MPL 40x7x3 / N38 - magnes neodymowy płytkowy
magnes neodymowy płytkowy
Numer katalogowy 020162
GTIN/EAN: 5906301811688
Długość
40 mm [±0,1 mm]
Szerokość
7 mm [±0,1 mm]
Wysokość
3 mm [±0,1 mm]
Waga
6.3 g
Kierunek magnesowania
↑ osiowy
Udźwig
7.14 kg / 70.02 N
Indukcja magnetyczna
284.46 mT / 2845 Gs
Powłoka
[NiCuNi] nikiel
2.79 ZŁ z VAT / szt. + cena za transport
2.27 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?
Zadzwoń i zapytaj
+48 888 99 98 98
lub napisz przez
formularz
przez naszą stronę.
Siłę a także formę elementów magnetycznych przetestujesz u nas w
kalkulatorze masy magnetycznej.
Wysyłka tego samego dnia dla zamówień do godz. 14:00.
Szczegóły techniczne - MPL 40x7x3 / N38 - magnes neodymowy płytkowy
Specyfikacja / charakterystyka - MPL 40x7x3 / N38 - magnes neodymowy płytkowy
| właściwości | wartości |
|---|---|
| Nr kat. | 020162 |
| GTIN/EAN | 5906301811688 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Długość | 40 mm [±0,1 mm] |
| Szerokość | 7 mm [±0,1 mm] |
| Wysokość | 3 mm [±0,1 mm] |
| Waga | 6.3 g |
| Kierunek magnesowania | ↑ osiowy |
| Udźwig ~ ? | 7.14 kg / 70.02 N |
| Indukcja magnetyczna ~ ? | 284.46 mT / 2845 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [min. - maks.] ? | 12.2-12.6 | kGs |
| remanencja Br [min. - maks.] ? | 1220-1260 | mT |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [min. - maks.] ? | 36-38 | BH max MGOe |
| gęstość energii [min. - maks.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Temperatura Curie TC | 312 - 380 | °C |
| Temperatura Curie TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅cm |
| Siła wyginania | 250 | MPa |
| Wytrzymałość na ściskanie | 1000~1100 | MPa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 10-6 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Symulacja fizyczna magnesu neodymowego - dane
Poniższe informacje stanowią rezultat kalkulacji inżynierskiej. Wartości zostały wyliczone na algorytmach dla materiału Nd2Fe14B. Rzeczywiste osiągi mogą różnić się od wartości teoretycznych. Traktuj te dane jako pomoc pomocniczą dla projektantów.
Tabela 1: Udźwig statyczny prostopadły (udźwig vs dystans) - wykres oddziaływania
MPL 40x7x3 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg/lbs/g/N) | Status ryzyka |
|---|---|---|---|
| 0 mm |
2843 Gs
284.3 mT
|
7.14 kg / 15.74 lbs
7140.0 g / 70.0 N
|
uwaga |
| 1 mm |
2314 Gs
231.4 mT
|
4.73 kg / 10.43 lbs
4729.9 g / 46.4 N
|
uwaga |
| 2 mm |
1788 Gs
178.8 mT
|
2.83 kg / 6.23 lbs
2825.3 g / 27.7 N
|
uwaga |
| 3 mm |
1365 Gs
136.5 mT
|
1.65 kg / 3.63 lbs
1645.1 g / 16.1 N
|
słaby uchwyt |
| 5 mm |
824 Gs
82.4 mT
|
0.60 kg / 1.32 lbs
599.2 g / 5.9 N
|
słaby uchwyt |
| 10 mm |
317 Gs
31.7 mT
|
0.09 kg / 0.20 lbs
88.6 g / 0.9 N
|
słaby uchwyt |
| 15 mm |
160 Gs
16.0 mT
|
0.02 kg / 0.05 lbs
22.5 g / 0.2 N
|
słaby uchwyt |
| 20 mm |
92 Gs
9.2 mT
|
0.01 kg / 0.02 lbs
7.5 g / 0.1 N
|
słaby uchwyt |
| 30 mm |
38 Gs
3.8 mT
|
0.00 kg / 0.00 lbs
1.3 g / 0.0 N
|
słaby uchwyt |
| 50 mm |
11 Gs
1.1 mT
|
0.00 kg / 0.00 lbs
0.1 g / 0.0 N
|
słaby uchwyt |
Tabela 2: Równoległa siła obsunięcia (pion)
MPL 40x7x3 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg/lbs/g/N) |
|---|---|---|
| 0 mm | Stal (~0.2) |
1.43 kg / 3.15 lbs
1428.0 g / 14.0 N
|
| 1 mm | Stal (~0.2) |
0.95 kg / 2.09 lbs
946.0 g / 9.3 N
|
| 2 mm | Stal (~0.2) |
0.57 kg / 1.25 lbs
566.0 g / 5.6 N
|
| 3 mm | Stal (~0.2) |
