MPL 25x10x5 / N38 - magnes neodymowy płytkowy
magnes neodymowy płytkowy
Numer katalogowy 020135
GTIN/EAN: 5906301811411
Długość
25 mm [±0,1 mm]
Szerokość
10 mm [±0,1 mm]
Wysokość
5 mm [±0,1 mm]
Waga
9.38 g
Kierunek magnesowania
↑ osiowy
Udźwig
7.49 kg / 73.45 N
Indukcja magnetyczna
337.05 mT / 3371 Gs
Powłoka
[NiCuNi] nikiel
4.66 ZŁ z VAT / szt. + cena za transport
3.79 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?
Zadzwoń i zapytaj
+48 888 99 98 98
alternatywnie skontaktuj się za pomocą
formularz zgłoszeniowy
przez naszą stronę.
Udźwig i formę magnesu zobaczysz w naszym
kalkulatorze magnetycznym.
Wysyłka tego samego dnia dla zamówień do godz. 14:00.
Karta produktu - MPL 25x10x5 / N38 - magnes neodymowy płytkowy
Specyfikacja / charakterystyka - MPL 25x10x5 / N38 - magnes neodymowy płytkowy
| właściwości | wartości |
|---|---|
| Nr kat. | 020135 |
| GTIN/EAN | 5906301811411 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Długość | 25 mm [±0,1 mm] |
| Szerokość | 10 mm [±0,1 mm] |
| Wysokość | 5 mm [±0,1 mm] |
| Waga | 9.38 g |
| Kierunek magnesowania | ↑ osiowy |
| Udźwig ~ ? | 7.49 kg / 73.45 N |
| Indukcja magnetyczna ~ ? | 337.05 mT / 3371 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [min. - maks.] ? | 12.2-12.6 | kGs |
| remanencja Br [min. - maks.] ? | 1220-1260 | mT |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [min. - maks.] ? | 36-38 | BH max MGOe |
| gęstość energii [min. - maks.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Temperatura Curie TC | 312 - 380 | °C |
| Temperatura Curie TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅cm |
| Siła wyginania | 250 | MPa |
| Wytrzymałość na ściskanie | 1000~1100 | MPa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 10-6 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Symulacja inżynierska magnesu - parametry techniczne
Poniższe informacje są wynik kalkulacji matematycznej. Wartości bazują na algorytmach dla klasy Nd2Fe14B. Rzeczywiste osiągi mogą nieznacznie odbiegać od wyników symulacji. Traktuj te dane jako pomoc pomocniczą podczas planowania montażu.
Tabela 1: Siła prostopadła statyczna (siła vs dystans) - wykres oddziaływania
MPL 25x10x5 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg)(gram)(Niuton) | Status ryzyka |
|---|---|---|---|
| 0 mm |
3369 Gs
336.9 mT
|
7.49 kg / 7490.0 g
73.5 N
|
mocny |
| 1 mm |
2932 Gs
293.2 mT
|
5.67 kg / 5673.2 g
55.7 N
|
mocny |
| 2 mm |
2479 Gs
247.9 mT
|
4.06 kg / 4056.9 g
39.8 N
|
mocny |
| 3 mm |
2065 Gs
206.5 mT
|
2.81 kg / 2814.7 g
27.6 N
|
mocny |
| 5 mm |
1419 Gs
141.9 mT
|
1.33 kg / 1328.6 g
13.0 N
|
bezpieczny |
| 10 mm |
603 Gs
60.3 mT
|
0.24 kg / 240.3 g
2.4 N
|
bezpieczny |
| 15 mm |
296 Gs
29.6 mT
|
0.06 kg / 57.8 g
0.6 N
|
bezpieczny |
| 20 mm |
162 Gs
16.2 mT
|
0.02 kg / 17.4 g
0.2 N
|
bezpieczny |
| 30 mm |
62 Gs
6.2 mT
|
0.00 kg / 2.5 g
0.0 N
|
bezpieczny |
| 50 mm |
16 Gs
1.6 mT
|
0.00 kg / 0.2 g
0.0 N
|
bezpieczny |
Tabela 2: Równoległa siła ześlizgu (ściana)
MPL 25x10x5 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg)(gram)(Niuton) |
|---|---|---|
| 0 mm | Stal (~0.2) |
1.50 kg / 1498.0 g
14.7 N
|
| 1 mm | Stal (~0.2) |
1.13 kg / 1134.0 g
11.1 N
|
| 2 mm | Stal (~0.2) |
0.81 kg / 812.0 g
8.0 N
|
| 3 mm | Stal (~0.2) |
0.56 kg / 562.0 g
5.5 N
|
| 5 mm | Stal (~0.2) |
0.27 kg / 266.0 g
2.6 N
|
| 10 mm | Stal (~0.2) |
0.05 kg / 48.0 g
0.5 N
|
