Tabela 2: Równoległa siła zsuwania (pion)
MW 3x6 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg)(gram)(Niuton) |
|---|---|---|
| 0 mm | Stal (~0.2) |
0.04 kg / 40.0 g
0.4 N
|
| 1 mm | Stal (~0.2) |
0.01 kg / 8.0 g
0.1 N
|
| 2 mm | Stal (~0.2) |
0.00 kg / 2.0 g
0.0 N
|
| 3 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
| 5 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
| 10 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
| 15 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
| 20 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
| 30 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
Tabela 3: Siła na ścianie (ścinanie) - zachowanie na śliskim podłożu
MW 3x6 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
0.06 kg / 60.0 g
0.6 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
0.04 kg / 40.0 g
0.4 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
0.02 kg / 20.0 g
0.2 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
0.10 kg / 100.0 g
1.0 N
|
Tabela 4: Grubość stali (nasycenie) - straty mocy
MW 3x6 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg) |
|---|---|---|
| 0.5 mm |
|
0.02 kg / 20.0 g
0.2 N
|
| 1 mm |
|
0.05 kg / 50.0 g
0.5 N
|
| 2 mm |
|
0.10 kg / 100.0 g
1.0 N
|
| 5 mm |
|
0.20 kg / 200.0 g
2.0 N
|
| 10 mm |
|
0.20 kg / 200.0 g
2.0 N
|
Tabela 5: Stabilność termiczna (stabilność) - spadek mocy
MW 3x6 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig | Status |
|---|---|---|---|
| 20 °C | 0.0% |
0.20 kg / 200.0 g
2.0 N
|
OK |
| 40 °C | -2.2% |
0.20 kg / 195.6 g
1.9 N
|
OK |
| 60 °C | -4.4% |
0.19 kg / 191.2 g
1.9 N
|
OK |
| 80 °C | -6.6% |
0.19 kg / 186.8 g
1.8 N
|
|
| 100 °C | -28.8% |
0.14 kg / 142.4 g
1.4 N
|
Tabela 6: Dwa magnesy (odpychanie) - siły w układzie
MW 3x6 / N38
| Szczelina (mm) | Przyciąganie (kg) (N-S) | Odpychanie (kg) (N-N) |
|---|---|---|
| 0 mm |
1.56 kg / 1555 g
15.3 N
6 111 Gs
|
N/A |
| 1 mm |
0.73 kg / 726 g
7.1 N
8 161 Gs
|
0.65 kg / 653 g
6.4 N
~0 Gs
|
| 2 mm |
0.30 kg / 300 g
2.9 N
5 246 Gs
|
0.27 kg / 270 g
2.6 N
~0 Gs
|
| 3 mm |
0.13 kg / 125 g
1.2 N
3 391 Gs
|
0.11 kg / 113 g
1.1 N
~0 Gs
|
| 5 mm |
0.03 kg / 27 g
0.3 N
1 578 Gs
|
0.02 kg / 24 g
0.2 N
~0 Gs
|
| 10 mm |
0.00 kg / 2 g
0.0 N
409 Gs
|
0.00 kg / 0 g
0.0 N
~0 Gs
|
| 20 mm |
0.00 kg / 0 g
0.0 N
83 Gs
|
0.00 kg / 0 g
0.0 N
~0 Gs
|
| 50 mm |
0.00 kg / 0 g
0.0 N
8 Gs
|
0.00 kg / 0 g
0.0 N
~0 Gs
|
Tabela 7: Bezpieczeństwo (BHP) (implanty) - środki ostrożności
MW 3x6 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 2.5 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 2.0 cm |
| Zegarek mechaniczny | 20 Gs (2.0 mT) | 1.5 cm |
| Telefon / Smartfon | 40 Gs (4.0 mT) | 1.5 cm |
| Pilot do auta | 50 Gs (5.0 mT) | 1.0 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 0.5 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 0.5 cm |
Tabela 8: Dynamika (ryzyko pęknięcia) - skutki zderzenia
MW 3x6 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
25.21 km/h
(7.00 m/s)
|
0.01 J | |
| 30 mm |
43.67 km/h
(12.13 m/s)
|
0.02 J | |
| 50 mm |
56.38 km/h
(15.66 m/s)
|
0.04 J | |
| 100 mm |
79.73 km/h
(22.15 m/s)
|
0.08 J |
Tabela 9: Odporność na korozję
MW 3x6 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
Tabela 10: Dane konstrukcyjne (Pc)
MW 3x6 / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 470 Mx | 4.7 µWb |
| Współczynnik Pc | 1.21 | Wysoki (Stabilny) |
Tabela 11: Zastosowanie podwodne
MW 3x6 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 0.20 kg | Standard |
| Woda (dno rzeki) |
0.23 kg
(+0.03 kg Zysk z wyporności)
|
+14.5% |
1. Siła zsuwająca
*Pamiętaj: Na powierzchni pionowej magnes zachowa tylko ułamek siły oderwania.
