MPL 11x11x1 / N38 - magnes neodymowy płytkowy
magnes neodymowy płytkowy
Numer katalogowy 020116
GTIN/EAN: 5906301811220
Długość
11 mm [±0,1 mm]
Szerokość
11 mm [±0,1 mm]
Wysokość
1 mm [±0,1 mm]
Waga
0.91 g
Kierunek magnesowania
↑ osiowy
Udźwig
0.43 kg / 4.24 N
Indukcja magnetyczna
100.10 mT / 1001 Gs
Powłoka
[NiCuNi] nikiel
0.873 ZŁ z VAT / szt. + cena za transport
0.710 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?
Zadzwoń i zapytaj
+48 22 499 98 98
albo pisz poprzez
formularz zapytania
w sekcji kontakt.
Udźwig i budowę magnesów neodymowych przetestujesz dzięki naszemu
naszym kalkulatorze magnetycznym.
Zamówienia złożone przed 14:00 realizujemy jeszcze dziś!
Szczegóły techniczne - MPL 11x11x1 / N38 - magnes neodymowy płytkowy
Specyfikacja / charakterystyka - MPL 11x11x1 / N38 - magnes neodymowy płytkowy
| właściwości | wartości |
|---|---|
| Nr kat. | 020116 |
| GTIN/EAN | 5906301811220 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Długość | 11 mm [±0,1 mm] |
| Szerokość | 11 mm [±0,1 mm] |
| Wysokość | 1 mm [±0,1 mm] |
| Waga | 0.91 g |
| Kierunek magnesowania | ↑ osiowy |
| Udźwig ~ ? | 0.43 kg / 4.24 N |
| Indukcja magnetyczna ~ ? | 100.10 mT / 1001 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [min. - maks.] ? | 12.2-12.6 | kGs |
| remanencja Br [min. - maks.] ? | 1220-1260 | mT |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [min. - maks.] ? | 36-38 | BH max MGOe |
| gęstość energii [min. - maks.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Temperatura Curie TC | 312 - 380 | °C |
| Temperatura Curie TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅cm |
| Siła wyginania | 250 | MPa |
| Wytrzymałość na ściskanie | 1000~1100 | MPa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 10-6 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Analiza techniczna magnesu neodymowego - parametry techniczne
Niniejsze dane stanowią bezpośredni efekt kalkulacji fizycznej. Wartości zostały wyliczone na modelach dla klasy Nd2Fe14B. Rzeczywiste warunki mogą nieznacznie się różnić. Prosimy traktować te dane jako punkt odniesienia podczas planowania montażu.
Tabela 1: Udźwig statyczny prostopadły (udźwig vs dystans) - wykres oddziaływania
MPL 11x11x1 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg)(gram)(Niuton) | Status ryzyka |
|---|---|---|---|
| 0 mm |
1001 Gs
100.1 mT
|
0.43 kg / 430.0 g
4.2 N
|
słaby uchwyt |
| 1 mm |
925 Gs
92.5 mT
|
0.37 kg / 367.7 g
3.6 N
|
słaby uchwyt |
| 2 mm |
800 Gs
80.0 mT
|
0.27 kg / 274.9 g
2.7 N
|
słaby uchwyt |
| 3 mm |
659 Gs
65.9 mT
|
0.19 kg / 186.5 g
1.8 N
|
słaby uchwyt |
| 5 mm |
415 Gs
41.5 mT
|
0.07 kg / 74.0 g
0.7 N
|
słaby uchwyt |
| 10 mm |
130 Gs
13.0 mT
|
0.01 kg / 7.3 g
0.1 N
|
słaby uchwyt |
| 15 mm |
51 Gs
5.1 mT
|
0.00 kg / 1.1 g
0.0 N
|
słaby uchwyt |
| 20 mm |
24 Gs
2.4 mT
|
0.00 kg / 0.3 g
0.0 N
|
słaby uchwyt |
| 30 mm |
8 Gs
0.8 mT
|
0.00 kg / 0.0 g
0.0 N
|
słaby uchwyt |
| 50 mm |
2 Gs
0.2 mT
|
0.00 kg / 0.0 g
0.0 N
|
słaby uchwyt |
Tabela 2: Równoległa siła zsuwania (ściana)
MPL 11x11x1 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg)(gram)(Niuton) |
|---|---|---|
| 0 mm | Stal (~0.2) |
0.09 kg / 86.0 g
0.8 N
|
| 1 mm | Stal (~0.2) |
0.07 kg / 74.0 g
0.7 N
|
| 2 mm | Stal (~0.2) |
0.05 kg / 54.0 g
0.5 N
|
| 3 mm | Stal (~0.2) |
0.04 kg / 38.0 g
0.4 N
|
| 5 mm | Stal (~0.2) |
0.01 kg / 14.0 g
