MPL 25x10x5 / N38 - magnes neodymowy płytkowy
magnes neodymowy płytkowy
Numer katalogowy 020135
GTIN/EAN: 5906301811411
Długość
25 mm [±0,1 mm]
Szerokość
10 mm [±0,1 mm]
Wysokość
5 mm [±0,1 mm]
Waga
9.38 g
Kierunek magnesowania
↑ osiowy
Udźwig
7.49 kg / 73.45 N
Indukcja magnetyczna
337.05 mT / 3371 Gs
Powłoka
[NiCuNi] nikiel
4.66 ZŁ z VAT / szt. + cena za transport
3.79 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?
Zadzwoń i zapytaj
+48 22 499 98 98
lub pisz przez
formularz zapytania
na stronie kontakt.
Siłę oraz wygląd magnesów obliczysz dzięki naszemu
kalkulatorze siły.
Realizacja tego samego dnia przy zamówieniu do 14:00.
Dane techniczne - MPL 25x10x5 / N38 - magnes neodymowy płytkowy
Specyfikacja / charakterystyka - MPL 25x10x5 / N38 - magnes neodymowy płytkowy
| właściwości | wartości |
|---|---|
| Nr kat. | 020135 |
| GTIN/EAN | 5906301811411 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Długość | 25 mm [±0,1 mm] |
| Szerokość | 10 mm [±0,1 mm] |
| Wysokość | 5 mm [±0,1 mm] |
| Waga | 9.38 g |
| Kierunek magnesowania | ↑ osiowy |
| Udźwig ~ ? | 7.49 kg / 73.45 N |
| Indukcja magnetyczna ~ ? | 337.05 mT / 3371 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [min. - maks.] ? | 12.2-12.6 | kGs |
| remanencja Br [min. - maks.] ? | 1220-1260 | mT |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [min. - maks.] ? | 36-38 | BH max MGOe |
| gęstość energii [min. - maks.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Temperatura Curie TC | 312 - 380 | °C |
| Temperatura Curie TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅cm |
| Siła wyginania | 250 | MPa |
| Wytrzymałość na ściskanie | 1000~1100 | MPa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 10-6 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Analiza techniczna magnesu neodymowego - parametry techniczne
Niniejsze dane są wynik analizy inżynierskiej. Wyniki zostały wyliczone na algorytmach dla materiału Nd2Fe14B. Rzeczywiste osiągi mogą odbiegać od wyników symulacji. Prosimy traktować te dane jako punkt odniesienia podczas planowania montażu.
Tabela 1: Udźwig statyczny prostopadły (udźwig vs dystans) - spadek mocy
MPL 25x10x5 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg/lbs/g/N) | Status ryzyka |
|---|---|---|---|
| 0 mm |
3369 Gs
336.9 mT
|
7.49 kg / 16.51 lbs
7490.0 g / 73.5 N
|
uwaga |
| 1 mm |
2932 Gs
293.2 mT
|
5.67 kg / 12.51 lbs
5673.2 g / 55.7 N
|
uwaga |
| 2 mm |
2479 Gs
247.9 mT
|
4.06 kg / 8.94 lbs
4056.9 g / 39.8 N
|
uwaga |
| 3 mm |
2065 Gs
206.5 mT
|
2.81 kg / 6.21 lbs
2814.7 g / 27.6 N
|
uwaga |
| 5 mm |
1419 Gs
141.9 mT
|
1.33 kg / 2.93 lbs
1328.6 g / 13.0 N
|
bezpieczny |
| 10 mm |
603 Gs
60.3 mT
|
0.24 kg / 0.53 lbs
240.3 g / 2.4 N
|
bezpieczny |
| 15 mm |
296 Gs
29.6 mT
|
0.06 kg / 0.13 lbs
57.8 g / 0.6 N
|
bezpieczny |
| 20 mm |
162 Gs
16.2 mT
|
0.02 kg / 0.04 lbs
17.4 g / 0.2 N
|
bezpieczny |
| 30 mm |
62 Gs
6.2 mT
|
0.00 kg / 0.01 lbs
2.5 g / 0.0 N
|
bezpieczny |
| 50 mm |
16 Gs
1.6 mT
|
0.00 kg / 0.00 lbs
0.2 g / 0.0 N
|
bezpieczny |
Tabela 2: Równoległa siła obsunięcia (ściana)
MPL 25x10x5 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg/lbs/g/N) |
|---|---|---|
| 0 mm | Stal (~0.2) |
1.50 kg / 3.30 lbs
1498.0 g / 14.7 N
|
| 1 mm | Stal (~0.2) |
1.13 kg / 2.50 lbs
1134.0 g / 11.1 N
|
| 2 mm | Stal (~0.2) |
0.81 kg / 1.79 lbs
812.0 g / 8.0 N
|