2. Wpływ grubości blachy
*Cienka blacha (np. blacha karoseryjna) wyraźnie ogranicza udźwig magnesu.
3. Stabilność termiczna
*Dla standardowych magnesów krytyczny próg to 80°C.
4. Krzywa odmagnesowania i punkt pracy (B-H)
wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 1.21
Powyższy wykres prezentuje charakterystykę magnetyczną materiału w drugim kwadrancie pętli histerezy. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.
Skład chemiczny materiału
| żelazo (Fe) | 64% – 68% |
| neodym (Nd) | 29% – 32% |
| bor (B) | 1.1% – 1.2% |
| dysproz (Dy) | 0.5% – 2.0% |
| powłoka (Ni-Cu-Ni) | < 0.05% |
Zrównoważony rozwój
| recyklowalność (EoL) | 100% |
| surowce z recyklingu | ~10% (pre-cons) |
| ślad węglowy | low / zredukowany |
| kod odpadu (EWC) | 16 02 16 |
Sprawdź inne produkty
Zalety i wady magnesów neodymowych Nd2Fe14B.
Zalety
- Ich parametry są stabilne w czasie; po 10 latach użytkowania zmniejszenie udźwigu to znikome ~1%.
- Są niewrażliwe na wpływ innych pól, co czyni je odpornymi na rozmagnesowanie w wymagającym środowisku.
- Dzięki warstwie ochronnej (nikiel, złoto, srebro) mają nowoczesny, metaliczny wygląd.
- Generują niezwykle silne pole magnetyczne na swojej powierzchni, co jest ich znakiem rozpoznawczym.
- Wykazują imponującą wytrzymałość termiczną, co umożliwia ich stosowanie w warunkach do 230°C (dotyczy odpowiednich serii).
- Możliwość uzyskania skomplikowanych kształtów sprawia, że są idealne do indywidualnych zastosowań.
- Pełnią kluczową rolę w rozwoju technologii, będąc sercem generatorów, dysków i urządzeń ratujących życie.
- Dzięki kompaktowości, zajmują mało miejsca, a jednocześnie gwarantują wysoką skuteczność.
Wady
- Kruchość to ich słaba strona. Mogą pęknąć przy zderzeniu, dlatego zalecamy obudowy lub montaż w stali.
- Ograniczenia termiczne – dla zwykłych magnesów limit to 80°C. W trudnych warunkach (do 230°C) sprawdzą się tylko modele z oznaczeniem [AH].
- Nie lubią wody – szybko rdzewieją. Jeśli planujesz montaż na dworze, najlepszą opcją są magnesy w plastikowej osłonie.
- Obróbka jest trudna – wykonanie gwintu w samym magnesie jest ryzykowne. Lepiej wybrać gotowe uchwyty magnetyczne (magnes w obudowie).
- Dbaj o bezpieczeństwo – połknięcie magnesów przez dziecko to zagrożenie życia. Ponadto, ich obecność w ciele komplikuje diagnostykę obrazową.
- Za jakość trzeba płacić – magnesy neodymowe są droższe od ceramicznych, co wpływa na ekonomię rozwiązania.
Analiza siły trzymania
Optymalny udźwig magnesu neodymowego – co ma na to wpływ?
