MW 9x3 / N38 - magnes neodymowy walcowy
magnes neodymowy walcowy
Numer katalogowy 010108
GTIN/EAN: 5906301811077
Średnica Ø
9 mm [±0,1 mm]
Wysokość
3 mm [±0,1 mm]
Waga
1.43 g
Kierunek magnesowania
↑ osiowy
Udźwig
1.94 kg / 18.99 N
Indukcja magnetyczna
343.55 mT / 3436 Gs
Powłoka
[NiCuNi] nikiel
1.132 ZŁ z VAT / szt. + cena za transport
0.920 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?
Skontaktuj się z nami telefonicznie
+48 888 99 98 98
albo pisz przez
formularz kontaktowy
na stronie kontakt.
Masę a także wygląd magnesów skontrolujesz w naszym
kalkulatorze masy magnetycznej.
Zamówienia złożone przed 14:00 realizujemy jeszcze dziś!
Dane techniczne MW 9x3 / N38 - magnes neodymowy walcowy
Specyfikacja / charakterystyka - MW 9x3 / N38 - magnes neodymowy walcowy
| właściwości | wartości |
|---|---|
| Nr kat. | 010108 |
| GTIN/EAN | 5906301811077 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Średnica Ø | 9 mm [±0,1 mm] |
| Wysokość | 3 mm [±0,1 mm] |
| Waga | 1.43 g |
| Kierunek magnesowania | ↑ osiowy |
| Udźwig ~ ? | 1.94 kg / 18.99 N |
| Indukcja magnetyczna ~ ? | 343.55 mT / 3436 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [min. - maks.] ? | 12.2-12.6 | kGs |
| remanencja Br [min. - maks.] ? | 1220-1260 | mT |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [min. - maks.] ? | 36-38 | BH max MGOe |
| gęstość energii [min. - maks.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Temperatura Curie TC | 312 - 380 | °C |
| Temperatura Curie TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅cm |
| Siła wyginania | 250 | MPa |
| Wytrzymałość na ściskanie | 1000~1100 | MPa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 10-6 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Analiza inżynierska magnesu - dane
Poniższe dane stanowią wynik kalkulacji fizycznej. Wyniki zostały wyliczone na modelach dla materiału Nd2Fe14B. Rzeczywiste osiągi mogą odbiegać od wyników symulacji. Traktuj te wyliczenia jako punkt odniesienia dla projektantów.
Tabela 1: Udźwig statyczny prostopadły (siła vs dystans) - charakterystyka
MW 9x3 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg)(gram)(Niuton) | Status ryzyka |
|---|---|---|---|
| 0 mm |
3433 Gs
343.3 mT
|
1.94 kg / 1940.0 g
19.0 N
|
bezpieczny |
| 1 mm |
2774 Gs
277.4 mT
|
1.27 kg / 1266.5 g
12.4 N
|
bezpieczny |
| 2 mm |
2090 Gs
209.0 mT
|
0.72 kg / 719.2 g
7.1 N
|
bezpieczny |
| 3 mm |
1521 Gs
152.1 mT
|
0.38 kg / 380.7 g
3.7 N
|
bezpieczny |
| 5 mm |
795 Gs
79.5 mT
|
0.10 kg / 104.1 g
1.0 N
|
bezpieczny |
| 10 mm |
205 Gs
20.5 mT
|
0.01 kg / 6.9 g
0.1 N
|
bezpieczny |
| 15 mm |
76 Gs
7.6 mT
|
0.00 kg / 1.0 g
0.0 N
|
bezpieczny |
| 20 mm |
36 Gs
3.6 mT
|
0.00 kg / 0.2 g
0.0 N
|
bezpieczny |
| 30 mm |
12 Gs
1.2 mT
|
0.00 kg / 0.0 g
0.0 N
|
bezpieczny |
| 50 mm |
3 Gs
0.3 mT
|
0.00 kg / 0.0 g
0.0 N
|
bezpieczny |
Tabela 2: Równoległa siła obsunięcia (pion)
MW 9x3 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg)(gram)(Niuton) |
|---|---|---|
| 0 mm | Stal (~0.2) |
0.39 kg / 388.0 g
3.8 N
|
| 1 mm | Stal (~0.2) |
0.25 kg / 254.0 g
2.5 N
|
| 2 mm | Stal (~0.2) |
0.14 kg / 144.0 g
1.4 N
|
| 3 mm | Stal (~0.2) |
0.08 kg / 76.0 g
0.7 N
|
| 5 mm | Stal (~0.2) |
0.02 kg / 20.0 g
0.2 N
|
| 10 mm | Stal (~0.2) |
0.00 kg / 2.0 g
0.0 N
|