0.1 N
|
| 10 mm | Stal (~0.2) |
0.00 kg / 2.0 g
0.0 N
|
| 15 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
| 20 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
| 30 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
Tabela 3: Montaż pionowy (ścinanie) - zachowanie na śliskim podłożu
MPL 11x11x1 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
0.13 kg / 129.0 g
1.3 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
0.09 kg / 86.0 g
0.8 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
0.04 kg / 43.0 g
0.4 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
0.22 kg / 215.0 g
2.1 N
|
Tabela 4: Efektywność materiałowa (nasycenie) - dobór blachy
MPL 11x11x1 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg) |
|---|---|---|
| 0.5 mm |
|
0.04 kg / 43.0 g
0.4 N
|
| 1 mm |
|
0.11 kg / 107.5 g
1.1 N
|
| 2 mm |
|
0.22 kg / 215.0 g
2.1 N
|
| 5 mm |
|
0.43 kg / 430.0 g
4.2 N
|
| 10 mm |
|
0.43 kg / 430.0 g
4.2 N
|
Tabela 5: Wytrzymałość temperaturowa (stabilność) - próg odporności
MPL 11x11x1 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig | Status |
|---|---|---|---|
| 20 °C | 0.0% |
0.43 kg / 430.0 g
4.2 N
|
OK |
| 40 °C | -2.2% |
0.42 kg / 420.5 g
4.1 N
|
OK |
| 60 °C | -4.4% |
0.41 kg / 411.1 g
4.0 N
|
|
| 80 °C | -6.6% |
0.40 kg / 401.6 g
3.9 N
|
|
| 100 °C | -28.8% |
0.31 kg / 306.2 g
3.0 N
|
Tabela 6: Interakcja magnes-magnes (odpychanie) - siły w układzie
MPL 11x11x1 / N38
| Szczelina (mm) | Przyciąganie (kg) (N-S) | Odpychanie (kg) (N-N) |
|---|---|---|
| 0 mm |
0.75 kg / 747 g
7.3 N
1 925 Gs
|
N/A |
| 1 mm |
0.70 kg / 704 g
6.9 N
1 943 Gs
|
0.63 kg / 634 g
6.2 N
~0 Gs
|
| 2 mm |
0.64 kg / 639 g
6.3 N
1 851 Gs
|
0.58 kg / 575 g
5.6 N
~0 Gs
|
| 3 mm |
0.56 kg / 560 g
5.5 N
1 734 Gs
|
0.50 kg / 504 g
4.9 N
~0 Gs
|
| 5 mm |
0.40 kg / 397 g
3.9 N
1 460 Gs
|
0.36 kg / 358 g
3.5 N
~0 Gs
|
| 10 mm |
0.13 kg / 129 g
1.3 N
831 Gs
|
0.12 kg / 116 g
1.1 N
~0 Gs
|
| 20 mm |
0.01 kg / 13 g
0.1 N
261 Gs
|
0.01 kg / 11 g
0.1 N
~0 Gs
|
| 50 mm |
0.00 kg / 0 g
0.0 N
26 Gs
|
0.00 kg / 0 g
0.0 N
~0 Gs
|
Tabela 7: Zagrożenia (implanty) - środki ostrożności
MPL 11x11x1 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 4.0 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 3.0 cm |
| Czasomierz | 20 Gs (2.0 mT) | 2.5 cm |
| Telefon / Smartfon | 40 Gs (4.0 mT) | 2.0 cm |
| Pilot do auta | 50 Gs (5.0 mT) | 2.0 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 1.0 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 0.5 cm |
Tabela 8: Energia uderzenia (energia kinetyczna) - skutki zderzenia
MPL 11x11x1 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
22.15 km/h
(6.15 m/s)
|
0.02 J | |
| 30 mm |
37.97 km/h
(10.55 m/s)
|
0.05 J | |
| 50 mm |
49.02 km/h
(13.62 m/s)
|
0.08 J | |
| 100 mm |
69.33 km/h
(19.26 m/s)
|
0.17 J |
Tabela 9: Parametry powłoki (trwałość)
MPL 11x11x1 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
Tabela 10: Dane konstrukcyjne (Flux)
MPL 11x11x1 / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 1 627 Mx | 16.3 µWb |
| Współczynnik Pc | 0.13 | Niski (Płaski) |
Tabela 11: Hydrostatyka i wyporność
MPL 11x11x1 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 0.43 kg | Standard |
| Woda (dno rzeki) |
0.49 kg
(+0.06 kg Zysk z wyporności)
|
+14.5% |
1. Ześlizg (ściana)
*Ważne: Na pionowej ścianie magnes utrzyma tylko ułamek siły oderwania.