0.33 kg / 0.73 lbs
330.0 g / 3.2 N
|
| 5 mm | Stal (~0.2) |
0.12 kg / 0.26 lbs
120.0 g / 1.2 N
|
| 10 mm | Stal (~0.2) |
0.02 kg / 0.04 lbs
18.0 g / 0.2 N
|
| 15 mm | Stal (~0.2) |
0.00 kg / 0.01 lbs
4.0 g / 0.0 N
|
| 20 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
2.0 g / 0.0 N
|
| 30 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
Tabela 3: Montaż pionowy (poślizg) - udźwig wertykalny
MPL 40x7x3 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg/lbs/g/N) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
2.14 kg / 4.72 lbs
2142.0 g / 21.0 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
1.43 kg / 3.15 lbs
1428.0 g / 14.0 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
0.71 kg / 1.57 lbs
714.0 g / 7.0 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
3.57 kg / 7.87 lbs
3570.0 g / 35.0 N
|
Tabela 4: Efektywność materiałowa (nasycenie) - dobór blachy
MPL 40x7x3 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg/lbs/g/N) |
|---|---|---|
| 0.5 mm |
|
0.71 kg / 1.57 lbs
714.0 g / 7.0 N
|
| 1 mm |
|
1.79 kg / 3.94 lbs
1785.0 g / 17.5 N
|
| 2 mm |
|
3.57 kg / 7.87 lbs
3570.0 g / 35.0 N
|
| 3 mm |
|
5.35 kg / 11.81 lbs
5355.0 g / 52.5 N
|
| 5 mm |
|
7.14 kg / 15.74 lbs
7140.0 g / 70.0 N
|
| 10 mm |
|
7.14 kg / 15.74 lbs
7140.0 g / 70.0 N
|
| 11 mm |
|
7.14 kg / 15.74 lbs
7140.0 g / 70.0 N
|
| 12 mm |
|
7.14 kg / 15.74 lbs
7140.0 g / 70.0 N
|
Tabela 5: Praca w cieple (zachowanie materiału) - próg odporności
MPL 40x7x3 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig (kg/lbs/g/N) | Status |
|---|---|---|---|
| 20 °C | 0.0% |
7.14 kg / 15.74 lbs
7140.0 g / 70.0 N
|
OK |
| 40 °C | -2.2% |
6.98 kg / 15.39 lbs
6982.9 g / 68.5 N
|
OK |
| 60 °C | -4.4% |
6.83 kg / 15.05 lbs
6825.8 g / 67.0 N
|
|
| 80 °C | -6.6% |
6.67 kg / 14.70 lbs
6668.8 g / 65.4 N
|
|
| 100 °C | -28.8% |
5.08 kg / 11.21 lbs
5083.7 g / 49.9 N
|
Tabela 6: Dwa magnesy (przyciąganie) - kolizja pól
MPL 40x7x3 / N38
| Szczelina (mm) | Przyciąganie (kg/lbs) (N-S) | Siła zsuwania (kg/lbs/g/N) | Odpychanie (kg/lbs) (N-N) |
|---|---|---|---|
| 0 mm |
13.95 kg / 30.75 lbs
4 204 Gs
|
2.09 kg / 4.61 lbs
2092 g / 20.5 N
|
N/A |
| 1 mm |
11.58 kg / 25.53 lbs
5 180 Gs
|
1.74 kg / 3.83 lbs
1737 g / 17.0 N
|
10.42 kg / 22.98 lbs
~0 Gs
|
| 2 mm |
9.24 kg / 20.37 lbs
4 628 Gs
|
1.39 kg / 3.06 lbs
1386 g / 13.6 N
|
8.32 kg / 18.34 lbs
~0 Gs
|
| 3 mm |
7.19 kg / 15.86 lbs
4 083 Gs
|
1.08 kg / 2.38 lbs
1079 g / 10.6 N
|
6.47 kg / 14.27 lbs
~0 Gs
|
| 5 mm |
4.21 kg / 9.28 lbs
3 124 Gs
|
0.63 kg / 1.39 lbs
632 g / 6.2 N
|
3.79 kg / 8.36 lbs
~0 Gs
|
| 10 mm |
1.17 kg / 2.58 lbs
1 647 Gs
|
0.18 kg / 0.39 lbs
176 g / 1.7 N
|
1.05 kg / 2.32 lbs
~0 Gs
|
| 20 mm |
0.17 kg / 0.38 lbs
633 Gs
|
0.03 kg / 0.06 lbs
26 g / 0.3 N
|
0.16 kg / 0.34 lbs
~0 Gs
|
| 50 mm |
0.01 kg / 0.01 lbs
115 Gs
|
0.00 kg / 0.00 lbs
1 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 60 mm |
0.00 kg / 0.01 lbs
76 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 70 mm |
0.00 kg / 0.00 lbs
53 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 80 mm |
0.00 kg / 0.00 lbs
38 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 90 mm |
0.00 kg / 0.00 lbs
28 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 100 mm |
0.00 kg / 0.00 lbs
21 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
Tabela 7: Bezpieczeństwo (BHP) (elektronika) - środki ostrożności
