MPL 10x10x3 / N38 - magnes neodymowy płytkowy
magnes neodymowy płytkowy
Numer katalogowy 020111
GTIN/EAN: 5906301811176
Długość
10 mm [±0,1 mm]
Szerokość
10 mm [±0,1 mm]
Wysokość
3 mm [±0,1 mm]
Waga
2.25 g
Kierunek magnesowania
↑ osiowy
Udźwig
2.32 kg / 22.77 N
Indukcja magnetyczna
293.71 mT / 2937 Gs
Powłoka
[NiCuNi] nikiel
1.414 ZŁ z VAT / szt. + cena za transport
1.150 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?
Dzwoń do nas
+48 888 99 98 98
ewentualnie skontaktuj się za pomocą
formularz zapytania
przez naszą stronę.
Parametry oraz budowę magnesów neodymowych testujesz w naszym
narzędziu online do obliczeń.
Realizacja tego samego dnia przy zamówieniu do 14:00.
Parametry - MPL 10x10x3 / N38 - magnes neodymowy płytkowy
Specyfikacja / charakterystyka - MPL 10x10x3 / N38 - magnes neodymowy płytkowy
| właściwości | wartości |
|---|---|
| Nr kat. | 020111 |
| GTIN/EAN | 5906301811176 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Długość | 10 mm [±0,1 mm] |
| Szerokość | 10 mm [±0,1 mm] |
| Wysokość | 3 mm [±0,1 mm] |
| Waga | 2.25 g |
| Kierunek magnesowania | ↑ osiowy |
| Udźwig ~ ? | 2.32 kg / 22.77 N |
| Indukcja magnetyczna ~ ? | 293.71 mT / 2937 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [min. - maks.] ? | 12.2-12.6 | kGs |
| remanencja Br [min. - maks.] ? | 1220-1260 | mT |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [min. - maks.] ? | 36-38 | BH max MGOe |
| gęstość energii [min. - maks.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Temperatura Curie TC | 312 - 380 | °C |
| Temperatura Curie TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅cm |
| Siła wyginania | 250 | MPa |
| Wytrzymałość na ściskanie | 1000~1100 | MPa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 10-6 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Analiza inżynierska magnesu - dane
Niniejsze wartości są bezpośredni efekt analizy matematycznej. Wartości oparte są na algorytmach dla materiału Nd2Fe14B. Rzeczywiste warunki mogą nieznacznie odbiegać od wyników symulacji. Prosimy traktować te dane jako wstępny drogowskaz podczas planowania montażu.
Tabela 1: Siła prostopadła statyczna (siła vs odległość) - wykres oddziaływania
MPL 10x10x3 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg/lbs/g/N) | Status ryzyka |
|---|---|---|---|
| 0 mm |
2936 Gs
293.6 mT
|
2.32 kg / 5.11 lbs
2320.0 g / 22.8 N
|
średnie ryzyko |
| 1 mm |
2513 Gs
251.3 mT
|
1.70 kg / 3.75 lbs
1700.6 g / 16.7 N
|
bezpieczny |
| 2 mm |
2036 Gs
203.6 mT
|
1.12 kg / 2.46 lbs
1115.5 g / 10.9 N
|
bezpieczny |
| 3 mm |
1594 Gs
159.4 mT
|
0.68 kg / 1.51 lbs
683.9 g / 6.7 N
|
bezpieczny |
| 5 mm |
943 Gs
94.3 mT
|
0.24 kg / 0.53 lbs
239.3 g / 2.3 N
|
bezpieczny |
| 10 mm |
285 Gs
28.5 mT
|
0.02 kg / 0.05 lbs
21.8 g / 0.2 N
|
bezpieczny |
| 15 mm |
112 Gs
11.2 mT
|
0.00 kg / 0.01 lbs
3.4 g / 0.0 N
|
bezpieczny |
| 20 mm |
54 Gs
5.4 mT
|
0.00 kg / 0.00 lbs
0.8 g / 0.0 N
|
bezpieczny |
| 30 mm |
18 Gs
1.8 mT
|
0.00 kg / 0.00 lbs
0.1 g / 0.0 N
|
bezpieczny |
| 50 mm |
4 Gs
0.4 mT
|
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
bezpieczny |
Tabela 2: Siła równoległa ześlizgu (pion)
MPL 10x10x3 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg/lbs/g/N) |
|---|---|---|
| 0 mm | Stal (~0.2) |
0.46 kg / 1.02 lbs
464.0 g / 4.6 N
|
| 1 mm | Stal (~0.2) |
0.34 kg / 0.75 lbs
340.0 g / 3.3 N
|
| 2 mm | Stal (~0.2) |