2. Nasycenie magnetyczne
*Cienka blacha (np. blacha karoseryjna) wyraźnie osłabia siłę trzymania.
3. Stabilność termiczna
*W klasie N38 krytyczny próg to 80°C.
4. Krzywa odmagnesowania i punkt pracy (B-H)
wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 0.13
Powyższy wykres prezentuje charakterystykę magnetyczną materiału w drugim kwadrancie pętli histerezy. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.
Analiza pierwiastkowa
| żelazo (Fe) | 64% – 68% |
| neodym (Nd) | 29% – 32% |
| bor (B) | 1.1% – 1.2% |
| dysproz (Dy) | 0.5% – 2.0% |
| powłoka (Ni-Cu-Ni) | < 0.05% |
Dane środowiskowe
| recyklowalność (EoL) | 100% |
| surowce z recyklingu | ~10% (pre-cons) |
| ślad węglowy | low / zredukowany |
| kod odpadu (EWC) | 16 02 16 |
Inne propozycje
Zalety i wady magnesów neodymowych Nd2Fe14B.
Plusy
- Praktycznie nie ulegają osłabieniu w czasie; po 10 latach eksploatacji redukcja udźwigu to znikome ~1%.
- Są stabilne magnetycznie, gdyż wykazują wysoką odporność na zewnętrzne czynniki.
- Dzięki warstwie ochronnej (NiCuNi, Au, srebro) mają estetyczny, błyszczący wygląd.
- Cechują się bardzo wysoką gęstością pola na powierzchni, co umożliwia silne chwytanie nawet małych elementów.
- Posiadają imponującą wytrzymałość termiczną, co umożliwia ich stosowanie w warunkach do 230°C (dotyczy odpowiednich serii).
- Możliwość uzyskania złożonych kształtów sprawia, że są doskonałe do indywidualnych zastosowań.
- Stanowią kluczowy element w technologiach przyszłości, zasilając układy napędowe, sprzęt szpitalny czy komputery.
- Mały rozmiar, wielka moc – przy niewielkich gabarytach oferują potężny udźwig, co jest kluczowe przy budowie małych urządzeń.
Ograniczenia
- Uwaga na uszkodzenia mechaniczne – bez odpowiedniej obudowy mogą pękać przy upadku na twarde podłoże.
- Wrażliwość na ciepło: przekroczenie 80°C może trwale osłabić magnes (zależnie od wymiarów). Rozwiązaniem są nasze magnesy wysokotemperaturowe [AH].
- Podatność na wilgoć skutkuje utlenianiem. Do zadań zewnętrznych sugerujemy wyłącznie magnesy w pełnej izolacji (plastik/guma).
- Trudności montażowe: zamiast próbować gwintować kruchy magnes, skorzystaj z uchwytów w stalowej obudowie, które posiadają gwinty.
- Zachowaj ostrożność – połknięcie magnesów przez dziecko to zagrożenie życia. Ponadto, ich obecność w ciele uniemożliwia diagnostykę obrazową.
- Wyższa cena w porównaniu do tańszych zamienników to ich minus, szczególnie przy dużych ilościach.
Parametry udźwigu
Siła oderwania magnesu w optymalnych warunkach – co się na to składa?
