MPL 42x20x5 / N38 - magnes neodymowy płytkowy
magnes neodymowy płytkowy
Numer katalogowy 020163
GTIN/EAN: 5906301811695
Długość
42 mm [±0,1 mm]
Szerokość
20 mm [±0,1 mm]
Wysokość
5 mm [±0,1 mm]
Waga
31.5 g
Kierunek magnesowania
↑ osiowy
Udźwig
11.06 kg / 108.46 N
Indukcja magnetyczna
203.37 mT / 2034 Gs
Powłoka
[NiCuNi] nikiel
15.62 ZŁ z VAT / szt. + cena za transport
12.70 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?
Zadzwoń do nas
+48 888 99 98 98
lub pisz korzystając z
formularz zgłoszeniowy
na naszej stronie.
Moc i wygląd magnesów obliczysz dzięki naszemu
kalkulatorze mocy.
Wysyłka tego samego dnia dla zamówień do godz. 14:00.
Parametry techniczne produktu - MPL 42x20x5 / N38 - magnes neodymowy płytkowy
Specyfikacja / charakterystyka - MPL 42x20x5 / N38 - magnes neodymowy płytkowy
| właściwości | wartości |
|---|---|
| Nr kat. | 020163 |
| GTIN/EAN | 5906301811695 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Długość | 42 mm [±0,1 mm] |
| Szerokość | 20 mm [±0,1 mm] |
| Wysokość | 5 mm [±0,1 mm] |
| Waga | 31.5 g |
| Kierunek magnesowania | ↑ osiowy |
| Udźwig ~ ? | 11.06 kg / 108.46 N |
| Indukcja magnetyczna ~ ? | 203.37 mT / 2034 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [min. - maks.] ? | 12.2-12.6 | kGs |
| remanencja Br [min. - maks.] ? | 1220-1260 | mT |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [min. - maks.] ? | 36-38 | BH max MGOe |
| gęstość energii [min. - maks.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Temperatura Curie TC | 312 - 380 | °C |
| Temperatura Curie TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅cm |
| Siła wyginania | 250 | MPa |
| Wytrzymałość na ściskanie | 1000~1100 | MPa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 10-6 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Analiza techniczna magnesu neodymowego - dane
Niniejsze dane są rezultat symulacji inżynierskiej. Wartości zostały wyliczone na modelach dla materiału Nd2Fe14B. Rzeczywiste parametry mogą nieznacznie odbiegać od wyników symulacji. Traktuj te dane jako punkt odniesienia przy projektowaniu systemów.
Tabela 1: Udźwig statyczny prostopadły (siła vs dystans) - spadek mocy
MPL 42x20x5 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg/lbs/g/N) | Status ryzyka |
|---|---|---|---|
| 0 mm |
2033 Gs
203.3 mT
|
11.06 kg / 24.38 lbs
11060.0 g / 108.5 N
|
krytyczny poziom |
| 1 mm |
1938 Gs
193.8 mT
|
10.05 kg / 22.15 lbs
10049.3 g / 98.6 N
|
krytyczny poziom |
| 2 mm |
1823 Gs
182.3 mT
|
8.89 kg / 19.60 lbs
8888.2 g / 87.2 N
|
mocny |
| 3 mm |
1696 Gs
169.6 mT
|
7.69 kg / 16.96 lbs
7691.7 g / 75.5 N
|
mocny |
| 5 mm |
1433 Gs
143.3 mT
|
5.49 kg / 12.10 lbs
5490.3 g / 53.9 N
|
mocny |
| 10 mm |
885 Gs
88.5 mT
|
2.09 kg / 4.62 lbs