MPL 40x7x3 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 7.0 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 5.5 cm |
| Zegarek mechaniczny | 20 Gs (2.0 mT) | 4.0 cm |
| Telefon / Smartfon | 40 Gs (4.0 mT) | 3.0 cm |
| Immobilizer | 50 Gs (5.0 mT) | 3.0 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 1.0 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 1.0 cm |
Tabela 8: Energia uderzenia (ryzyko pęknięcia) - skutki zderzenia
MPL 40x7x3 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
34.21 km/h
(9.50 m/s)
|
0.28 J | |
| 30 mm |
58.81 km/h
(16.34 m/s)
|
0.84 J | |
| 50 mm |
75.92 km/h
(21.09 m/s)
|
1.40 J | |
| 100 mm |
107.36 km/h
(29.82 m/s)
|
2.80 J |
Tabela 9: Parametry powłoki (trwałość)
MPL 40x7x3 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
Tabela 10: Dane konstrukcyjne (Flux)
MPL 40x7x3 / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 6 379 Mx | 63.8 µWb |
| Współczynnik Pc | 0.24 | Niski (Płaski) |
Tabela 11: Praca w wodzie (Magnet Fishing)
MPL 40x7x3 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 7.14 kg | Standard |
| Woda (dno rzeki) |
8.18 kg
(+1.04 kg zysk z wyporności)
|
+14.5% |
1. Siła zsuwająca
*Uwaga: Na powierzchni pionowej magnes zachowa tylko ułamek siły oderwania.
2. Nasycenie magnetyczne
*Cienka blacha (np. blacha karoseryjna) znacząco osłabia udźwig magnesu.
3. Stabilność termiczna
*W klasie N38 maksymalna temperatura to 80°C.
4. Krzywa odmagnesowania i punkt pracy (B-H)
wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 0.24
Niniejsza symulacja obrazuje stabilność magnetyczną wybranego magnesu w konkretnych warunkach geometrycznych. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.
Skład chemiczny materiału
| żelazo (Fe) | 64% – 68% |
| neodym (Nd) | 29% – 32% |
| bor (B) | 1.1% – 1.2% |
| dysproz (Dy) | 0.5% – 2.0% |
| powłoka (Ni-Cu-Ni) | < 0.05% |
Dane środowiskowe
| recyklowalność (EoL) | 100% |
| surowce z recyklingu | ~10% (pre-cons) |
| ślad węglowy | low / zredukowany |
| kod odpadu (EWC) | 16 02 16 |
Zobacz też inne oferty
Zalety i wady magnesów neodymowych Nd2Fe14B.
Zalety
- Cechują się stabilnością – przez okres blisko 10 lat tracą maksymalnie ~1% swojej mocy (pomiary wskazują na taką wartość).
- Trudno je rozmagnesować, gdyż wykazują wysoką odporność na pola rozmagnesowujące.
- Łączą moc z estetyką – poprzez niklowanie lub złocenie ich powierzchnia jest błyszcząca i wygląda estetycznie.
- Wytwarzają niezwykle silne pole magnetyczne na swojej powierzchni, co jest ich znakiem rozpoznawczym.
- Są przystosowane do pracy w ekstremalnym cieple – wybrane modele znoszą temperaturę do 230°C (zależnie od wymiarów).
- Można je precyzyjnie obrabiać do niestandardowych wymiarów, co ułatwia ich adaptację w skomplikowanych urządzeniach.
- Spotkasz je wszędzie tam, gdzie liczy się precyzja: w napędach, medycynie oraz przemyśle komputerowym.
- Moc w skali mikro – ich niewielka objętość nie przeszkadza w generowaniu dużej siły przyciągania.
Słabe strony
- Należy uważać na wstrząsy – materiał jest kruchy i grozi pęknięciem. Zabezpieczenie w postaci obudowy jest kluczowa.
- Wrażliwość na ciepło: przekroczenie 80°C może trwale osłabić magnes (zależnie od bryły). Rozwiązaniem są nasze magnesy wysokotemperaturowe [AH].
- Podatność na wilgoć skutkuje utlenianiem. Do zadań zewnętrznych rekomendujemy wyłącznie magnesy w pełnej izolacji (plastik/guma).