- przy kontakcie z zwory ze specjalnej stali pomiarowej, zapewniającej maksymalne skupienie pola
- posiadającej masywność co najmniej 10 mm aby uniknąć nasycenia
- z płaszczyzną wolną od rys
- bez żadnej szczeliny pomiędzy magnesem a stalą
- przy prostopadłym przyłożeniu siły odrywającej (kąt 90 stopni)
- w standardowej temperaturze otoczenia
Udźwig w praktyce – czynniki wpływu
- Dystans – występowanie ciała obcego (farba, brud, powietrze) działa jak izolator, co obniża moc gwałtownie (nawet o 50% przy 0,5 mm).
- Kierunek działania siły – największą siłę uzyskujemy tylko przy ciągnięciu pod kątem 90°. Siła ścinająca magnesu po blasze jest zazwyczaj wielokrotnie niższa (ok. 1/5 udźwigu).
- Grubość blachy – za chuda płyta nie zamyka strumienia, przez co część mocy jest tracona w powietrzu.
- Skład chemiczny podłoża – stal niskowęglowa daje najlepsze rezultaty. Większa zawartość węgla obniżają właściwości magnetyczne i udźwig.
- Jakość powierzchni – im równiejsza blacha, tym lepsze przyleganie i silniejsze trzymanie. Nierówności działają jak mikroszczeliny.
- Temperatura – podgrzanie magnesu powoduje tymczasowy spadek indukcji. Należy pamiętać o limit termiczny dla danego modelu.
Siłę trzymania mierzy się na gładkiej blasze o grubości 20 mm, kiedy działała siła prostopadła, z kolei przy próbie przesunięcia magnesu udźwig jest mniejszy nawet pięć razy. Ponadto, nawet drobny odstęp pomiędzy powierzchnią magnesu, a blachą obniża siłę trzymania.
Bezpieczna praca z magnesami neodymowymi
Bezpieczny dystans
Ekstremalne oddziaływanie może skasować dane na kartach płatniczych, dyskach twardych i innych nośnikach magnetycznych. Zachowaj odstęp min. 10 cm.
Ostrzeżenie dla alergików
Badania wskazują, że nikiel (typowe wykończenie magnesów) jest częstą przyczyną uczuleń. Jeśli Twoja skóra źle reaguje na metale, unikaj trzymania magnesów gołą dłonią lub zakup wersje w obudowie plastikowej.
Wrażliwość na ciepło
Chroń przed wysoką temperaturą. Magnesy neodymowe są nieodporne na temperaturę. Jeśli wymagasz odporności powyżej 80°C, zapytaj nas o magnesy odporne na ciepło (H, SH, UH).
Interferencja medyczna
Osoby z stymulatorem serca muszą utrzymać bezwzględny dystans od magnesów. Silny magnes może zakłócić działanie implantu.
Nie wierć w magnesach
Szlifowanie magnesów neodymowych stwarza ryzyko zapłonu. Proszek magnetyczny utlenia się błyskawicznie z tlenem i jest trudny do gaszenia.
Ryzyko zmiażdżenia
Chroń dłonie. Dwa duże magnesy zderzą z ogromną prędkością z siłą kilkuset kilogramów, miażdżąc wszystko na swojej drodze. Bądź ostrożny!
Elektronika precyzyjna
Silne pole magnetyczne zakłóca działanie czujników w smartfonach i urządzeniach lokalizacyjnych. Zachowaj odstęp magnesów od telefonu, aby nie uszkodzić czujników.
Nie dawać dzieciom
Zawsze zabezpiecz magnesy przed najmłodszymi. Niebezpieczeństwo połknięcia jest bardzo duże, a konsekwencje zwarcia magnesów wewnątrz organizmu są nieodwracalne.
Zasady obsługi
Przed użyciem, zapoznaj się z zasadami. Niekontrolowane przyciągnięcie może zniszczyć magnes lub zranić dłoń. Myśl o krok do przodu.
Kruchy spiek
Choć wyglądają jak stal, neodym jest kruchy i nieodporny na uderzenia. Unikaj uderzeń, gdyż magnes może się rozpaść na ostre, niebezpieczne kawałki.