| 3 mm | Stal (~0.2) |
0.56 kg / 1.24 lbs
562.0 g / 5.5 N
|
| 5 mm | Stal (~0.2) |
0.27 kg / 0.59 lbs
266.0 g / 2.6 N
|
| 10 mm | Stal (~0.2) |
0.05 kg / 0.11 lbs
48.0 g / 0.5 N
|
| 15 mm | Stal (~0.2) |
0.01 kg / 0.03 lbs
12.0 g / 0.1 N
|
| 20 mm | Stal (~0.2) |
0.00 kg / 0.01 lbs
4.0 g / 0.0 N
|
| 30 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
Tabela 3: Siła na ścianie (ścinanie) - udźwig wertykalny
MPL 25x10x5 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg/lbs/g/N) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
2.25 kg / 4.95 lbs
2247.0 g / 22.0 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
1.50 kg / 3.30 lbs
1498.0 g / 14.7 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
0.75 kg / 1.65 lbs
749.0 g / 7.3 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
3.75 kg / 8.26 lbs
3745.0 g / 36.7 N
|
Tabela 4: Grubość stali (wpływ podłoża) - dobór blachy
MPL 25x10x5 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg/lbs/g/N) |
|---|---|---|
| 0.5 mm |
|
0.75 kg / 1.65 lbs
749.0 g / 7.3 N
|
| 1 mm |
|
1.87 kg / 4.13 lbs
1872.5 g / 18.4 N
|
| 2 mm |
|
3.75 kg / 8.26 lbs
3745.0 g / 36.7 N
|
| 3 mm |
|
5.62 kg / 12.38 lbs
5617.5 g / 55.1 N
|
| 5 mm |
|
7.49 kg / 16.51 lbs
7490.0 g / 73.5 N
|
| 10 mm |
|
7.49 kg / 16.51 lbs
7490.0 g / 73.5 N
|
| 11 mm |
|
7.49 kg / 16.51 lbs
7490.0 g / 73.5 N
|
| 12 mm |
|
7.49 kg / 16.51 lbs
7490.0 g / 73.5 N
|
Tabela 5: Praca w cieple (zachowanie materiału) - spadek mocy
MPL 25x10x5 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig (kg/lbs/g/N) | Status |
|---|---|---|---|
| 20 °C | 0.0% |
7.49 kg / 16.51 lbs
7490.0 g / 73.5 N
|
OK |
| 40 °C | -2.2% |
7.33 kg / 16.15 lbs
7325.2 g / 71.9 N
|
OK |
| 60 °C | -4.4% |
7.16 kg / 15.79 lbs
7160.4 g / 70.2 N
|
|
| 80 °C | -6.6% |
7.00 kg / 15.42 lbs
6995.7 g / 68.6 N
|
|
| 100 °C | -28.8% |
5.33 kg / 11.76 lbs
5332.9 g / 52.3 N
|
Tabela 6: Dwa magnesy (odpychanie) - kolizja pól
MPL 25x10x5 / N38
| Szczelina (mm) | Przyciąganie (kg/lbs) (N-S) | Opór ścinania (kg/lbs/g/N) | Odpychanie (kg/lbs) (N-N) |
|---|---|---|---|
| 0 mm |
17.49 kg / 38.57 lbs
4 785 Gs
|
2.62 kg / 5.78 lbs
2624 g / 25.7 N
|
N/A |
| 1 mm |
15.37 kg / 33.89 lbs
6 316 Gs
|
2.31 kg / 5.08 lbs
2306 g / 22.6 N
|
13.84 kg / 30.50 lbs
~0 Gs
|
| 2 mm |
13.25 kg / 29.21 lbs
5 864 Gs
|
1.99 kg / 4.38 lbs
1987 g / 19.5 N
|
11.92 kg / 26.29 lbs
~0 Gs
|
| 3 mm |
11.26 kg / 24.83 lbs
5 407 Gs
|
1.69 kg / 3.72 lbs
1690 g / 16.6 N
|
10.14 kg / 22.35 lbs
~0 Gs
|
| 5 mm |
7.91 kg / 17.44 lbs
4 531 Gs
|
1.19 kg / 2.62 lbs
1187 g / 11.6 N
|
7.12 kg / 15.70 lbs
~0 Gs
|
| 10 mm |
3.10 kg / 6.84 lbs
2 838 Gs
|
0.47 kg / 1.03 lbs
465 g / 4.6 N
|
2.79 kg / 6.16 lbs
~0 Gs
|
| 20 mm |
0.56 kg / 1.24 lbs
1 207 Gs
|
0.08 kg / 0.19 lbs
84 g / 0.8 N
|
0.51 kg / 1.11 lbs
~0 Gs
|
| 50 mm |
0.01 kg / 0.03 lbs
194 Gs
|
0.00 kg / 0.00 lbs
2 g / 0.0 N
|
0.01 kg / 0.03 lbs
~0 Gs
|
| 60 mm |
0.01 kg / 0.01 lbs
124 Gs
|
0.00 kg / 0.00 lbs
1 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 70 mm |
0.00 kg / 0.01 lbs
84 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 80 mm |
0.00 kg / 0.00 lbs
59 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 90 mm |
0.00 kg / 0.00 lbs
43 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 100 mm |
0.00 kg / 0.00 lbs
32 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