2093.5 g / 20.5 N
|
mocny |
| 15 mm |
547 Gs
54.7 mT
|
0.80 kg / 1.76 lbs
799.6 g / 7.8 N
|
słaby uchwyt |
| 20 mm |
350 Gs
35.0 mT
|
0.33 kg / 0.72 lbs
327.0 g / 3.2 N
|
słaby uchwyt |
| 30 mm |
160 Gs
16.0 mT
|
0.07 kg / 0.15 lbs
68.5 g / 0.7 N
|
słaby uchwyt |
| 50 mm |
48 Gs
4.8 mT
|
0.01 kg / 0.01 lbs
6.2 g / 0.1 N
|
słaby uchwyt |
Tabela 2: Równoległa siła obsunięcia (pion)
MPL 42x20x5 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg/lbs/g/N) |
|---|---|---|
| 0 mm | Stal (~0.2) |
2.21 kg / 4.88 lbs
2212.0 g / 21.7 N
|
| 1 mm | Stal (~0.2) |
2.01 kg / 4.43 lbs
2010.0 g / 19.7 N
|
| 2 mm | Stal (~0.2) |
1.78 kg / 3.92 lbs
1778.0 g / 17.4 N
|
| 3 mm | Stal (~0.2) |
1.54 kg / 3.39 lbs
1538.0 g / 15.1 N
|
| 5 mm | Stal (~0.2) |
1.10 kg / 2.42 lbs
1098.0 g / 10.8 N
|
| 10 mm | Stal (~0.2) |
0.42 kg / 0.92 lbs
418.0 g / 4.1 N
|
| 15 mm | Stal (~0.2) |
0.16 kg / 0.35 lbs
160.0 g / 1.6 N
|
| 20 mm | Stal (~0.2) |
0.07 kg / 0.15 lbs
66.0 g / 0.6 N
|
| 30 mm | Stal (~0.2) |
0.01 kg / 0.03 lbs
14.0 g / 0.1 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
2.0 g / 0.0 N
|
Tabela 3: Montaż pionowy (poślizg) - udźwig wertykalny
MPL 42x20x5 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg/lbs/g/N) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
3.32 kg / 7.31 lbs
3318.0 g / 32.5 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
2.21 kg / 4.88 lbs
2212.0 g / 21.7 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
1.11 kg / 2.44 lbs
1106.0 g / 10.8 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
5.53 kg / 12.19 lbs
5530.0 g / 54.2 N
|
Tabela 4: Grubość stali (nasycenie) - dobór blachy
MPL 42x20x5 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg/lbs/g/N) |
|---|---|---|
| 0.5 mm |
|
0.55 kg / 1.22 lbs
553.0 g / 5.4 N
|
| 1 mm |
|
1.38 kg / 3.05 lbs
1382.5 g / 13.6 N
|
| 2 mm |
|
2.77 kg / 6.10 lbs
2765.0 g / 27.1 N
|
| 3 mm |
|
4.15 kg / 9.14 lbs
4147.5 g / 40.7 N
|
| 5 mm |
|
6.91 kg / 15.24 lbs
6912.5 g / 67.8 N
|
| 10 mm |
|
11.06 kg / 24.38 lbs
11060.0 g / 108.5 N
|
| 11 mm |
|
11.06 kg / 24.38 lbs
11060.0 g / 108.5 N
|
| 12 mm |
|
11.06 kg / 24.38 lbs
11060.0 g / 108.5 N
|
Tabela 5: Wytrzymałość temperaturowa (zachowanie materiału) - limit termiczny
MPL 42x20x5 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig (kg/lbs/g/N) | Status |
|---|---|---|---|
| 20 °C | 0.0% |
11.06 kg / 24.38 lbs
11060.0 g / 108.5 N
|
OK |
| 40 °C | -2.2% |
10.82 kg / 23.85 lbs
10816.7 g / 106.1 N
|
OK |
| 60 °C | -4.4% |
10.57 kg / 23.31 lbs
10573.4 g / 103.7 N
|
|
| 80 °C | -6.6% |
10.33 kg / 22.77 lbs
10330.0 g / 101.3 N
|
|
| 100 °C | -28.8% |
7.87 kg / 17.36 lbs
7874.7 g / 77.3 N
|
Tabela 6: Interakcja magnes-magnes (odpychanie) - zasięg pola
MPL 42x20x5 / N38
