MW 3x6 / N38 - magnes neodymowy walcowy
magnes neodymowy walcowy
Numer katalogowy 010065
GTIN/EAN: 5906301810643
Średnica Ø
3 mm [±0,1 mm]
Wysokość
6 mm [±0,1 mm]
Waga
0.32 g
Kierunek magnesowania
↑ osiowy
Udźwig
0.20 kg / 1.95 N
Indukcja magnetyczna
598.96 mT / 5990 Gs
Powłoka
[NiCuNi] nikiel
0.295 ZŁ z VAT / szt. + cena za transport
0.240 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?
Zadzwoń już teraz
+48 888 99 98 98
albo daj znać poprzez
formularz zgłoszeniowy
przez naszą stronę.
Parametry oraz formę magnesów skontrolujesz w naszym
kalkulatorze siły.
Zamówienia złożone do godziny 14:00 zostaną wysłane tego samego dnia roboczego.
Karta produktu - MW 3x6 / N38 - magnes neodymowy walcowy
Specyfikacja / charakterystyka - MW 3x6 / N38 - magnes neodymowy walcowy
| właściwości | wartości |
|---|---|
| Nr kat. | 010065 |
| GTIN/EAN | 5906301810643 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Średnica Ø | 3 mm [±0,1 mm] |
| Wysokość | 6 mm [±0,1 mm] |
| Waga | 0.32 g |
| Kierunek magnesowania | ↑ osiowy |
| Udźwig ~ ? | 0.20 kg / 1.95 N |
| Indukcja magnetyczna ~ ? | 598.96 mT / 5990 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [min. - maks.] ? | 12.2-12.6 | kGs |
| remanencja Br [min. - maks.] ? | 1220-1260 | mT |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [min. - maks.] ? | 36-38 | BH max MGOe |
| gęstość energii [min. - maks.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Temperatura Curie TC | 312 - 380 | °C |
| Temperatura Curie TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅cm |
| Siła wyginania | 250 | MPa |
| Wytrzymałość na ściskanie | 1000~1100 | MPa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 10-6 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Symulacja fizyczna magnesu - parametry techniczne
Poniższe wartości stanowią wynik kalkulacji matematycznej. Wartości bazują na modelach dla materiału Nd2Fe14B. Rzeczywiste osiągi mogą różnić się od wartości teoretycznych. Traktuj te wyliczenia jako pomoc pomocniczą przy projektowaniu systemów.
Tabela 1: Siła prostopadła statyczna (siła vs odległość) - wykres oddziaływania
MW 3x6 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg)(gram)(Niuton) | Status ryzyka |
|---|---|---|---|
| 0 mm |
5974 Gs
597.4 mT
|
0.20 kg / 200.0 g
2.0 N
|
niskie ryzyko |
| 1 mm |
2623 Gs
262.3 mT
|
0.04 kg / 38.6 g
0.4 N
|
niskie ryzyko |
| 2 mm |
1134 Gs
113.4 mT
|
0.01 kg / 7.2 g
0.1 N
|
niskie ryzyko |
| 3 mm |
570 Gs
57.0 mT
|
0.00 kg / 1.8 g
0.0 N
|
niskie ryzyko |
| 5 mm |
205 Gs
20.5 mT
|
0.00 kg / 0.2 g
0.0 N
|
niskie ryzyko |
| 10 mm |
42 Gs
4.2 mT
|
0.00 kg / 0.0 g
0.0 N
|
niskie ryzyko |
| 15 mm |
15 Gs
1.5 mT
|
0.00 kg / 0.0 g
0.0 N
|
niskie ryzyko |
| 20 mm |
7 Gs
0.7 mT
|
0.00 kg / 0.0 g
0.0 N
|
niskie ryzyko |
| 30 mm |
2 Gs
0.2 mT
|
0.00 kg / 0.0 g
0.0 N
|
niskie ryzyko |
| 50 mm |
1 Gs
0.1 mT
|
0.00 kg / 0.0 g
0.0 N
|
niskie ryzyko |
Tabela 2: Siła równoległa ześlizgu (pion)
MW 3x6 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg)(gram)(Niuton) |
|---|---|---|
| 0 mm | Stal (~0.2) |
0.04 kg / 40.0 g
0.4 N
|
| 1 mm | Stal (~0.2) |
0.01 kg / 8.0 g
0.1 N
|
| 2 mm | Stal (~0.2) |
0.00 kg / 2.0 g
0.0 N
|
| 3 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
| 5 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