| 15 mm | Stal (~0.2) |
0.01 kg / 12.0 g
0.1 N
|
| 20 mm | Stal (~0.2) |
0.00 kg / 4.0 g
0.0 N
|
| 30 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
Tabela 3: Siła na ścianie (ścinanie) - zachowanie na śliskim podłożu
MPL 25x10x5 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
2.25 kg / 2247.0 g
22.0 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
1.50 kg / 1498.0 g
14.7 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
0.75 kg / 749.0 g
7.3 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
3.75 kg / 3745.0 g
36.7 N
|
Tabela 4: Efektywność materiałowa (nasycenie) - dobór blachy
MPL 25x10x5 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg) |
|---|---|---|
| 0.5 mm |
|
0.75 kg / 749.0 g
7.3 N
|
| 1 mm |
|
1.87 kg / 1872.5 g
18.4 N
|
| 2 mm |
|
3.75 kg / 3745.0 g
36.7 N
|
| 5 mm |
|
7.49 kg / 7490.0 g
73.5 N
|
| 10 mm |
|
7.49 kg / 7490.0 g
73.5 N
|
Tabela 5: Wytrzymałość temperaturowa (zachowanie materiału) - spadek mocy
MPL 25x10x5 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig | Status |
|---|---|---|---|
| 20 °C | 0.0% |
7.49 kg / 7490.0 g
73.5 N
|
OK |
| 40 °C | -2.2% |
7.33 kg / 7325.2 g
71.9 N
|
OK |
| 60 °C | -4.4% |
7.16 kg / 7160.4 g
70.2 N
|
|
| 80 °C | -6.6% |
7.00 kg / 6995.7 g
68.6 N
|
|
| 100 °C | -28.8% |
5.33 kg / 5332.9 g
52.3 N
|
Tabela 6: Interakcja magnes-magnes (odpychanie) - siły w układzie
MPL 25x10x5 / N38
| Szczelina (mm) | Przyciąganie (kg) (N-S) | Odpychanie (kg) (N-N) |
|---|---|---|
| 0 mm |
17.49 kg / 17493 g
171.6 N
4 785 Gs
|
N/A |
| 1 mm |
15.37 kg / 15373 g
150.8 N
6 316 Gs
|
13.84 kg / 13836 g
135.7 N
~0 Gs
|
| 2 mm |
13.25 kg / 13250 g
130.0 N
5 864 Gs
|
11.92 kg / 11925 g
117.0 N
~0 Gs
|
| 3 mm |
11.26 kg / 11264 g
110.5 N
5 407 Gs
|
10.14 kg / 10137 g
99.4 N
~0 Gs
|
| 5 mm |
7.91 kg / 7911 g
77.6 N
4 531 Gs
|
7.12 kg / 7120 g
69.8 N
~0 Gs
|
| 10 mm |
3.10 kg / 3103 g
30.4 N
2 838 Gs
|
2.79 kg / 2793 g
27.4 N
~0 Gs
|
| 20 mm |
0.56 kg / 561 g
5.5 N
1 207 Gs
|
0.51 kg / 505 g
5.0 N
~0 Gs
|
| 50 mm |
0.01 kg / 14 g
0.1 N
194 Gs
|
0.01 kg / 13 g
0.1 N
~0 Gs
|
Tabela 7: Bezpieczeństwo (BHP) (implanty) - środki ostrożności
MPL 25x10x5 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 8.0 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 6.0 cm |
| Zegarek mechaniczny | 20 Gs (2.0 mT) | 5.0 cm |
| Urządzenie mobilne | 40 Gs (4.0 mT) | 4.0 cm |
| Pilot do auta | 50 Gs (5.0 mT) | 3.5 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 1.5 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 1.5 cm |
Tabela 8: Energia uderzenia (energia kinetyczna) - ostrzeżenie
MPL 25x10x5 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
29.06 km/h
(8.07 m/s)
|
0.31 J | |
| 30 mm |
49.37 km/h
(13.71 m/s)
|
0.88 J | |
| 50 mm |
63.73 km/h
(17.70 m/s)
|
1.47 J | |
| 100 mm |
90.12 km/h
(25.03 m/s)
|
2.94 J |
Tabela 9: Odporność na korozję
MPL 25x10x5 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
Tabela 10: Dane konstrukcyjne (Pc)
MPL 25x10x5 / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 8 245 Mx | 82.5 µWb |
| Współczynnik Pc | 0.38 | Niski (Płaski) |
Tabela 11: Zastosowanie podwodne
MPL 25x10x5 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 7.49 kg | Standard |
| Woda (dno rzeki) |
8.58 kg
(+1.09 kg Zysk z wyporności)
|
+14.5% |
1. Montaż na ścianie (ześlizg)
*Ważne: Na pionowej ścianie magnes utrzyma jedynie ok. 20-30% siły prostopadłej.
