magnesy neodymowe

Magnesy neodymowe Nd2Fe14B - nasza oferta. Szukasz mocnych magnesów z neodymu stop N38? Kompletny wykaz towarów na stanie znajdziesz na spisie poniżej sprawdź ofertę magnesów

magnes dla poszukiwaczy F 200 GOLD z mocnym uchem bocznym i liną

Gdzie zakupić silny UM neodymowy magnes do poszukiwań? Uchwyty z magnesów w szczelnej, solidnej obudowie ze stali nadają się wyśmienicie do pracy w trudnych, wymagających warunkach pogodowych, w tym na śniegu i w deszczu więcej informacji

uchwyty magnetyczne

Uchwyty magnetyczne mogą być stosowane do usprawnienia produkcji, poszukiwań podwodnych terenów lub do poszukiwania meteorytów ze złota. Mocowania to śruba 3x [M10] duża moc zobacz więcej informacji...

Wysyłka zamówienia zawsze w dniu zakupu jeżeli zamówienie złożone jest do 14:00 w dni robocze.

Dhit sp. z o.o.
Produkt dostępny Wysyłamy jutro

MW 9x3 / N38 - magnes neodymowy walcowy

magnes neodymowy walcowy

Numer katalogowy 010108

GTIN: 5906301811077

5.00

Średnica Ø

9 mm [±0,1 mm]

Wysokość

3 mm [±0,1 mm]

Waga

1.43 g

Kierunek magnesowania

↑ osiowy

Udźwig

1.94 kg / 18.99 N

Indukcja magnetyczna

343.55 mT / 3436 Gs

Powłoka

[NiCuNi] nikiel

1.132 z VAT / szt. + cena za transport

0.920 ZŁ netto + 23% VAT / szt.

upusty ilościowe:

Potrzebujesz więcej?

cena od 1 szt.
0.920 ZŁ
1.132 ZŁ
cena od 700 szt.
0.865 ZŁ
1.064 ZŁ
cena od 2800 szt.
0.810 ZŁ
0.996 ZŁ
Chcesz lepszą cenę?

Skontaktuj się z nami telefonicznie +48 22 499 98 98 alternatywnie napisz za pomocą formularz kontaktowy w sekcji kontakt.
Parametry a także wygląd elementów magnetycznych sprawdzisz w naszym kalkulatorze magnetycznym.

Zamówienia złożone przed 14:00 realizujemy jeszcze dziś!

MW 9x3 / N38 - magnes neodymowy walcowy

Specyfikacja / charakterystyka MW 9x3 / N38 - magnes neodymowy walcowy

właściwości
właściwości wartości
Nr kat. 010108
GTIN 5906301811077
Produkcja/Dystrybucja Dhit sp. z o.o.
ul. Zielona 14 05-850 Ożarów Mazowiecki PL
Kraj pochodzenia Polska / Chiny / Niemcy
Kod celny 85059029
Średnica Ø 9 mm [±0,1 mm]
Wysokość 3 mm [±0,1 mm]
Waga 1.43 g
Kierunek magnesowania ↑ osiowy
Udźwig ~ ? 1.94 kg / 18.99 N
Indukcja magnetyczna ~ ? 343.55 mT / 3436 Gs
Powłoka [NiCuNi] nikiel
Tolerancja wykonania ±0.1 mm

Własności magnetyczne materiału N38

Specyfikacja / charakterystyka MW 9x3 / N38 - magnes neodymowy walcowy
właściwości wartości jednostki
remanencja Br [Min. - Max.] ? 12.2-12.6 kGs
remanencja Br [Min. - Max.] ? 1220-1260 T
koercja bHc ? 10.8-11.5 kOe
koercja bHc ? 860-915 kA/m
faktyczna wewnętrzna siła iHc ≥ 12 kOe
faktyczna wewnętrzna siła iHc ≥ 955 kA/m
gęstość energii [Min. - Max.] ? 36-38 BH max MGOe
gęstość energii [Min. - Max.] ? 287-303 BH max KJ/m
max. temperatura ? ≤ 80 °C

Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C

Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
właściwości wartości jednostki
Twardość Vickersa ≥550 Hv
Gęstość ≥7.4 g/cm3
Curie Temperatura TC 312 - 380 °C
Curie Temperatura TF 593 - 716 °F
Specyficzna oporność 150 μΩ⋅Cm
Siła wyginania 250 Mpa
Wytrzymałość na ściskanie 1000~1100 Mpa
Rozszerzenie termiczne równoległe (∥) do orientacji (M) (3-4) x 106 °C-1
Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) -(1-3) x 10-6 °C-1
Moduł Younga 1.7 x 104 kg/mm²

Analiza fizyczna magnesu neodymowego - parametry techniczne

Niniejsze informacje stanowią wynik analizy inżynierskiej. Wyniki bazują na modelach dla materiału NdFeB. Realne osiągi mogą nieznacznie się różnić. Prosimy traktować te dane jako punkt odniesienia przy projektowaniu systemów.

Tabela 1: Siła prostopadła statyczna (udźwig vs dystans) - spadek mocy
MW 9x3 / N38
Dystans (mm) Indukcja (Gauss) / mT Udźwig (kg) Status ryzyka
0 mm 3433 Gs
343.3 mT
1.94 kg / 1940.0 g
19.0 N
słaby uchwyt
1 mm 2774 Gs
277.4 mT
1.27 kg / 1266.5 g
12.4 N
słaby uchwyt
2 mm 2090 Gs
209.0 mT
0.72 kg / 719.2 g
7.1 N
słaby uchwyt
3 mm 1521 Gs
152.1 mT
0.38 kg / 380.7 g
3.7 N
słaby uchwyt
5 mm 795 Gs
79.5 mT
0.10 kg / 104.1 g
1.0 N
słaby uchwyt
10 mm 205 Gs
20.5 mT
0.01 kg / 6.9 g
0.1 N
słaby uchwyt
15 mm 76 Gs
7.6 mT
0.00 kg / 1.0 g
0.0 N
słaby uchwyt
20 mm 36 Gs
3.6 mT
0.00 kg / 0.2 g
0.0 N
słaby uchwyt
30 mm 12 Gs
1.2 mT
0.00 kg / 0.0 g
0.0 N
słaby uchwyt
50 mm 3 Gs
0.3 mT
0.00 kg / 0.0 g
0.0 N
słaby uchwyt
Table 2: Siła równoległa ześlizgu (pion)
MW 9x3 / N38
Dystans (mm) Współczynnik tarcia Udźwig (kg)
0 mm Stal (~0.2) 0.39 kg / 388.0 g
3.8 N
1 mm Stal (~0.2) 0.25 kg / 254.0 g
2.5 N
2 mm Stal (~0.2) 0.14 kg / 144.0 g
1.4 N
3 mm Stal (~0.2) 0.08 kg / 76.0 g
0.7 N
5 mm Stal (~0.2) 0.02 kg / 20.0 g
0.2 N
10 mm Stal (~0.2) 0.00 kg / 2.0 g
0.0 N
15 mm Stal (~0.2) 0.00 kg / 0.0 g
0.0 N
20 mm Stal (~0.2) 0.00 kg / 0.0 g
0.0 N
30 mm Stal (~0.2) 0.00 kg / 0.0 g
0.0 N
50 mm Stal (~0.2) 0.00 kg / 0.0 g
0.0 N
Tabela 3: Montaż pionowy (poślizg) - udźwig wertykalny
MW 9x3 / N38
Rodzaj powierzchni Współczynnik tarcia / % Mocy Maks. ciężar (kg)
Stal surowa
µ = 0.3 30% Nominalnej Siły
0.58 kg / 582.0 g
5.7 N
Stal malowana (standard)
µ = 0.2 20% Nominalnej Siły
0.39 kg / 388.0 g
3.8 N
Stal tłusta/śliska
µ = 0.1 10% Nominalnej Siły
0.19 kg / 194.0 g
1.9 N
Magnes z gumą antypoślizgową
µ = 0.5 50% Nominalnej Siły
0.97 kg / 970.0 g
9.5 N
Tabela 4: Efektywność materiałowa (wpływ podłoża) - dobór blachy
MW 9x3 / N38
Grubość blachy (mm) % mocy Realny udźwig (kg)
0.5 mm
10%
0.19 kg / 194.0 g
1.9 N
1 mm