| 10 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
| 15 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
| 20 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
| 30 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
Tabela 3: Siła na ścianie (ścinanie) - zachowanie na śliskim podłożu
MW 3x6 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
0.06 kg / 60.0 g
0.6 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
0.04 kg / 40.0 g
0.4 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
0.02 kg / 20.0 g
0.2 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
0.10 kg / 100.0 g
1.0 N
|
Tabela 4: Efektywność materiałowa (wpływ podłoża) - straty mocy
MW 3x6 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg) |
|---|---|---|
| 0.5 mm |
|
0.02 kg / 20.0 g
0.2 N
|
| 1 mm |
|
0.05 kg / 50.0 g
0.5 N
|
| 2 mm |
|
0.10 kg / 100.0 g
1.0 N
|
| 5 mm |
|
0.20 kg / 200.0 g
2.0 N
|
| 10 mm |
|
0.20 kg / 200.0 g
2.0 N
|
Tabela 5: Wytrzymałość temperaturowa (zachowanie materiału) - spadek mocy
MW 3x6 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig | Status |
|---|---|---|---|
| 20 °C | 0.0% |
0.20 kg / 200.0 g
2.0 N
|
OK |
| 40 °C | -2.2% |
0.20 kg / 195.6 g
1.9 N
|
OK |
| 60 °C | -4.4% |
0.19 kg / 191.2 g
1.9 N
|
OK |
| 80 °C | -6.6% |
0.19 kg / 186.8 g
1.8 N
|
|
| 100 °C | -28.8% |
0.14 kg / 142.4 g
1.4 N
|
Tabela 6: Interakcja magnes-magnes (przyciąganie) - kolizja pól
MW 3x6 / N38
| Szczelina (mm) | Przyciąganie (kg) (N-S) | Odpychanie (kg) (N-N) |
|---|---|---|
| 0 mm |
1.56 kg / 1555 g
15.3 N
6 111 Gs
|
N/A |
| 1 mm |
0.73 kg / 726 g
7.1 N
8 161 Gs
|
0.65 kg / 653 g
6.4 N
~0 Gs
|
| 2 mm |
0.30 kg / 300 g
2.9 N
5 246 Gs
|
0.27 kg / 270 g
2.6 N
~0 Gs
|
| 3 mm |
0.13 kg / 125 g
1.2 N
3 391 Gs
|
0.11 kg / 113 g
1.1 N
~0 Gs
|
| 5 mm |
0.03 kg / 27 g
0.3 N
1 578 Gs
|
0.02 kg / 24 g
0.2 N
~0 Gs
|
| 10 mm |
0.00 kg / 2 g
0.0 N
409 Gs
|
0.00 kg / 0 g
0.0 N
~0 Gs
|
| 20 mm |
0.00 kg / 0 g
0.0 N
83 Gs
|
0.00 kg / 0 g
0.0 N
~0 Gs
|
| 50 mm |
0.00 kg / 0 g
0.0 N
8 Gs
|
0.00 kg / 0 g
0.0 N
~0 Gs
|
Tabela 7: Strefy ochronne (implanty) - środki ostrożności
MW 3x6 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 2.5 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 2.0 cm |
| Czasomierz | 20 Gs (2.0 mT) | 1.5 cm |
| Telefon / Smartfon | 40 Gs (4.0 mT) | 1.5 cm |
| Pilot do auta | 50 Gs (5.0 mT) | 1.0 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 0.5 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 0.5 cm |
Tabela 8: Dynamika (energia kinetyczna) - ostrzeżenie
MW 3x6 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
25.21 km/h
(7.00 m/s)
|
0.01 J | |
| 30 mm |
43.67 km/h
(12.13 m/s)
|
0.02 J | |
| 50 mm |
56.38 km/h
(15.66 m/s)
|
0.04 J | |
| 100 mm |
79.73 km/h
(22.15 m/s)
|
0.08 J |
Tabela 9: Odporność na korozję
MW 3x6 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
Tabela 10: Dane konstrukcyjne (Pc)
MW 3x6 / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 470 Mx | 4.7 µWb |
| Współczynnik Pc | 1.21 | Wysoki (Stabilny) |
Tabela 11: Hydrostatyka i wyporność
MW 3x6 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 0.20 kg | Standard |
| Woda (dno rzeki) |
0.23 kg
(+0.03 kg Zysk z wyporności)
|
+14.5% |
1. Montaż na ścianie (ześlizg)
*Uwaga: Na pionowej ścianie magnes zachowa tylko ułamek nominalnego udźwigu.