0.22 kg / 0.49 lbs
224.0 g / 2.2 N
|
| 3 mm | Stal (~0.2) |
0.14 kg / 0.30 lbs
136.0 g / 1.3 N
|
| 5 mm | Stal (~0.2) |
0.05 kg / 0.11 lbs
48.0 g / 0.5 N
|
| 10 mm | Stal (~0.2) |
0.00 kg / 0.01 lbs
4.0 g / 0.0 N
|
| 15 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
| 20 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
| 30 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
Tabela 3: Siła na ścianie (ścinanie) - udźwig wertykalny
MPL 10x10x3 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg/lbs/g/N) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
0.70 kg / 1.53 lbs
696.0 g / 6.8 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
0.46 kg / 1.02 lbs
464.0 g / 4.6 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
0.23 kg / 0.51 lbs
232.0 g / 2.3 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
1.16 kg / 2.56 lbs
1160.0 g / 11.4 N
|
Tabela 4: Grubość stali (wpływ podłoża) - dobór blachy
MPL 10x10x3 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg/lbs/g/N) |
|---|---|---|
| 0.5 mm |
|
0.23 kg / 0.51 lbs
232.0 g / 2.3 N
|
| 1 mm |
|
0.58 kg / 1.28 lbs
580.0 g / 5.7 N
|
| 2 mm |
|
1.16 kg / 2.56 lbs
1160.0 g / 11.4 N
|
| 3 mm |
|
1.74 kg / 3.84 lbs
1740.0 g / 17.1 N
|
| 5 mm |
|
2.32 kg / 5.11 lbs
2320.0 g / 22.8 N
|
| 10 mm |
|
2.32 kg / 5.11 lbs
2320.0 g / 22.8 N
|
| 11 mm |
|
2.32 kg / 5.11 lbs
2320.0 g / 22.8 N
|
| 12 mm |
|
2.32 kg / 5.11 lbs
2320.0 g / 22.8 N
|
Tabela 5: Praca w cieple (stabilność) - limit termiczny
MPL 10x10x3 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig (kg/lbs/g/N) | Status |
|---|---|---|---|
| 20 °C | 0.0% |
2.32 kg / 5.11 lbs
2320.0 g / 22.8 N
|
OK |
| 40 °C | -2.2% |
2.27 kg / 5.00 lbs
2269.0 g / 22.3 N
|
OK |
| 60 °C | -4.4% |
2.22 kg / 4.89 lbs
2217.9 g / 21.8 N
|
|
| 80 °C | -6.6% |
2.17 kg / 4.78 lbs
2166.9 g / 21.3 N
|
|
| 100 °C | -28.8% |
1.65 kg / 3.64 lbs
1651.8 g / 16.2 N
|
Tabela 6: Interakcja magnes-magnes (odpychanie) - siły w układzie
MPL 10x10x3 / N38
| Szczelina (mm) | Przyciąganie (kg/lbs) (N-S) | Siła zsuwania (kg/lbs/g/N) | Odpychanie (kg/lbs) (N-N) |
|---|---|---|---|
| 0 mm |
5.31 kg / 11.71 lbs
4 526 Gs
|
0.80 kg / 1.76 lbs
797 g / 7.8 N
|
N/A |
| 1 mm |
4.63 kg / 10.20 lbs
5 480 Gs
|
0.69 kg / 1.53 lbs
694 g / 6.8 N
|
4.17 kg / 9.18 lbs
~0 Gs
|
| 2 mm |
3.89 kg / 8.59 lbs
5 027 Gs
|
0.58 kg / 1.29 lbs
584 g / 5.7 N
|
3.51 kg / 7.73 lbs
~0 Gs
|
| 3 mm |
3.19 kg / 7.03 lbs
4 549 Gs
|
0.48 kg / 1.05 lbs
478 g / 4.7 N
|
2.87 kg / 6.33 lbs
~0 Gs
|
| 5 mm |
2.01 kg / 4.44 lbs
3 613 Gs
|
0.30 kg / 0.67 lbs
302 g / 3.0 N
|
1.81 kg / 3.99 lbs
~0 Gs
|
| 10 mm |
0.55 kg / 1.21 lbs
1 886 Gs
|
0.08 kg / 0.18 lbs
82 g / 0.8 N
|
0.49 kg / 1.09 lbs
~0 Gs
|
| 20 mm |
0.05 kg / 0.11 lbs
569 Gs
|
0.01 kg / 0.02 lbs
7 g / 0.1 N
|
0.04 kg / 0.10 lbs
~0 Gs
|
| 50 mm |
0.00 kg / 0.00 lbs
60 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 60 mm |
0.00 kg / 0.00 lbs
36 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 70 mm |
0.00 kg / 0.00 lbs
24 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 80 mm |
0.00 kg / 0.00 lbs
16 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 90 mm |
0.00 kg / 0.00 lbs
12 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 100 mm |
0.00 kg / 0.00 lbs
9 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
Tabela 7: Zagrożenia (implanty) - ostrzeżenia