| Szczelina (mm) | Przyciąganie (kg/lbs) (N-S) | Opór ścinania (kg/lbs/g/N) | Odpychanie (kg/lbs) (N-N) |
|---|---|---|---|
| 0 mm |
21.41 kg / 47.21 lbs
3 465 Gs
|
3.21 kg / 7.08 lbs
3212 g / 31.5 N
|
N/A |
| 1 mm |
20.49 kg / 45.17 lbs
3 978 Gs
|
3.07 kg / 6.78 lbs
3074 g / 30.2 N
|
18.44 kg / 40.66 lbs
~0 Gs
|
| 2 mm |
19.46 kg / 42.89 lbs
3 877 Gs
|
2.92 kg / 6.43 lbs
2918 g / 28.6 N
|
17.51 kg / 38.60 lbs
~0 Gs
|
| 3 mm |
18.35 kg / 40.46 lbs
3 765 Gs
|
2.75 kg / 6.07 lbs
2753 g / 27.0 N
|
16.52 kg / 36.41 lbs
~0 Gs
|
| 5 mm |
16.05 kg / 35.38 lbs
3 521 Gs
|
2.41 kg / 5.31 lbs
2407 g / 23.6 N
|
14.44 kg / 31.84 lbs
~0 Gs
|
| 10 mm |
10.63 kg / 23.43 lbs
2 865 Gs
|
1.59 kg / 3.52 lbs
1594 g / 15.6 N
|
9.57 kg / 21.09 lbs
~0 Gs
|
| 20 mm |
4.05 kg / 8.94 lbs
1 769 Gs
|
0.61 kg / 1.34 lbs
608 g / 6.0 N
|
3.65 kg / 8.04 lbs
~0 Gs
|
| 50 mm |
0.28 kg / 0.62 lbs
465 Gs
|
0.04 kg / 0.09 lbs
42 g / 0.4 N
|
0.25 kg / 0.55 lbs
~0 Gs
|
| 60 mm |
0.13 kg / 0.29 lbs
320 Gs
|
0.02 kg / 0.04 lbs
20 g / 0.2 N
|
0.12 kg / 0.26 lbs
~0 Gs
|
| 70 mm |
0.07 kg / 0.15 lbs
228 Gs
|
0.01 kg / 0.02 lbs
10 g / 0.1 N
|
0.06 kg / 0.13 lbs
~0 Gs
|
| 80 mm |
0.04 kg / 0.08 lbs
167 Gs
|
0.01 kg / 0.01 lbs
5 g / 0.1 N
|
0.03 kg / 0.07 lbs
~0 Gs
|
| 90 mm |
0.02 kg / 0.04 lbs
125 Gs
|
0.00 kg / 0.01 lbs
3 g / 0.0 N
|
0.02 kg / 0.04 lbs
~0 Gs
|
| 100 mm |
0.01 kg / 0.03 lbs
96 Gs
|
0.00 kg / 0.00 lbs
2 g / 0.0 N
|
0.01 kg / 0.02 lbs
~0 Gs
|
Tabela 7: Strefy ochronne (elektronika) - ostrzeżenia
MPL 42x20x5 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 11.5 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 9.0 cm |
| Zegarek mechaniczny | 20 Gs (2.0 mT) | 7.0 cm |
| Telefon / Smartfon | 40 Gs (4.0 mT) | 5.5 cm |
| Kluczyk samochodowy | 50 Gs (5.0 mT) | 5.0 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 2.0 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 1.5 cm |
Tabela 8: Dynamika (ryzyko pęknięcia) - ostrzeżenie
MPL 42x20x5 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
21.01 km/h
(5.84 m/s)
|
0.54 J | |
| 30 mm |
32.86 km/h
(9.13 m/s)
|
1.31 J | |
| 50 mm |
42.27 km/h
(11.74 m/s)
|
2.17 J | |
| 100 mm |
59.76 km/h
(16.60 m/s)
|
4.34 J |
Tabela 9: Trwałość powłoki antykorozyjnej
MPL 42x20x5 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
Tabela 10: Dane konstrukcyjne (Strumień)
MPL 42x20x5 / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 18 614 Mx | 186.1 µWb |
| Współczynnik Pc | 0.23 | Niski (Płaski) |
Tabela 11: Fizyka poszukiwań podwodnych
MPL 42x20x5 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 11.06 kg | Standard |
| Woda (dno rzeki) |
12.66 kg
(+1.60 kg zysk z wyporności)
|
+14.5% |
1. Siła zsuwająca
*Uwaga: Na pionowej ścianie magnes zachowa jedynie ok. 20-30% siły oderwania.