Tabela 7: Strefy ochronne (implanty) - środki ostrożności
MPL 25x10x5 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 8.0 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 6.0 cm |
| Zegarek mechaniczny | 20 Gs (2.0 mT) | 5.0 cm |
| Telefon / Smartfon | 40 Gs (4.0 mT) | 4.0 cm |
| Kluczyk samochodowy | 50 Gs (5.0 mT) | 3.5 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 1.5 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 1.5 cm |
Tabela 8: Zderzenia (ryzyko pęknięcia) - ostrzeżenie
MPL 25x10x5 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
29.06 km/h
(8.07 m/s)
|
0.31 J | |
| 30 mm |
49.37 km/h
(13.71 m/s)
|
0.88 J | |
| 50 mm |
63.73 km/h
(17.70 m/s)
|
1.47 J | |
| 100 mm |
90.12 km/h
(25.03 m/s)
|
2.94 J |
Tabela 9: Trwałość powłoki antykorozyjnej
MPL 25x10x5 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
Tabela 10: Dane elektryczne (Flux)
MPL 25x10x5 / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 8 245 Mx | 82.5 µWb |
| Współczynnik Pc | 0.38 | Niski (Płaski) |
Tabela 11: Praca w wodzie (Magnet Fishing)
MPL 25x10x5 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 7.49 kg | Standard |
| Woda (dno rzeki) |
8.58 kg
(+1.09 kg zysk z wyporności)
|
+14.5% |
1. Udźwig w pionie
*Ważne: Na pionowej ścianie magnes zachowa tylko ~20-30% nominalnego udźwigu.
2. Efektywność, a grubość stali
*Zbyt cienki metal (np. blacha karoseryjna) znacząco ogranicza siłę trzymania.
3. Stabilność termiczna
*Dla materiału N38 krytyczny próg to 80°C.
4. Krzywa odmagnesowania i punkt pracy (B-H)
wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 0.38
Powyższy wykres prezentuje charakterystykę magnetyczną materiału w drugim kwadrancie pętli histerezy. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.
Specyfikacja materiałowa
| żelazo (Fe) | 64% – 68% |
| neodym (Nd) | 29% – 32% |
| bor (B) | 1.1% – 1.2% |
| dysproz (Dy) | 0.5% – 2.0% |
| powłoka (Ni-Cu-Ni) | < 0.05% |
Dane środowiskowe
| recyklowalność (EoL) | 100% |
| surowce z recyklingu | ~10% (pre-cons) |
| ślad węglowy | low / zredukowany |
| kod odpadu (EWC) | 16 02 16 |
Zobacz też inne produkty
Wady i zalety neodymowych magnesów Nd2Fe14B.
Zalety
- Praktycznie nie ulegają osłabieniu w czasie; po 10 latach użytkowania redukcja udźwigu to marginalne ~1%.
- Są stabilne magnetycznie, gdyż wykazują wysoką odporność na pola rozmagnesowujące.
- Warstwa ochronna (np. niklowa) zapewnia im atrakcyjny wygląd, co podnosi ich walory wizualne.
- Wytwarzają skoncentrowane pole magnetyczne na swojej powierzchni, co jest ich znakiem rozpoznawczym.
- Odpowiedni skład sprawia, że wykazują odporność na wysokie temperatury (zależnie od kształtu, nawet do 230°C).
- Dają się łatwo formować do specyficznych wymiarów, co ułatwia ich adaptację w przemyśle.
- Znajdują szerokie zastosowanie w nowoczesnej technice – od dysków twardych i silników, po precyzyjną diagnostykę.
- Doskonała relacja wielkości do siły – są małe, ale bardzo silne, co pozwala na ich montaż w ciasnych przestrzeniach.
Słabe strony
- Pamiętaj o ich kruchości – bez zabezpieczenia mogą pękać przy gwałtownym zwarciu.
- Ograniczenia termiczne – dla zwykłych magnesów limit to 80°C. W trudnych warunkach (do 230°C) sprawdzą się tylko modele z oznaczeniem [AH].
- Ryzyko korozji: bez osłony magnes ulegnie utlenieniu na deszczu. Wybierz wersje powlekane tworzywem do zastosowań zewnętrznych.