MPL 10x10x3 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 5.0 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 4.0 cm |
| Zegarek mechaniczny | 20 Gs (2.0 mT) | 3.0 cm |
| Telefon / Smartfon | 40 Gs (4.0 mT) | 2.5 cm |
| Kluczyk samochodowy | 50 Gs (5.0 mT) | 2.5 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 1.0 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 1.0 cm |
Tabela 8: Dynamika (energia kinetyczna) - ostrzeżenie
MPL 10x10x3 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
32.57 km/h
(9.05 m/s)
|
0.09 J | |
| 30 mm |
56.09 km/h
(15.58 m/s)
|
0.27 J | |
| 50 mm |
72.41 km/h
(20.11 m/s)
|
0.46 J | |
| 100 mm |
102.41 km/h
(28.45 m/s)
|
0.91 J |
Tabela 9: Parametry powłoki (trwałość)
MPL 10x10x3 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
Tabela 10: Dane konstrukcyjne (Strumień)
MPL 10x10x3 / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 3 197 Mx | 32.0 µWb |
| Współczynnik Pc | 0.36 | Niski (Płaski) |
Tabela 11: Fizyka poszukiwań podwodnych
MPL 10x10x3 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 2.32 kg | Standard |
| Woda (dno rzeki) |
2.66 kg
(+0.34 kg zysk z wyporności)
|
+14.5% |
1. Ześlizg (ściana)
*Ważne: Na powierzchni pionowej magnes utrzyma zaledwie ~20-30% siły oderwania.
2. Grubość podłoża
*Cienka blacha (np. obudowa PC 0.5mm) znacząco redukuje udźwig magnesu.
3. Stabilność termiczna
*Dla standardowych magnesów maksymalna temperatura to 80°C.
4. Krzywa odmagnesowania i punkt pracy (B-H)
wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 0.36
Powyższy wykres prezentuje charakterystykę magnetyczną materiału w drugim kwadrancie pętli histerezy. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.
Analiza pierwiastkowa
| żelazo (Fe) | 64% – 68% |
| neodym (Nd) | 29% – 32% |
| bor (B) | 1.1% – 1.2% |
| dysproz (Dy) | 0.5% – 2.0% |
| powłoka (Ni-Cu-Ni) | < 0.05% |
Ekologia i recykling (GPSR)
| recyklowalność (EoL) | 100% |
| surowce z recyklingu | ~10% (pre-cons) |
| ślad węglowy | low / zredukowany |
| kod odpadu (EWC) | 16 02 16 |
Sprawdź inne oferty
Wady i zalety magnesów z neodymu Nd2Fe14B.
Mocne strony
- Są niezwykle trwałe – przez okres blisko 10 lat tracą nie więcej niż ~1% swojej mocy (pomiary wskazują na taką wartość).
- Inne źródła magnetyzmu nie wpływają na ich utraty mocy – posiadają wysoki współczynnik odporności magnetycznej.
- Wykończenie materiałami takimi jak nikiel, srebro lub złoto nadaje im elegancki i lśniący charakter.
- Generują niezwykle silne pole magnetyczne przy biegunach, co jest ich kluczową cechą.
- Mogą pracować w ekstremalnym cieple – wybrane modele znoszą temperaturę do 230°C (zależnie od proporcji).
- Szerokie możliwości w projektowaniu kształtu i wymiaru to ich ogromny plus w inżynierii.
- Znajdują powszechne zastosowanie w przemyśle high-tech – od napędów HDD i motorów elektrycznych, po precyzyjną aparaturę medyczną.
- Dzięki kompaktowości, nie wymagają dużej przestrzeni, a jednocześnie gwarantują silne pole.
Minusy
- Należy uważać na wstrząsy – materiał jest kruchy i grozi pęknięciem. Zabezpieczenie w postaci obudowy jest kluczowa.
- Wrażliwość na ciepło: przekroczenie 80°C może trwale osłabić magnes (zależnie od bryły). Rozwiązaniem są nasze magnesy wysokotemperaturowe [AH].
- Ryzyko korozji: bez osłony magnes zardzewieje na deszczu. Wybierz wersje powlekane tworzywem do zastosowań zewnętrznych.