2. Efektywność, a grubość stali
*Zbyt cienki metal (np. obudowa PC 0.5mm) wyraźnie ogranicza udźwig magnesu.
3. Praca w cieple
*Dla materiału N38 maksymalna temperatura to 80°C.
4. Krzywa odmagnesowania i punkt pracy (B-H)
wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 1.21
Powyższy wykres prezentuje charakterystykę magnetyczną materiału w drugim kwadrancie pętli histerezy. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.
Analiza pierwiastkowa
| żelazo (Fe) | 64% – 68% |
| neodym (Nd) | 29% – 32% |
| bor (B) | 1.1% – 1.2% |
| dysproz (Dy) | 0.5% – 2.0% |
| powłoka (Ni-Cu-Ni) | < 0.05% |
Dane środowiskowe
| recyklowalność (EoL) | 100% |
| surowce z recyklingu | ~10% (pre-cons) |
| ślad węglowy | low / zredukowany |
| kod odpadu (EWC) | 16 02 16 |
Inne produkty
Zalety i wady magnesów z neodymu Nd2Fe14B.
Korzyści
- Długowieczność to ich atut – nawet po dekady utrata mocy wynosi tylko ~1% (wg testów).
- Inne źródła magnetyzmu nie wpływają na ich szybkiego rozmagnesowania – posiadają dużą zdolność odporności magnetycznej.
- Są nie tylko silne, ale i ładne – dzięki powłokom ich powierzchnia jest błyszcząca i wygląda estetycznie.
- Wyróżniają się bardzo wysoką gęstością pola na powierzchni, co zapewnia silne chwytanie z dużą mocą.
- Wykazują imponującą wytrzymałość termiczną, co umożliwia ich stosowanie w warunkach do 230°C (dotyczy odpowiednich serii).
- Szerokie możliwości w projektowaniu kształtu i wymiaru to ich ogromny plus w inżynierii.
- Znajdują powszechne zastosowanie w nowoczesnej technice – od dysków twardych i silników, po precyzyjną aparaturę medyczną.
- Dzięki kompaktowości, nie wymagają dużej przestrzeni, a jednocześnie gwarantują wysoką skuteczność.
Minusy
- Kruchość to ich słaba strona. Mogą pęknąć przy zderzeniu, dlatego warto stosować obudowy lub uchwyty.
- Uwaga na temperaturę – dla zwykłych magnesów limit to 80°C. W gorącym środowisku (do 230°C) sprawdzą się tylko modele z oznaczeniem [AH].
- Nie lubią wody – szybko rdzewieją. Jeśli planujesz montaż na dworze, najlepszą opcją są magnesy w plastikowej osłonie.
- Z uwagi na specyfikę materiału, nie zaleca się gwintowania magnesu. Bezpieczniej użyć magnesu wklejonego w gniazdo z gwintem.
- Dbaj o bezpieczeństwo – połknięcie magnesów przez dziecko to stan krytyczny. Ponadto, ich obecność w ciele komplikuje diagnostykę obrazową.
- Wysoki koszt zakupu w porównaniu do ferrytów to ich minus, szczególnie przy dużych ilościach.
Analiza siły trzymania
Udźwig maksymalny dla magnesu neodymowego – od czego zależy?