25%
0.49 kg / 485.0 g
4.8 N
2 mm
50%
0.97 kg / 970.0 g
9.5 N
5 mm
100%
1.94 kg / 1940.0 g
19.0 N
10 mm
100%
1.94 kg / 1940.0 g
19.0 N
Tabela 5: Stabilność termiczna (stabilność) - spadek mocy
MW 9x3 / N38
Temp. otoczenia (°C) Strata mocy Pozostały udźwig Status
20 °C 0.0% 1.94 kg / 1940.0 g
19.0 N
OK
40 °C -2.2% 1.90 kg / 1897.3 g
18.6 N
OK
60 °C -4.4% 1.85 kg / 1854.6 g
18.2 N
80 °C -6.6% 1.81 kg / 1812.0 g
17.8 N
100 °C -28.8% 1.38 kg / 1381.3 g
13.6 N
Tabela 6: Interakcja magnes-magnes (odpychanie) - zasięg pola
MW 9x3 / N38
Szczelina (mm) Przyciąganie (kg) (N-S) Odpychanie (kg) (N-N)
0 mm 4.62 kg / 4623 g
45.4 N
4 949 Gs
N/A
1 mm 3.82 kg / 3822 g
37.5 N
6 244 Gs
3.44 kg / 3440 g
33.7 N
~0 Gs
2 mm 3.02 kg / 3018 g
29.6 N
5 548 Gs
2.72 kg / 2716 g
26.6 N
~0 Gs
3 mm 2.30 kg / 2303 g
22.6 N
4 847 Gs
2.07 kg / 2073 g
20.3 N
~0 Gs
5 mm 1.25 kg / 1253 g
12.3 N
3 575 Gs
1.13 kg / 1128 g
11.1 N
~0 Gs
10 mm 0.25 kg / 248 g
2.4 N
1 591 Gs
0.22 kg / 223 g
2.2 N
~0 Gs
20 mm 0.02 kg / 16 g
0.2 N
410 Gs
0.01 kg / 15 g
0.1 N
~0 Gs
50 mm 0.00 kg / 0 g
0.0 N
39 Gs
0.00 kg / 0 g
0.0 N
~0 Gs
Tabela 7: Bezpieczeństwo (BHP) (elektronika) - środki ostrożności
MW 9x3 / N38
Obiekt / Urządzenie Limit (Gauss) / mT Bezpieczny dystans
Rozrusznik serca 5 Gs (0.5 mT) 4.5 cm
Implant słuchowy 10 Gs (1.0 mT) 3.5 cm
Czasomierz 20 Gs (2.0 mT) 2.5 cm
Telefon / Smartfon 40 Gs (4.0 mT) 2.0 cm
Pilot do auta 50 Gs (5.0 mT) 2.0 cm
Karta płatnicza 400 Gs (40.0 mT) 1.0 cm
Dysk twardy HDD 600 Gs (60.0 mT) 1.0 cm
Tabela 8: Energia uderzenia (ryzyko pęknięcia) - skutki zderzenia
MW 9x3 / N38
Start z (mm) Prędkość (km/h) Energia (J) Przewidywany skutek
10 mm 37.23 km/h
(10.34 m/s)
0.08 J
30 mm 64.34 km/h
(17.87 m/s)
0.23 J
50 mm 83.06 km/h
(23.07 m/s)
0.38 J
100 mm 117.47 km/h
(32.63 m/s)
0.76 J
Tabela 9: Odporność na korozję
MW 9x3 / N38
Parametr techniczny Wartość / opis
Rodzaj powłoki [NiCuNi] nikiel
Struktura warstw Nikiel - Miedź - Nikiel
Grubość warstwy 10-20 µm
Test mgły solnej (SST) ? 24 h
Zalecane środowisko Tylko wnętrza (sucho)
Table 10: Dane konstrukcyjne (Pc)
MW 9x3 / N38
Parametr Wartość Jedn. SI / Opis
Strumień (Flux) 2 314 Mx 23.1 µWb
Współczynnik Pc 0.44 Niski (Płaski)
Tabela 11: Praca w wodzie (Magnet Fishing)
MW 9x3 / N38
Środowisko Efektywny udźwig stali Efekt
Powietrze (ląd) 1.94 kg Standard
Woda (dno rzeki) 2.22 kg
(+0.28 kg Zysk z wyporności)
+14.5%
Uwaga na korozję: Pamiętaj o dokładnym wytarciu magnesu po wyjęciu z wody i nałożeniu warstwy ochronnej (np. oleju), aby uniknąć korozji.
1. Montaż na Ścianie (Ześlizg)

*Uwaga: Na pionowej ścianie magnes utrzyma tylko ok. 20-30% tego co na suficie.