2. Grubość podłoża
*Zbyt cienki metal (np. blacha karoseryjna) wyraźnie redukuje udźwig magnesu.
3. Wytrzymałość temperaturowa
*Dla standardowych magnesów granica bezpieczeństwa to 80°C.
4. Krzywa odmagnesowania i punkt pracy (B-H)
wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 0.38
Powyższy wykres prezentuje charakterystykę magnetyczną materiału w drugim kwadrancie pętli histerezy. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.
Analiza pierwiastkowa
| żelazo (Fe) | 64% – 68% |
| neodym (Nd) | 29% – 32% |
| bor (B) | 1.1% – 1.2% |
| dysproz (Dy) | 0.5% – 2.0% |
| powłoka (Ni-Cu-Ni) | < 0.05% |
Dane środowiskowe
| recyklowalność (EoL) | 100% |
| surowce z recyklingu | ~10% (pre-cons) |
| ślad węglowy | low / zredukowany |
| kod odpadu (EWC) | 16 02 16 |
Zobacz też inne propozycje
Wady i zalety magnesów z neodymu Nd2Fe14B.
Mocne strony
- Ich parametry są stabilne w czasie; po 10 latach eksploatacji zmniejszenie udźwigu to znikome ~1%.
- Są niewrażliwe na zewnętrzne zakłócenia, co czyni je odpornymi na rozmagnesowanie w trudnych warunkach.
- Są nie tylko silne, ale i ładne – dzięki powłokom ich powierzchnia jest refleksyjna i prezentuje się elegancko.
- Wytwarzają niezwykle silne pole magnetyczne przy biegunach, co jest ich kluczową cechą.
- Mogą pracować w ekstremalnym cieple – wybrane modele znoszą temperaturę do 230°C (zależnie od wymiarów).
- Elastyczność kształtowania – można je produkować w rozmaitych formach, idealnych do wymagań klienta.
- Znajdują szerokie zastosowanie w nowoczesnej technice – od napędów HDD i silników, po precyzyjną diagnostykę.
- Dzięki kompaktowości, zajmują mało miejsca, a jednocześnie gwarantują wysoką skuteczność.
Wady
- Należy uważać na wstrząsy – materiał jest kruchy i grozi pęknięciem. Zabezpieczenie w postaci obudowy to dobre rozwiązanie.
- Klasyczne neodymy tracą moc powyżej 80°C. Jeśli wymagasz pracy w wyższych temperaturach, zastosuj serię [AH] (odporną do 230°C).
- Wilgoć powoduje korozję w kontakcie z wodą. Na zewnątrz zalecamy użycie magnesów wodoszczelnych (np. w gumie).
- Obróbka jest trudna – wykonanie gwintu w samym magnesie jest ryzykowne. Zalecamy gotowe uchwyty magnetyczne (magnes w obudowie).
- Produkt niebezpieczny po połknięciu. Bezwzględnie chronić przed dziećmi. Wewnątrz ciała magnesy mogą się połączyć, powodując poważne urazy.