- Trudności montażowe: zamiast próbować gwintować kruchy magnes, wybierz uchwytów w stalowej obudowie, które posiadają gotowe mocowania.
- Zachowaj ostrożność – połknięcie magnesów przez dziecko to zagrożenie życia. Ponadto, ich obecność w ciele uniemożliwia diagnostykę obrazową.
- Cena – są droższe niż magnesy ferrytowe, co przy produkcji masowej może być barierą.
Charakterystyka udźwigu
Siła oderwania magnesu w optymalnych warunkach – co ma na to wpływ?
- przy kontakcie z blachy ze specjalnej stali pomiarowej, gwarantującej pełne nasycenie magnetyczne
- posiadającej grubość co najmniej 10 mm dla pełnego zamknięcia strumienia
- charakteryzującej się równą strukturą
- bez żadnej przerwy powietrznej pomiędzy magnesem a stalą
- dla siły działającej pod kątem prostym (w osi magnesu)
- w stabilnej temperaturze pokojowej
Udźwig magnesu w użyciu – kluczowe czynniki
- Dystans (pomiędzy magnesem a blachą), ponieważ nawet mikroskopijna odległość (np. 0,5 mm) skutkuje drastyczny spadek udźwigu nawet o 50% (dotyczy to także farby, korozji czy brudu).
- Kierunek siły – deklarowany udźwig dotyczy ciągnięcia w pionie. Przy ześlizgiwaniu, magnes trzyma dużo słabiej (zazwyczaj ok. 20-30% siły nominalnej).
- Grubość podłoża – dla pełnej efektywności, stal musi być odpowiednio gruba. Cienka blacha limituje udźwig (magnes „przebija” ją na wylot).
- Materiał blachy – stal niskowęglowa przyciąga najlepiej. Większa zawartość węgla obniżają przenikalność magnetyczną i siłę trzymania.
- Wykończenie powierzchni – idealny styk jest możliwy tylko na gładkiej stali. Wszelkie rysy i nierówności zmniejszają realną powierzchnię styku, redukując siłę.
- Temperatura pracy – spieki NdFeB posiadają wrażliwość na temperaturę. Gdy jest gorąco są słabsze, a na mrozie zyskują na sile (do pewnej granicy).
Udźwig określano stosując wypolerowanej blachy o optymalnej grubości (min. 20 mm), przy siłach działających pionowo, z kolei przy próbie przesunięcia magnesu udźwig jest mniejszy nawet 75%. Co więcej, nawet niewielka szczelina między powierzchnią magnesu, a blachą zmniejsza udźwig.
Instrukcja bezpiecznej obsługi magnesów
Interferencja magnetyczna
Moduły GPS i smartfony są niezwykle wrażliwe na pole magnetyczne. Bliskie sąsiedztwo z silnym magnesem może zniszczyć sensory w Twoim telefonie.
Unikaj kontaktu w przypadku alergii
Badania wskazują, że nikiel (typowe wykończenie magnesów) jest silnym alergenem. Jeśli jesteś alergikiem, unikaj kontaktu skóry z metalem lub wybierz wersje w obudowie plastikowej.
Chronić przed dziećmi
Koniecznie chroń magnesy przed dostępem dzieci. Ryzyko zadławienia jest wysokie, a skutki połączenia się magnesów wewnątrz organizmu są nieodwracalne.
Nośniki danych
Nie zbliżaj magnesów do dokumentów, laptopa czy ekranu. Pole magnetyczne może zniszczyć te urządzenia oraz skasować dane z kart.
Ryzyko pożaru
Proszek generowany podczas cięcia magnesów jest wybuchowy. Zakaz wiercenia w magnesach w warunkach domowych.
Utrata mocy w cieple
Nie przegrzewaj. Magnesy neodymowe są wrażliwe na temperaturę. Jeśli wymagasz odporności powyżej 80°C, wybierz magnesy odporne na ciepło (H, SH, UH).
Ostrzeżenie dla sercowców
Zagrożenie życia: Magnesy neodymowe mogą dezaktywować stymulatory i defibrylatory. Unikaj kontaktu, jeśli posiadasz implanty elektroniczne.
Ogromna siła
Używaj magnesy z rozwagą. Ich potężna moc może zszokować nawet doświadczonych użytkowników. Bądź skupiony i respektuj ich siły.
Łamliwość magnesów
Chroń oczy. Magnesy mogą pęknąć przy niekontrolowanym uderzeniu, wyrzucając kawałki metalu w powietrze. Ochrona wzroku wymagana.
Urazy ciała
Chroń dłonie. Dwa duże magnesy zderzą z ogromną prędkością z siłą kilkuset kilogramów, niszcząc wszystko na swojej drodze. Bądź ostrożny!