2. Wpływ Grubości Blachy

*Cienka blacha (np. obudowa PC 0.5mm) drastycznie osłabia magnes.

3. Wytrzymałość Temperaturowa

*Dla materiału N38 granica bezpieczeństwa to 80°C.

Przelicznik magnesów
Siła oderwania

Moc pola
Jak rozdzielać?

Nie próbuj odrywać magnesów siłą!
Zawsze zsuwaj je na bok krawędzi stołu.

STAY
MOVE
Zasady Bezpieczeństwa
Elektronika

Trzymaj z dala od dysków HDD, kart płatniczych i telefonów.

Rozruszniki Serca

Osoby z rozrusznikiem muszą zachować dystans min. 10 cm.

Nie dla dzieci

Ryzyko połknięcia. Połknięcie dwóch magnesów grozi śmiercią.

Kruchy materiał

Magnes to ceramika! Uderzenie o inny magnes spowoduje odpryski.

Do czego użyć tego magnesu?

Sprawdzone zastosowania dla wymiaru 15x10x2 mm

Elektronika i Czujniki

Idealny jako element wyzwalający dla czujników Halla oraz kontaktronów w systemach alarmowych. Płaski kształt (2mm) pozwala na ukrycie go w wąskich szczelinach obudowy.

Modelarstwo i Druk 3D

Stosowany do tworzenia niewidocznych zamknięć w modelach drukowanych 3D. Można go wprasować w wydruk lub wkleić w kieszeń zaprojektowaną w modelu CAD.

Meble i Fronty

Używany jako "domykacz" lekkich drzwiczek szafkowych, gdzie standardowe magnesy meblowe są za grube. Wymaga wklejenia w płytkie podfrezowanie.

Sprawdź inne produkty

Prezentowany produkt to wyjątkowo silny magnes w kształcie walca, wyprodukowany z trwałego materiału NdFeB, co przy wymiarach Ø9x3 mm gwarantuje najwyższą gęstość energii. Model MW 9x3 / N38 charakteryzuje się dokładnością ±0,1mm oraz profesjonalną jakością wykonania, dzięki czemu jest to rozwiązanie doskonałe dla profesjonalnych inżynierów i konstruktorów. Jako magnes cylindryczny o imponującej sile (ok. 1.94 kg), produkt ten jest dostępny natychmiast z naszego magazynu w Polsce, co zapewnia błyskawiczną realizację zamówienia. Ponadto, jego trójwarstwowa powłoka Ni-Cu-Ni skutecznie zabezpiecza go przed korozją w typowych warunkach pracy, zapewniając estetyczny wygląd i trwałość przez lata.
Z powodzeniem znajduje zastosowanie w projektach DIY, zaawansowanej robotyce oraz szeroko pojętym przemyśle, służąc jako element pozycjonujący lub wykonawczy. Dzięki dużej mocy 18.99 N przy wadze zaledwie 1.43 g, ten magnes cylindryczny jest niezastąpiony w miniaturowych urządzeniach oraz wszędzie tam, gdzie kluczowa jest niska waga.
Ponieważ nasze magnesy mają tolerancję ±0,1mm, zalecanym sposobem jest wklejanie ich w otwory o średnicy minimalnie większej (np. 9,1 mm) przy użyciu dwuskładnikowych klejów epoksydowych. Dla zapewnienia stabilności w przemyśle, stosuje się specjalistyczne kleje przemysłowe, które są bezpieczne dla niklu i wypełniają szczelinę, gwarantując wysoką powtarzalność połączenia.
Klasa N38 to najpopularniejszy standard dla profesjonalnych magnesów neodymowych, oferujący optymalny stosunek ceny do mocy oraz stabilność pracy. Jeśli potrzebujesz najsilniejszych magnesów w tej samej objętości (Ø9x3), skontaktuj się z nami w sprawie wyższych klas (np. N50, N52), jednak N38 jest standardem w ciągłej sprzedaży w naszym magazynie.
Model ten charakteryzuje się wymiarami Ø9x3 mm, co przy wadze 1.43 g czyni go elementem o imponującej gęstości energii magnetycznej. Kluczowym parametrem jest tutaj siła trzymania wynoszący około 1.94 kg (siła ~18.99 N), co przy tak kompaktowych wymiarach świadczy o dużej mocy materiału NdFeB. Produkt posiada powłokę [NiCuNi], która chroni powierzchnię przed utlenianiem, nadając mu estetyczny, srebrzysty połysk.
Standardowo oś magnetyczna przebiega przez środek walca, sprawiając, że największa siła przyciągania występuje na podstawach o średnicy 9 mm. Taki układ jest standardowy przy łączeniu magnesów w stosy (np. w filtrach) lub przy montażu w gniazdach na dnie otworu. Na zamówienie możemy wykonać również wersje magnesowane po średnicy, jeśli Twój projekt tego wymaga.