- Wysoki koszt zakupu w porównaniu do ferrytów to ich minus, szczególnie przy zakupach hurtowych.
Parametry udźwigu
Wytrzymałość magnetyczna na maksimum – co się na to składa?
- przy użyciu zwory ze stali niskowęglowej, zapewniającej maksymalne skupienie pola
- posiadającej masywność co najmniej 10 mm dla pełnego zamknięcia strumienia
- charakteryzującej się gładkością
- przy bezpośrednim styku (bez zanieczyszczeń)
- podczas ciągnięcia w kierunku prostopadłym do płaszczyzny mocowania
- w stabilnej temperaturze pokojowej
Udźwig w warunkach rzeczywistych – czynniki
- Szczelina – obecność ciała obcego (rdza, brud, szczelina) działa jak izolator, co redukuje udźwig gwałtownie (nawet o 50% przy 0,5 mm).
- Kierunek działania siły – maksymalny parametr mamy tylko przy prostopadłym odrywaniu. Siła potrzebna do przesunięcia magnesu po blasze jest z reguły wielokrotnie mniejsza (ok. 1/5 udźwigu).
- Masywność podłoża – zbyt cienka płyta powoduje nasycenie magnetyczne, przez co część strumienia jest tracona na drugą stronę.
- Rodzaj stali – stal niskowęglowa przyciąga najlepiej. Większa zawartość węgla obniżają właściwości magnetyczne i siłę trzymania.
- Struktura powierzchni – im równiejsza powierzchnia, tym lepsze przyleganie i silniejsze trzymanie. Chropowatość działają jak mikroszczeliny.
- Wpływ temperatury – wysoka temperatura zmniejsza siłę przyciągania. Przekroczenie temperatury granicznej może trwale uszkodzić magnes.
Siłę trzymania testowano na powierzchni blachy o grubości 20 mm, kiedy przyłożono siłę prostopadłą, natomiast przy działaniu siły na zsuwanie nośność jest mniejsza nawet 5 razy. Co więcej, nawet minimalna przerwa pomiędzy magnesem, a blachą redukuje nośność.
BHP przy magnesach
Unikaj kontaktu w przypadku alergii
Wiedza medyczna potwierdza, że powłoka niklowa (typowe wykończenie magnesów) jest silnym alergenem. Jeśli masz uczulenie, wystrzegaj się bezpośredniego dotyku lub wybierz wersje w obudowie plastikowej.
Bezpieczny dystans
Ekstremalne pole magnetyczne może skasować dane na kartach kredytowych, nośnikach HDD i innych pamięciach. Trzymaj dystans min. 10 cm.
Siła zgniatająca
Silne magnesy mogą zdruzgotać palce w ułamku sekundy. Nigdy wkładaj dłoni między dwa silne magnesy.
Trzymaj z dala od elektroniki
Urządzenia nawigacyjne są niezwykle wrażliwe na pole magnetyczne. Bezpośredni kontakt z silnym magnesem może zniszczyć czujniki w Twoim telefonie.
Zakaz zabawy
Produkt przeznaczony dla dorosłych. Małe elementy mogą zostać połknięte, co prowadzi do martwicy tkanek. Trzymaj poza zasięgiem niepowołanych osób.
Utrata mocy w cieple
Monitoruj warunki termiczne. Podgrzanie magnesu na wysoką temperaturę trwale osłabi jego strukturę magnetyczną i udźwig.
Zagrożenie życia
Ostrzeżenie dla sercowców: Silne pole magnetyczne wpływa na urządzenia medyczne. Utrzymuj co najmniej 30 cm odstępu lub poproś inną osobę obsługę magnesów.
Ogromna siła
Zanim zaczniesz, przeczytaj instrukcję. Niekontrolowane przyciągnięcie może zniszczyć magnes lub uszkodzić palce. Myśl o krok do przodu.
Łatwopalność
Wiercenie i cięcie magnesów neodymowych grozi pożarem. Proszek magnetyczny utlenia się błyskawicznie z tlenem i jest trudny do gaszenia.
Uwaga na odpryski
Spieki NdFeB to materiał ceramiczny, co oznacza, że są podatne na pęknięcia. Gwałtowne złączenie dwóch magnesów wywoła ich rozpryśnięcie na drobne kawałki.