| 15 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
| 20 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
| 30 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
Tabela 3: Siła na ścianie (ścinanie) - udźwig wertykalny
MW 9x3 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
0.58 kg / 582.0 g
5.7 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
0.39 kg / 388.0 g
3.8 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
0.19 kg / 194.0 g
1.9 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
0.97 kg / 970.0 g
9.5 N
|
Tabela 4: Grubość stali (nasycenie) - dobór blachy
MW 9x3 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg) |
|---|---|---|
| 0.5 mm |
|
0.19 kg / 194.0 g
1.9 N
|
| 1 mm |
|
0.49 kg / 485.0 g
4.8 N
|
| 2 mm |
|
0.97 kg / 970.0 g
9.5 N
|
| 5 mm |
|
1.94 kg / 1940.0 g
19.0 N
|
| 10 mm |
|
1.94 kg / 1940.0 g
19.0 N
|
Tabela 5: Wytrzymałość temperaturowa (stabilność) - spadek mocy
MW 9x3 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig | Status |
|---|---|---|---|
| 20 °C | 0.0% |
1.94 kg / 1940.0 g
19.0 N
|
OK |
| 40 °C | -2.2% |
1.90 kg / 1897.3 g
18.6 N
|
OK |
| 60 °C | -4.4% |
1.85 kg / 1854.6 g
18.2 N
|
|
| 80 °C | -6.6% |
1.81 kg / 1812.0 g
17.8 N
|
|
| 100 °C | -28.8% |
1.38 kg / 1381.3 g
13.6 N
|
Tabela 6: Dwa magnesy (odpychanie) - siły w układzie
MW 9x3 / N38
| Szczelina (mm) | Przyciąganie (kg) (N-S) | Odpychanie (kg) (N-N) |
|---|---|---|
| 0 mm |
4.62 kg / 4623 g
45.4 N
4 949 Gs
|
N/A |
| 1 mm |
3.82 kg / 3822 g
37.5 N
6 244 Gs
|
3.44 kg / 3440 g
33.7 N
~0 Gs
|
| 2 mm |
3.02 kg / 3018 g
29.6 N
5 548 Gs
|
2.72 kg / 2716 g
26.6 N
~0 Gs
|
| 3 mm |
2.30 kg / 2303 g
22.6 N
4 847 Gs
|
2.07 kg / 2073 g
20.3 N
~0 Gs
|
| 5 mm |
1.25 kg / 1253 g
12.3 N
3 575 Gs
|
1.13 kg / 1128 g
11.1 N
~0 Gs
|
| 10 mm |
0.25 kg / 248 g
2.4 N
1 591 Gs
|
0.22 kg / 223 g
2.2 N
~0 Gs
|
| 20 mm |
0.02 kg / 16 g
0.2 N
410 Gs
|
0.01 kg / 15 g
0.1 N
~0 Gs
|
| 50 mm |
0.00 kg / 0 g
0.0 N
39 Gs
|
0.00 kg / 0 g
0.0 N
~0 Gs
|
Tabela 7: Strefy ochronne (implanty) - ostrzeżenia
MW 9x3 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 4.5 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 3.5 cm |
| Czasomierz | 20 Gs (2.0 mT) | 2.5 cm |
| Urządzenie mobilne | 40 Gs (4.0 mT) | 2.0 cm |
| Kluczyk samochodowy | 50 Gs (5.0 mT) | 2.0 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 1.0 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 1.0 cm |
Tabela 8: Dynamika (ryzyko pęknięcia) - ostrzeżenie
MW 9x3 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
37.23 km/h
(10.34 m/s)
|
0.08 J | |
| 30 mm |
64.34 km/h
(17.87 m/s)
|
0.23 J | |
| 50 mm |
83.06 km/h
(23.07 m/s)
|
0.38 J | |
| 100 mm |
117.47 km/h
(32.63 m/s)
|
0.76 J |
Tabela 9: Trwałość powłoki antykorozyjnej
MW 9x3 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
Tabela 10: Dane elektryczne (Strumień)
MW 9x3 / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 2 314 Mx | 23.1 µWb |
| Współczynnik Pc | 0.44 | Niski (Płaski) |
Tabela 11: Praca w wodzie (Magnet Fishing)
MW 9x3 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 1.94 kg | Standard |
| Woda (dno rzeki) |
2.22 kg
(+0.28 kg Zysk z wyporności)
|
+14.5% |
1. Udźwig w pionie
*Ważne: Na pionowej ścianie magnes zachowa zaledwie ~20-30% nominalnego udźwigu.