- z użyciem płyty ze miękkiej stali, która służy jako idealny przewodnik strumienia
- posiadającej masywność minimum 10 mm aby uniknąć nasycenia
- z powierzchnią wolną od rys
- bez najmniejszej szczeliny pomiędzy magnesem a stalą
- przy osiowym przyłożeniu siły odrywającej (kąt 90 stopni)
- przy temperaturze pokojowej
Praktyczne aspekty udźwigu – czynniki
- Dystans (między magnesem a metalem), ponieważ nawet mikroskopijna przerwa (np. 0,5 mm) powoduje drastyczny spadek udźwigu nawet o 50% (dotyczy to także lakieru, korozji czy brudu).
- Wektor obciążenia – największą siłę osiągamy tylko przy prostopadłym odrywaniu. Siła ścinająca magnesu po powierzchni jest z reguły wielokrotnie mniejsza (ok. 1/5 udźwigu).
- Grubość blachy – zbyt cienka płyta powoduje nasycenie magnetyczne, przez co część mocy marnuje się na drugą stronę.
- Skład chemiczny podłoża – stal miękka daje najlepsze rezultaty. Stale stopowe zmniejszają właściwości magnetyczne i udźwig.
- Wykończenie powierzchni – idealny styk uzyskamy tylko na gładkiej stali. Wszelkie rysy i nierówności zmniejszają realną powierzchnię styku, redukując siłę.
- Warunki termiczne – magnesy neodymowe posiadają ujemny współczynnik temperaturowy. W wyższych temperaturach są słabsze, a w niskich mogą być silniejsze (do pewnej granicy).
Pomiar udźwigu wykonywano na gładkiej blaszce o odpowiedniej grubości, przy prostopadłym działaniu siły, z kolei przy działaniu siły na zsuwanie siła trzymania jest mniejsza nawet 75%. Dodatkowo, nawet minimalna przerwa pomiędzy magnesem, a blachą zmniejsza udźwig.
Bezpieczna praca z magnesami neodymowymi
Tylko dla dorosłych
Neodymowe magnesy nie służą do zabawy. Przypadkowe zjedzenie dwóch lub więcej magnesów może skutkować ich zaciśnięciem jelit, co stwarza bezpośrednie zagrożenie życia i wiąże się z koniecznością pilnej interwencji chirurgicznej.
Siła neodymu
Przed użyciem, przeczytaj instrukcję. Gwałtowne złączenie może połamać magnes lub zranić dłoń. Bądź przewidujący.
Reakcje alergiczne
Pewna grupa użytkowników ma alergię kontaktową na pierwiastek nikiel, którym zabezpieczane są magnesy neodymowe. Dłuższy kontakt może powodować silną reakcję alergiczną. Sugerujemy noszenie rękawic bezlateksowych.
Podatność na pękanie
Ryzyko skaleczenia. Magnesy mogą pęknąć przy niekontrolowanym uderzeniu, rozrzucając ostre odłamki w powietrze. Noś okulary.
Wrażliwość na ciepło
Unikaj gorąca. Magnesy neodymowe są nieodporne na temperaturę. Jeśli potrzebujesz odporności powyżej 80°C, wybierz magnesy odporne na ciepło (H, SH, UH).
Smartfony i tablety
Ważna informacja: magnesy neodymowe generują pole, które zakłócają systemy nawigacji. Utrzymuj bezpieczny dystans od telefonu, tabletu i urządzeń GPS.
Uwaga medyczna
Uwaga zdrowotna: Magnesy neodymowe mogą wyłączyć rozruszniki serca i defibrylatory. Unikaj kontaktu, jeśli posiadasz urządzenia wspomagające.
Samozapłon
Proszek powstający podczas cięcia magnesów jest samozapalny. Zakaz wiercenia w magnesach bez odpowiedniego chłodzenia i wiedzy.
Siła zgniatająca
Uważaj na palce. Dwa duże magnesy zderzą z ogromną prędkością z siłą kilkuset kilogramów, miażdżąc wszystko na swojej drodze. Zachowaj ekstremalną uwagę!
Zagrożenie dla elektroniki
Nie zbliżaj magnesów do dokumentów, komputera czy telewizora. Magnes może zniszczyć te urządzenia oraz wymazać paski magnetyczne z kart.