Zalety oraz wady magnesów neodymowych NdFeB.

Poza imponującą mocą, nasze magnesy gwarantują szereg innych zalet::

  • Długowieczność to ich atut – nawet po 10 lat spadek mocy wynosi tylko ~1% (teoretycznie).
  • Trudno je rozmagnesować, gdyż wykazują wysoką odporność na pola rozmagnesowujące.
  • Są nie tylko silne, ale i ładne – poprzez niklowanie lub złocenie ich powierzchnia jest refleksyjna i wygląda estetycznie.
  • Oferują najwyższą indukcję magnetyczną w punkcie styku, co gwarantuje skuteczność.
  • Odpowiedni skład sprawia, że wykazują odporność na wysokie temperatury (zależnie od kształtu, nawet do 230°C).
  • Można je precyzyjnie obrabiać do specyficznych wymiarów, co pozwala na ich adaptację w skomplikowanych urządzeniach.
  • Spotkasz je wszędzie tam, gdzie liczy się precyzja: w napędach, medycynie oraz systemach IT.
  • Mały rozmiar, wielka moc – przy kompaktowej budowie oferują ogromną siłę, co jest kluczowe przy miniaturyzacji.

Czego unikać? Wady i zagrożenia związane z neodymami:

  • Kruchość to ich słaba strona. Mogą pęknąć przy zderzeniu, dlatego zalecamy osłony lub uchwyty.
  • Wrażliwość na ciepło: przekroczenie 80°C może trwale osłabić magnes (zależnie od wymiarów). Rozwiązaniem są nasze magnesy wysokotemperaturowe [AH].
  • Nie lubią wody – szybko rdzewieją. Jeśli planujesz montaż w ogrodzie, jedynym słusznym wyborem są magnesy w gumowej otulinie.
  • Obróbka jest trudna – wykonanie gwintu w samym magnesie jest ryzykowne. Lepiej wybrać gotowe uchwyty magnetyczne (magnes w obudowie).
  • Drobne magnesy to ryzyko – połknięcie wymaga interwencji chirurga. Mogą też być problemem przy badaniach lekarskich.
  • Cena – są bardziej kosztowne niż magnesy ferrytowe, co przy produkcji masowej może być barierą.

Wytrzymałość na oderwanie magnesu w warunkach idealnychod czego zależy?

Wartość udźwigu podana w specyfikacji odnosi się do maksymalnych osiągów, którą uzyskano w warunkach laboratoryjnych, a mianowicie:

  • przy kontakcie z zwory ze specjalnej stali pomiarowej, gwarantującej pełne nasycenie magnetyczne
  • której wymiar poprzeczny to min. 10 mm
  • z powierzchnią idealnie równą
  • bez najmniejszej warstwy izolującej pomiędzy magnesem a stalą
  • podczas odrywania w kierunku pionowym do powierzchni mocowania
  • w standardowej temperaturze otoczenia

Udźwig w warunkach rzeczywistych – czynniki

Na efektywny udźwig oddziałują parametry środowiska pracy, m.in. (od priorytetowych):