2. Wpływ grubości blachy
*Zbyt cienki metal (np. obudowa PC 0.5mm) drastycznie ogranicza udźwig magnesu.
3. Stabilność termiczna
*Dla materiału N38 granica bezpieczeństwa to 80°C.
4. Krzywa odmagnesowania i punkt pracy (B-H)
wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 0.44
Powyższy wykres prezentuje charakterystykę magnetyczną materiału w drugim kwadrancie pętli histerezy. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.
Analiza pierwiastkowa
| żelazo (Fe) | 64% – 68% |
| neodym (Nd) | 29% – 32% |
| bor (B) | 1.1% – 1.2% |
| dysproz (Dy) | 0.5% – 2.0% |
| powłoka (Ni-Cu-Ni) | < 0.05% |
Dane środowiskowe
| recyklowalność (EoL) | 100% |
| surowce z recyklingu | ~10% (pre-cons) |
| ślad węglowy | low / zredukowany |
| kod odpadu (EWC) | 16 02 16 |
Zobacz też inne oferty
Wady i zalety magnesów z neodymu Nd2Fe14B.
Korzyści
- Zachowują swoje właściwości przez lata – zakłada się, że po dekadzie słabną o niezauważalny 1%.
- Inne źródła magnetyzmu nie powodują ich szybkiego rozmagnesowania – posiadają wysoki współczynnik koercji.
- Są nie tylko silne, ale i ładne – dzięki powłokom ich powierzchnia jest błyszcząca i prezentuje się elegancko.
- Indukcja magnetyczna na powierzchni tych magnesów jest bardzo wysoka, co czyni je najsilniejszymi w swojej klasie.
- Są przystosowane do pracy w gorącym otoczeniu – wybrane modele znoszą temperaturę do 230°C (zależnie od wymiarów).
- Możliwość uzyskania złożonych kształtów sprawia, że są idealne do nietypowych zastosowań.
- Znajdują szerokie zastosowanie w przemyśle high-tech – od dysków twardych i motorów elektrycznych, po zaawansowaną diagnostykę.
- Doskonała relacja wielkości do siły – są małe, ale bardzo silne, co pozwala na ich montaż w precyzyjnych mechanizmach.
Minusy
- Są wrażliwe na uderzenia – materiał jest kruchy i może odprysnąć. Zabezpieczenie w postaci obudowy jest kluczowa.
- Klasyczne neodymy tracą moc powyżej 80°C. Jeśli potrzebujesz pracy w wyższych temperaturach, wybierz serię [AH] (odporną do 230°C).
- Wilgoć powoduje korozję w kontakcie z wodą. Na zewnątrz konieczne jest użycie magnesów wodoszczelnych (np. w gumie).
- Ze względu na twardość, nie zaleca się gwintowania magnesu. Prościej użyć magnesu wklejonego w stalowy kubek z gwintem.
- Zachowaj ostrożność – połknięcie magnesów przez dziecko to zagrożenie życia. Ponadto, ich obecność w ciele uniemożliwia diagnostykę obrazową.
- Za jakość trzeba płacić – magnesy neodymowe są droższe od ceramicznych, co wpływa na ekonomię rozwiązania.
Parametry udźwigu
Maksymalna moc trzymania magnesu – co ma na to wpływ?