- Trudności montażowe: zamiast próbować gwintować kruchy magnes, skorzystaj z uchwytów w stalowej obudowie, które posiadają gwinty.
- Ryzyko połknięcia – drobne magnesy są groźne dla dzieci. Połknięcie kilku sztuk grozi poważnymi obrażeniami. Dodatkowo mogą utrudniać badania (np. rezonans).
- Za jakość trzeba płacić – magnesy neodymowe są droższe od ceramicznych, co wpływa na ekonomię rozwiązania.
Parametry udźwigu
Siła oderwania magnesu w optymalnych warunkach – co ma na to wpływ?
- na bloku wykonanej ze stali miękkiej, optymalnie przewodzącej pole magnetyczne
- posiadającej masywność min. 10 mm dla pełnego zamknięcia strumienia
- charakteryzującej się równą strukturą
- w warunkach bezszczelinowych (metal do metalu)
- przy prostopadłym kierunku działania siły (kąt 90 stopni)
- przy temperaturze otoczenia pokojowej
Praktyczne aspekty udźwigu – czynniki
- Szczelina – występowanie ciała obcego (rdza, brud, powietrze) działa jak izolator, co redukuje moc lawinowo (nawet o 50% przy 0,5 mm).
- Wektor obciążenia – maksymalny parametr uzyskujemy tylko przy ciągnięciu pod kątem 90°. Opór przy zsuwaniu magnesu po powierzchni jest zazwyczaj wielokrotnie mniejsza (ok. 1/5 udźwigu).
- Grubość ścianki – cienki materiał nie pozwala na pełne wykorzystanie magnesu. Strumień magnetyczny przechodzi przez materiał, zamiast generować siłę.
- Skład materiału – różne stopy przyciąga się identycznie. Wysoka zawartość węgla pogarszają interakcję z magnesem.
- Wykończenie powierzchni – idealny styk uzyskamy tylko na gładkiej stali. Wszelkie rysy i nierówności zmniejszają realną powierzchnię styku, osłabiając magnes.
- Ciepło – magnesy neodymowe posiadają wrażliwość na temperaturę. W wyższych temperaturach są słabsze, a na mrozie zyskują na sile (do pewnej granicy).
Udźwig wyznaczano używając blachy o gładkiej powierzchni o właściwej grubości (min. 20 mm), przy siłach działających pionowo, natomiast przy próbie przesunięcia magnesu udźwig jest mniejszy nawet 5 razy. Ponadto, nawet drobny odstęp pomiędzy magnesem, a blachą obniża siłę trzymania.
Ostrzeżenia
Trzymaj z dala od elektroniki
Pamiętaj: magnesy neodymowe wytwarzają pole, które mylą elektronikę precyzyjną. Utrzymuj bezpieczny dystans od telefonu, tabletu i urządzeń GPS.
Pył jest łatwopalny
Proszek powstający podczas szlifowania magnesów jest samozapalny. Nie wierć w magnesach bez odpowiedniego chłodzenia i wiedzy.
Świadome użytkowanie
Zachowaj rozwagę. Magnesy neodymowe działają z daleka i zwierają z ogromną siłą, często gwałtowniej niż jesteś w stanie przewidzieć.
Ryzyko uczulenia
Uwaga na nikiel: powłoka Ni-Cu-Ni zawiera nikiel. W przypadku pojawienia się reakcji alergicznej, należy bezzwłocznie przerwać pracę z magnesami i zabezpieczyć dłonie.
Utrata mocy w cieple
Standardowe magnesy neodymowe (typ N) tracą moc po przekroczeniu temperatury 80°C. Proces ten jest nieodwracalny.
Urazy ciała
Uważaj na palce. Dwa duże magnesy złączą się błyskawicznie z siłą wielu ton, miażdżąc wszystko na swojej drodze. Zachowaj ekstremalną uwagę!
Uwaga medyczna
Pacjenci z rozrusznikiem serca muszą utrzymać bezwzględny dystans od magnesów. Pole magnetyczne może zakłócić pracę implantu.
Karty i dyski
Ochrona danych: Magnesy neodymowe mogą zdegradować nośniki danych oraz delikatną elektronikę (implanty, protezy słuchu, zegarki mechaniczne).
Ochrona oczu
Magnesy neodymowe to materiał ceramiczny, co oznacza, że są bardzo kruche. Gwałtowne złączenie dwóch magnesów wywoła ich rozpryśnięcie na ostre odłamki.
Ryzyko połknięcia
Koniecznie chroń magnesy przed dostępem dzieci. Ryzyko zadławienia jest wysokie, a skutki zwarcia magnesów wewnątrz organizmu są tragiczne.