- z zastosowaniem płyty ze miękkiej stali, działającej jako zwora magnetyczna
- posiadającej grubość min. 10 mm dla pełnego zamknięcia strumienia
- charakteryzującej się brakiem chropowatości
- w warunkach bezszczelinowych (metal do metalu)
- dla siły działającej pod kątem prostym (na odrywanie, nie zsuwanie)
- przy temperaturze ok. 20 stopni Celsjusza
Praktyczne aspekty udźwigu – czynniki
- Szczelina między powierzchniami – nawet ułamek milimetra odległości (spowodowany np. okleiną lub nierównością) drastycznie redukuje siłę przyciągania, często o połowę przy zaledwie 0,5 mm.
- Kąt odrywania – pamiętaj, że magnes najmocniej trzyma prostopadle. Przy zsuwaniu w dół, udźwig spada znacząco, często do poziomu 20-30% wartości nominalnej.
- Grubość metalu – cienki materiał nie pozwala na pełne wykorzystanie magnesu. Część pola magnetycznego przenika na wylot, zamiast zamienić się w udźwig.
- Skład chemiczny podłoża – stal niskowęglowa daje najlepsze rezultaty. Stale stopowe redukują właściwości magnetyczne i udźwig.
- Stan powierzchni – powierzchnie gładkie zapewniają maksymalny styk, co zwiększa siłę. Powierzchnie chropowate zmniejszają efektywność.
- Otoczenie termiczne – podgrzanie magnesu powoduje tymczasowy spadek indukcji. Należy pamiętać o maksymalną temperaturę pracy dla danego modelu.
Siłę trzymania mierzy się na gładkiej blasze o grubości 20 mm, kiedy przyłożono siłę prostopadłą, z kolei przy działaniu siły na zsuwanie nośność jest mniejsza nawet 75%. Dodatkowo, nawet drobny odstęp między powierzchnią magnesu, a blachą zmniejsza udźwig.
BHP przy magnesach
Uwaga: zadławienie
Artykuł tylko dla osób pełnoletnich. Drobne magnesy mogą zostać połknięte, co prowadzi do perforacji jelit. Trzymaj z dala od niepowołanych osób.
Reakcje alergiczne
Powszechnie wiadomo, że powłoka niklowa (typowe wykończenie magnesów) jest częstą przyczyną uczuleń. Jeśli jesteś alergikiem, wystrzegaj się bezpośredniego dotyku lub zakup magnesy powlekane tworzywem.
Ryzyko złamań
Bloki magnetyczne mogą zdruzgotać palce błyskawicznie. Nigdy umieszczaj dłoni między dwa silne magnesy.
Ochrona urządzeń
Zagrożenie dla danych: Magnesy neodymowe mogą uszkodzić nośniki danych oraz delikatną elektronikę (implanty, protezy słuchu, zegarki mechaniczne).
Interferencja magnetyczna
Ważna informacja: magnesy neodymowe wytwarzają pole, które zakłócają systemy nawigacji. Zachowaj odpowiednią odległość od komórki, tabletu i nawigacji.
Rozprysk materiału
Ryzyko skaleczenia. Magnesy mogą eksplodować przy niekontrolowanym uderzeniu, wyrzucając ostre odłamki w powietrze. Ochrona wzroku wymagana.
Interferencja medyczna
Ostrzeżenie medyczne: Magnesy neodymowe mogą dezaktywować stymulatory i defibrylatory. Unikaj kontaktu, jeśli posiadasz urządzenia wspomagające.
Świadome użytkowanie
Używaj magnesy z rozwagą. Ich potężna moc może zaskoczyć nawet doświadczonych użytkowników. Bądź skupiony i nie lekceważ ich siły.
Wrażliwość na ciepło
Standardowe magnesy neodymowe (typ N) tracą moc po przekroczeniu temperatury 80°C. Proces ten jest nieodwracalny.
Obróbka mechaniczna
Pył generowany podczas obróbki magnesów jest wybuchowy. Nie wierć w magnesach w warunkach domowych.