  • Szczelina między powierzchniami – każdy milimetr dystansu (spowodowany np. okleiną lub nierównością) zmniejsza siłę przyciągania, często o połowę przy zaledwie 0,5 mm.
  • Sposób obciążenia – deklarowany udźwig dotyczy odrywania w pionie. Przy próbie przesunięcia, magnes wykazuje dużo słabiej (zazwyczaj ok. 20-30% siły maksymalnej).
  • Grubość elementu – dla pełnej efektywności, stal musi być odpowiednio gruba. Blacha "papierowa" limituje siłę przyciągania (magnes „przebija” ją na wylot).
  • Gatunek stali – idealnym podłożem jest czysta stal żelazna. Żeliwo mogą mieć gorsze właściwości magnetyczne.
  • Struktura powierzchni – im gładsza i bardziej polerowana powierzchnia, tym większa strefa kontaktu i wyższy udźwig. Nierówności działają jak mikroszczeliny.
  • Otoczenie termiczne – podgrzanie magnesu powoduje tymczasowy spadek indukcji. Należy pamiętać o maksymalną temperaturę pracy dla danego modelu.

* Udźwig określano z wykorzystaniem gładkiej blachy o optymalnej grubości (min. 20 mm), przy działaniu siły prostopadłej, natomiast przy próbie przesunięcia magnesu udźwig jest mniejszy nawet 5 razy. Ponadto, nawet drobny odstęp pomiędzy powierzchnią magnesu, a blachą obniża siłę trzymania.

Zalety oraz wady magnesów neodymowych NdFeB.

Poza imponującą mocą, nasze magnesy gwarantują szereg innych zalet::

  • Długowieczność to ich atut – nawet po 10 lat spadek mocy wynosi tylko ~1% (teoretycznie).
  • Trudno je rozmagnesować, gdyż wykazują wysoką odporność na pola rozmagnesowujące.
  • Są nie tylko silne, ale i ładne – poprzez niklowanie lub złocenie ich powierzchnia jest refleksyjna i wygląda estetycznie.
  • Oferują najwyższą indukcję magnetyczną w punkcie styku, co gwarantuje skuteczność.
  • Odpowiedni skład sprawia, że wykazują odporność na wysokie temperatury (zależnie od kształtu, nawet do 230°C).
  • Można je precyzyjnie obrabiać do specyficznych wymiarów, co pozwala na ich adaptację w skomplikowanych urządzeniach.
  • Spotkasz je wszędzie tam, gdzie liczy się precyzja: w napędach, medycynie oraz systemach IT.
  • Mały rozmiar, wielka moc – przy kompaktowej budowie oferują ogromną siłę, co jest kluczowe przy miniaturyzacji.

Czego unikać? Wady i zagrożenia związane z neodymami:

  • Kruchość to ich słaba strona. Mogą pęknąć przy zderzeniu, dlatego zalecamy osłony lub uchwyty.
  • Wrażliwość na ciepło: przekroczenie 80°C może trwale osłabić magnes (zależnie od wymiarów). Rozwiązaniem są nasze magnesy wysokotemperaturowe [AH].
  • Nie lubią wody – szybko rdzewieją. Jeśli planujesz montaż w ogrodzie, jedynym słusznym wyborem są magnesy w gumowej otulinie.
  • Obróbka jest trudna – wykonanie gwintu w samym magnesie jest ryzykowne. Lepiej wybrać gotowe uchwyty magnetyczne (magnes w obudowie).
  • Drobne magnesy to ryzyko – połknięcie wymaga interwencji chirurga. Mogą też być problemem przy badaniach lekarskich.
  • Cena – są bardziej kosztowne niż magnesy ferrytowe, co przy produkcji masowej może być barierą.

Wytrzymałość na oderwanie magnesu w warunkach idealnychod czego zależy?