2. Grubość podłoża
*Cienka blacha (np. blacha karoseryjna) wyraźnie osłabia siłę trzymania.
3. Stabilność termiczna
*Dla standardowych magnesów maksymalna temperatura to 80°C.
4. Krzywa odmagnesowania i punkt pracy (B-H)
wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 0.23
Niniejsza symulacja obrazuje stabilność magnetyczną wybranego magnesu w konkretnych warunkach geometrycznych. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.
Specyfikacja materiałowa
| żelazo (Fe) | 64% – 68% |
| neodym (Nd) | 29% – 32% |
| bor (B) | 1.1% – 1.2% |
| dysproz (Dy) | 0.5% – 2.0% |
| powłoka (Ni-Cu-Ni) | < 0.05% |
Zrównoważony rozwój
| recyklowalność (EoL) | 100% |
| surowce z recyklingu | ~10% (pre-cons) |
| ślad węglowy | low / zredukowany |
| kod odpadu (EWC) | 16 02 16 |
Zobacz też inne oferty
Zalety oraz wady magnesów neodymowych Nd2Fe14B.
Mocne strony
- Utrzymują swoje właściwości przez lata – szacuje się, że po dekadzie tracą na sile o symboliczny 1%.
- Są niewrażliwe na wpływ innych pól, co czyni je odpornymi na rozmagnesowanie w trudnych warunkach.
- Dzięki powłoce (NiCuNi, złoto, srebro) mają estetyczny, metaliczny wygląd.
- Oferują maksymalną indukcję magnetyczną w punkcie styku, co przekłada się na skuteczność.
- Posiadają imponującą wytrzymałość termiczną, co umożliwia ich użycie w warunkach do 230°C (dotyczy odpowiednich serii).
- Możliwość uzyskania skomplikowanych kształtów sprawia, że są idealne do nietypowych zastosowań.
- Znajdują powszechne zastosowanie w przemyśle high-tech – od dysków twardych i silników, po precyzyjną aparaturę medyczną.
- Dzięki kompaktowości, zajmują mało miejsca, a jednocześnie zapewniają silne pole.
Słabe strony
- Kruchość to ich mankament. Mogą pęknąć przy upadku, dlatego zalecamy obudowy lub montaż w stali.
- Standardowe magnesy tracą moc powyżej 80°C. Jeśli wymagasz pracy w wyższych temperaturach, zastosuj serię [AH] (odporną do 230°C).
- Wilgoć powoduje korozję w mokrym otoczeniu. Na zewnątrz zalecamy użycie magnesów wodoszczelnych (np. w gumie).
- Z uwagi na specyfikę materiału, nie zaleca się obróbki mechanicznej magnesu. Prościej użyć magnesu wklejonego w stalowy kubek z gwintem.
- Drobne magnesy to ryzyko – połknięcie wymaga interwencji chirurga. Mogą też być problemem przy diagnostyce MRI.
- Nie należą do tanich – ich cena jest wyższa niż ferrytów, co należy uwzględnić przy planowaniu kosztów.
Analiza siły trzymania
Maksymalna moc trzymania magnesu – co się na to składa?