- Z uwagi na specyfikę materiału, nie zaleca się gwintowania magnesu. Bezpieczniej użyć magnesu wklejonego w stalowy kubek z gwintem.
- Produkt niebezpieczny po połknięciu. Bezwzględnie chronić przed dziećmi. Wewnątrz ciała magnesy mogą się połączyć, powodując uszkodzenia jelit.
- Za jakość trzeba płacić – magnesy neodymowe są droższe od ceramicznych, co wpływa na ekonomię rozwiązania.
Parametry udźwigu
Optymalny udźwig magnesu neodymowego – co ma na to wpływ?
- na płycie wykonanej ze stali konstrukcyjnej, doskonale skupiającej pole magnetyczne
- o przekroju przynajmniej 10 mm
- z powierzchnią wolną od rys
- przy całkowitym braku odstępu (brak farby)
- dla siły działającej pod kątem prostym (w osi magnesu)
- przy temperaturze otoczenia ok. 20 stopni Celsjusza
Wpływ czynników na nośność magnesu w praktyce
- Przerwa między powierzchniami – nawet ułamek milimetra odległości (spowodowany np. lakierem lub nierównością) drastycznie redukuje siłę przyciągania, często o połowę przy zaledwie 0,5 mm.
- Kierunek działania siły – maksymalny parametr mamy tylko przy ciągnięciu pod kątem 90°. Siła ścinająca magnesu po blasze jest z reguły kilkukrotnie mniejsza (ok. 1/5 udźwigu).
- Grubość stali – zbyt cienka płyta powoduje nasycenie magnetyczne, przez co część mocy ucieka w powietrzu.
- Typ metalu – nie każda stal przyciąga się identycznie. Dodatki stopowe osłabiają interakcję z magnesem.
- Stan powierzchni – powierzchnie gładkie zapewniają maksymalny styk, co zwiększa nasycenie pola. Nierówny metal zmniejszają efektywność.
- Warunki termiczne – magnesy neodymowe posiadają wrażliwość na temperaturę. Gdy jest gorąco tracą moc, a na mrozie zyskują na sile (do pewnej granicy).
Pomiar udźwigu wykonywano na gładkiej blaszce o optymalnej grubości, przy siłach prostopadłych, jednak przy działaniu siły na zsuwanie siła trzymania jest mniejsza nawet pięć razy. Co więcej, nawet drobny odstęp pomiędzy powierzchnią magnesu, a blachą redukuje siłę trzymania.
Bezpieczna praca przy magnesach neodymowych
Poważne obrażenia
Bloki magnetyczne mogą zmiażdżyć palce w ułamku sekundy. Pod żadnym pozorem umieszczaj dłoni pomiędzy dwa silne magnesy.
Zasady obsługi
Bądź ostrożny. Magnesy neodymowe przyciągają z dużej odległości i łączą się z ogromną siłą, często szybciej niż zdążysz zareagować.
Elektronika precyzyjna
Pamiętaj: magnesy neodymowe wytwarzają pole, które mylą systemy nawigacji. Utrzymuj odpowiednią odległość od telefonu, tabletu i urządzeń GPS.
Karty i dyski
Bezpieczeństwo sprzętu: Magnesy neodymowe mogą uszkodzić nośniki danych oraz urządzenia precyzyjne (implanty, aparaty słuchowe, zegarki mechaniczne).
Unikaj kontaktu w przypadku alergii
Wiedza medyczna potwierdza, że nikiel (typowe wykończenie magnesów) jest silnym alergenem. Jeśli masz uczulenie, unikaj bezpośredniego dotyku lub zakup magnesy powlekane tworzywem.
Łamliwość magnesów
Ryzyko skaleczenia. Magnesy mogą pęknąć przy gwałtownym złączeniu, wyrzucając ostre odłamki w powietrze. Noś okulary.
Implanty kardiologiczne
Pacjenci z rozrusznikiem serca muszą zachować duży odstęp od magnesów. Pole magnetyczne może zatrzymać działanie urządzenia ratującego życie.
Zakaz zabawy
Sprzedaż wyłącznie dla dorosłych. Drobne magnesy mogą zostać aspirrowane, co prowadzi do perforacji jelit. Przechowuj z dala od niepowołanych osób.
Nie wierć w magnesach
Wiercenie i cięcie magnesów neodymowych stwarza ryzyko zapłonu. Proszek magnetyczny utlenia się błyskawicznie z tlenem i jest niebezpieczny.
Przegrzanie magnesu
Monitoruj warunki termiczne. Ekspozycja magnesu na wysoką temperaturę zdegraduje jego domenę magnetyczną i siłę przyciągania.