Wartość udźwigu podana w specyfikacji odnosi się do maksymalnych osiągów, którą uzyskano w warunkach laboratoryjnych, a mianowicie:

  • przy kontakcie z zwory ze specjalnej stali pomiarowej, gwarantującej pełne nasycenie magnetyczne
  • której wymiar poprzeczny to min. 10 mm
  • z powierzchnią idealnie równą
  • bez najmniejszej warstwy izolującej pomiędzy magnesem a stalą
  • podczas odrywania w kierunku pionowym do powierzchni mocowania
  • w standardowej temperaturze otoczenia

Udźwig w warunkach rzeczywistych – czynniki

Na efektywny udźwig oddziałują parametry środowiska pracy, m.in. (od priorytetowych):

  • Szczelina między powierzchniami – każdy milimetr dystansu (spowodowany np. okleiną lub nierównością) zmniejsza siłę przyciągania, często o połowę przy zaledwie 0,5 mm.
  • Sposób obciążenia – deklarowany udźwig dotyczy odrywania w pionie. Przy próbie przesunięcia, magnes wykazuje dużo słabiej (zazwyczaj ok. 20-30% siły maksymalnej).
  • Grubość elementu – dla pełnej efektywności, stal musi być odpowiednio gruba. Blacha "papierowa" limituje siłę przyciągania (magnes „przebija” ją na wylot).
  • Gatunek stali – idealnym podłożem jest czysta stal żelazna. Żeliwo mogą mieć gorsze właściwości magnetyczne.
  • Struktura powierzchni – im gładsza i bardziej polerowana powierzchnia, tym większa strefa kontaktu i wyższy udźwig. Nierówności działają jak mikroszczeliny.
  • Otoczenie termiczne – podgrzanie magnesu powoduje tymczasowy spadek indukcji. Należy pamiętać o maksymalną temperaturę pracy dla danego modelu.

* Udźwig określano z wykorzystaniem gładkiej blachy o optymalnej grubości (min. 20 mm), przy działaniu siły prostopadłej, natomiast przy próbie przesunięcia magnesu udźwig jest mniejszy nawet 5 razy. Ponadto, nawet drobny odstęp pomiędzy powierzchnią magnesu, a blachą obniża siłę trzymania.

Zasady BHP dla użytkowników magnesów

Pył jest łatwopalny

Pył generowany podczas cięcia magnesów jest samozapalny. Zakaz wiercenia w magnesach bez odpowiedniego chłodzenia i wiedzy.

Ochrona oczu

Mimo niklowej powłoki, neodym jest kruchy i nieodporny na uderzenia. Nie uderzaj, gdyż magnes może się pokruszyć na drobiny.

Świadome użytkowanie

Zachowaj rozwagę. Magnesy neodymowe działają z daleka i łączą się z ogromną siłą, często gwałtowniej niż jesteś w stanie przewidzieć.

Niklowa powłoka a alergia

Wiedza medyczna potwierdza, że powłoka niklowa (standardowe zabezpieczenie magnesów) jest częstą przyczyną uczuleń. Jeśli masz uczulenie, unikaj bezpośredniego dotyku lub wybierz magnesy powlekane tworzywem.

Utrata mocy w cieple

Kontroluj ciepło. Podgrzanie magnesu powyżej 80 stopni Celsjusza zdegraduje jego domenę magnetyczną i udźwig.

Zagrożenie życia

Zagrożenie życia: Magnesy neodymowe mogą dezaktywować rozruszniki serca i defibrylatory. Nie zbliżaj się, jeśli posiadasz implanty elektroniczne.

Urządzenia elektroniczne

Bardzo silne pole magnetyczne może zniszczyć zapis na kartach płatniczych, dyskach twardych i innych pamięciach. Trzymaj dystans min. 10 cm.

Kompas i GPS

Urządzenia nawigacyjne są wyjątkowo wrażliwe na wpływ magnesów. Bezpośredni kontakt z silnym magnesem może zniszczyć czujniki w Twoim telefonie.

Ryzyko połknięcia

Bezwzględnie chroń magnesy przed dostępem dzieci. Niebezpieczeństwo połknięcia jest bardzo duże, a konsekwencje połączenia się magnesów wewnątrz organizmu są nieodwracalne.

Siła zgniatająca

Duże magnesy mogą zmiażdżyć palce w ułamku sekundy. Nigdy wkładaj dłoni między dwa silne magnesy.

Ważne!

Potrzebujesz więcej danych? Sprawdź nasz artykuł: Dlaczego magnesy neodymowe są niebezpieczne?

Dhit sp. z o.o.

e-mail: bok@dhit.pl

tel: +48 888 99 98 98