- z zastosowaniem płyty ze stali niskowęglowej, działającej jako element zamykający obwód
- której wymiar poprzeczny wynosi ok. 10 mm
- z płaszczyzną oczyszczoną i gładką
- przy całkowitym braku odstępu (brak powłok)
- przy pionowym wektorze siły (kąt 90 stopni)
- w standardowej temperaturze otoczenia
Udźwig w praktyce – czynniki wpływu
- Szczelina między magnesem a stalą – nawet ułamek milimetra dystansu (spowodowany np. okleiną lub nierównością) zmniejsza efektywność magnesu, często o połowę przy zaledwie 0,5 mm.
- Wektor obciążenia – maksymalny parametr mamy tylko przy prostopadłym odrywaniu. Siła potrzebna do przesunięcia magnesu po blasze jest zazwyczaj wielokrotnie mniejsza (ok. 1/5 udźwigu).
- Grubość stali – za chuda blacha powoduje nasycenie magnetyczne, przez co część mocy ucieka w powietrzu.
- Typ metalu – różne stopy przyciąga się identycznie. Wysoka zawartość węgla pogarszają interakcję z magnesem.
- Wykończenie powierzchni – pełny kontakt jest możliwy tylko na wypolerowanej stali. Wszelkie rysy i nierówności zmniejszają realną powierzchnię styku, osłabiając magnes.
- Wpływ temperatury – wysoka temperatura zmniejsza siłę przyciągania. Przekroczenie temperatury granicznej może trwale rozmagnesować magnes.
Pomiar udźwigu przeprowadzano na blachach o gładkiej powierzchni o odpowiedniej grubości, przy prostopadłym działaniu siły, jednak przy próbie przesunięcia magnesu siła trzymania jest mniejsza nawet pięciokrotnie. Ponadto, nawet drobny odstęp między powierzchnią magnesu, a blachą obniża siłę trzymania.
Zasady BHP dla użytkowników magnesów
Kompas i GPS
Urządzenia nawigacyjne są wyjątkowo podatne na pole magnetyczne. Bliskie sąsiedztwo z silnym magnesem może rozalibrować czujniki w Twoim telefonie.
Świadome użytkowanie
Zanim zaczniesz, zapoznaj się z zasadami. Niekontrolowane przyciągnięcie może połamać magnes lub zranić dłoń. Myśl o krok do przodu.
Kruchy spiek
Mimo niklowej powłoki, neodym jest delikatny i nie znosi udarów. Nie rzucaj, gdyż magnes może się pokruszyć na ostre, niebezpieczne kawałki.
Urazy ciała
Uważaj na palce. Dwa duże magnesy złączą się błyskawicznie z siłą kilkuset kilogramów, niszcząc wszystko na swojej drodze. Zachowaj ekstremalną uwagę!
Nadwrażliwość na metale
Uwaga na nikiel: warstwa ochronna Ni-Cu-Ni ma w składzie nikiel. W przypadku pojawienia się reakcji alergicznej, należy bezzwłocznie przerwać pracę z magnesami i użyć środków ochronnych.
Implanty kardiologiczne
Osoby z kardiowerterem muszą utrzymać duży odstęp od magnesów. Silny magnes może zakłócić działanie urządzenia ratującego życie.
Uwaga: zadławienie
Magnesy neodymowe nie służą do zabawy. Połknięcie dwóch lub więcej magnesów może skutkować ich zaciśnięciem jelit, co stwarza bezpośrednie zagrożenie życia i wymaga pilnej interwencji chirurgicznej.
Zagrożenie zapłonem
Uwaga na ogień: Pył neodymowy jest wysoce łatwopalny. Nie modyfikuj mechanicznie magnesów w warunkach domowych, gdyż grozi to zapłonem.
Pole magnetyczne a elektronika
Bardzo silne oddziaływanie może zniszczyć zapis na kartach płatniczych, dyskach twardych i innych nośnikach magnetycznych. Trzymaj dystans min. 10 cm.
Przegrzanie magnesu
Kontroluj ciepło. Ekspozycja magnesu powyżej 80 stopni Celsjusza zniszczy jego strukturę magnetyczną i siłę przyciągania.