- przy zastosowaniu zwory ze specjalnej stali pomiarowej, gwarantującej pełne nasycenie magnetyczne
- o przekroju wynoszącej minimum 10 mm
- o idealnie gładkiej powierzchni styku
- w warunkach idealnego przylegania (metal do metalu)
- dla siły działającej pod kątem prostym (na odrywanie, nie zsuwanie)
- w temp. ok. 20°C
Udźwig w warunkach rzeczywistych – czynniki
- Przerwa między powierzchniami – każdy milimetr odległości (spowodowany np. lakierem lub nierównością) zmniejsza efektywność magnesu, często o połowę przy zaledwie 0,5 mm.
- Sposób obciążenia – deklarowany udźwig dotyczy odrywania w pionie. Przy ześlizgiwaniu, magnes trzyma dużo słabiej (zazwyczaj ok. 20-30% siły maksymalnej).
- Grubość elementu – dla pełnej efektywności, stal musi być odpowiednio gruba. Cienka blacha limituje siłę przyciągania (magnes „przebija” ją na wylot).
- Gatunek stali – idealnym podłożem jest stal o wysokiej przenikalności. Stale hartowane mogą przyciągać słabiej.
- Stan powierzchni – szlifowane elementy gwarantują idealne doleganie, co poprawia nasycenie pola. Nierówny metal zmniejszają efektywność.
- Czynnik termiczny – gorące środowisko zmniejsza siłę przyciągania. Zbyt wysoka temperatura może trwale uszkodzić magnes.
Siłę trzymania sprawdzano na powierzchni blachy o grubości 20 mm, kiedy przyłożono siłę prostopadłą, z kolei przy siłach działających równolegle udźwig jest mniejszy nawet pięciokrotnie. Dodatkowo, nawet drobny odstęp pomiędzy magnesem, a blachą obniża udźwig.
BHP przy magnesach
Smartfony i tablety
Uwaga: magnesy neodymowe wytwarzają pole, które mylą elektronikę precyzyjną. Zachowaj odpowiednią odległość od komórki, tabletu i nawigacji.
Zagrożenie dla elektroniki
Potężne pole magnetyczne może zniszczyć zapis na kartach płatniczych, nośnikach HDD i innych nośnikach magnetycznych. Trzymaj dystans min. 10 cm.
Wrażliwość na ciepło
Uważaj na temperaturę. Podgrzanie magnesu na wysoką temperaturę trwale osłabi jego strukturę magnetyczną i siłę przyciągania.
Dla uczulonych
Powszechnie wiadomo, że powłoka niklowa (standardowe zabezpieczenie magnesów) jest częstą przyczyną uczuleń. Jeśli Twoja skóra źle reaguje na metale, unikaj kontaktu skóry z metalem lub wybierz wersje w obudowie plastikowej.
Chronić przed dziećmi
Bezwzględnie chroń magnesy przed najmłodszymi. Niebezpieczeństwo połknięcia jest bardzo duże, a konsekwencje połączenia się magnesów wewnątrz organizmu są dramatyczne.
Łamliwość magnesów
Uwaga na odpryski. Magnesy mogą pęknąć przy niekontrolowanym uderzeniu, rozrzucając ostre odłamki w powietrze. Ochrona wzroku wymagana.
Poważne obrażenia
Zagrożenie fizyczne: Siła przyciągania jest tak duża, że może spowodować krwiaki, zmiażdżenia, a nawet otwarte złamania. Stosuj solidne rękawice ochronne.
Nie lekceważ mocy
Zanim zaczniesz, przeczytaj instrukcję. Gwałtowne złączenie może połamać magnes lub uszkodzić palce. Bądź przewidujący.
Rozruszniki serca
Ostrzeżenie dla sercowców: Silne pole magnetyczne wpływa na elektronikę medyczną. Utrzymuj co najmniej 30 cm odstępu lub zleć komuś innemu obsługę magnesów.
Pył jest łatwopalny
Wiercenie i cięcie magnesów neodymowych stwarza ryzyko zapłonu. Proszek magnetyczny utlenia się błyskawicznie z tlenem i jest trudny do gaszenia.
