MW 9x3 / N38 - magnes neodymowy walcowy
magnes neodymowy walcowy
Numer katalogowy 010108
GTIN/EAN: 5906301811077
Średnica Ø
9 mm [±0,1 mm]
Wysokość
3 mm [±0,1 mm]
Waga
1.43 g
Kierunek magnesowania
↑ osiowy
Udźwig
1.94 kg / 18.99 N
Indukcja magnetyczna
343.55 mT / 3436 Gs
Powłoka
[NiCuNi] nikiel
1.132 ZŁ z VAT / szt. + cena za transport
0.920 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?
Zadzwoń do nas
+48 888 99 98 98
alternatywnie napisz poprzez
formularz zgłoszeniowy
przez naszą stronę.
Właściwości i formę magnesu sprawdzisz w naszym
kalkulatorze magnetycznym.
Zamówienia złożone przed 14:00 realizujemy jeszcze dziś!
Dane produktu - MW 9x3 / N38 - magnes neodymowy walcowy
Specyfikacja / charakterystyka - MW 9x3 / N38 - magnes neodymowy walcowy
| właściwości | wartości |
|---|---|
| Nr kat. | 010108 |
| GTIN/EAN | 5906301811077 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Średnica Ø | 9 mm [±0,1 mm] |
| Wysokość | 3 mm [±0,1 mm] |
| Waga | 1.43 g |
| Kierunek magnesowania | ↑ osiowy |
| Udźwig ~ ? | 1.94 kg / 18.99 N |
| Indukcja magnetyczna ~ ? | 343.55 mT / 3436 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [min. - maks.] ? | 12.2-12.6 | kGs |
| remanencja Br [min. - maks.] ? | 1220-1260 | mT |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [min. - maks.] ? | 36-38 | BH max MGOe |
| gęstość energii [min. - maks.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Temperatura Curie TC | 312 - 380 | °C |
| Temperatura Curie TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅cm |
| Siła wyginania | 250 | MPa |
| Wytrzymałość na ściskanie | 1000~1100 | MPa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 10-6 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Symulacja techniczna magnesu neodymowego - dane
Poniższe wartości stanowią bezpośredni efekt symulacji fizycznej. Wartości zostały wyliczone na algorytmach dla klasy Nd2Fe14B. Rzeczywiste osiągi mogą nieznacznie odbiegać od wyników symulacji. Traktuj te dane jako wstępny drogowskaz dla projektantów.
Tabela 1: Siła prostopadła statyczna (siła vs odległość) - charakterystyka
MW 9x3 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg/lbs/g/N) | Status ryzyka |
|---|---|---|---|
| 0 mm |
3433 Gs
343.3 mT
|
1.94 kg / 4.28 lbs
1940.0 g / 19.0 N
|
niskie ryzyko |
| 1 mm |
2774 Gs
277.4 mT
|
1.27 kg / 2.79 lbs
1266.5 g / 12.4 N
|
niskie ryzyko |
| 2 mm |
2090 Gs
209.0 mT
|
0.72 kg / 1.59 lbs
719.2 g / 7.1 N
|
niskie ryzyko |
| 3 mm |
1521 Gs
152.1 mT
|
0.38 kg / 0.84 lbs
380.7 g / 3.7 N
|
niskie ryzyko |
| 5 mm |
795 Gs
79.5 mT
|
0.10 kg / 0.23 lbs
104.1 g / 1.0 N
|
niskie ryzyko |
| 10 mm |
205 Gs
20.5 mT
|
0.01 kg / 0.02 lbs
6.9 g / 0.1 N
|
niskie ryzyko |
| 15 mm |
76 Gs
7.6 mT
|
0.00 kg / 0.00 lbs
1.0 g / 0.0 N
|
niskie ryzyko |
| 20 mm |
36 Gs
3.6 mT
|
0.00 kg / 0.00 lbs
0.2 g / 0.0 N
|
niskie ryzyko |
| 30 mm |
12 Gs
1.2 mT
|
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
niskie ryzyko |
| 50 mm |
3 Gs
0.3 mT
|
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
niskie ryzyko |
Tabela 2: Siła równoległa ześlizgu (pion)
MW 9x3 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg/lbs/g/N) |
|---|---|---|
| 0 mm | Stal (~0.2) |
0.39 kg / 0.86 lbs
388.0 g / 3.8 N
|
| 1 mm | Stal (~0.2) |
0.25 kg / 0.56 lbs
254.0 g / 2.5 N
|
| 2 mm | Stal (~0.2) |
0.14 kg / 0.32 lbs
144.0 g / 1.4 N
|
| 3 mm | Stal (~0.2) |
0.08 kg / 0.17 lbs
76.0 g / 0.7 N
|
| 5 mm | Stal (~0.2) |
0.02 kg / 0.04 lbs
20.0 g / 0.2 N
|
| 10 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
2.0 g / 0.0 N
|
| 15 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
| 20 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
| 30 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
Tabela 3: Siła na ścianie (poślizg) - zachowanie na śliskim podłożu
MW 9x3 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg/lbs/g/N) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
0.58 kg / 1.28 lbs
582.0 g / 5.7 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
0.39 kg / 0.86 lbs
388.0 g / 3.8 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
0.19 kg / 0.43 lbs
194.0 g / 1.9 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
0.97 kg / 2.14 lbs
970.0 g / 9.5 N
|
Tabela 4: Grubość stali (wpływ podłoża) - straty mocy
MW 9x3 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg/lbs/g/N) |
|---|---|---|
| 0.5 mm |
|
0.19 kg / 0.43 lbs
194.0 g / 1.9 N
|
| 1 mm |
|
0.49 kg / 1.07 lbs
485.0 g / 4.8 N
|
| 2 mm |
|
0.97 kg / 2.14 lbs
970.0 g / 9.5 N
|
| 3 mm |
|
1.46 kg / 3.21 lbs
1455.0 g / 14.3 N
|
| 5 mm |
|
1.94 kg / 4.28 lbs
1940.0 g / 19.0 N
|
| 10 mm |
|
1.94 kg / 4.28 lbs
1940.0 g / 19.0 N
|
| 11 mm |
|
1.94 kg / 4.28 lbs
1940.0 g / 19.0 N
|
| 12 mm |
|
1.94 kg / 4.28 lbs
1940.0 g / 19.0 N
|
Tabela 5: Wytrzymałość temperaturowa (stabilność) - limit termiczny
MW 9x3 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig (kg/lbs/g/N) | Status |
|---|---|---|---|
| 20 °C | 0.0% |
1.94 kg / 4.28 lbs
1940.0 g / 19.0 N
|
OK |
| 40 °C | -2.2% |
1.90 kg / 4.18 lbs
1897.3 g / 18.6 N
|
OK |
| 60 °C | -4.4% |
1.85 kg / 4.09 lbs
1854.6 g / 18.2 N
|
|
| 80 °C | -6.6% |
1.81 kg / 3.99 lbs
1812.0 g / 17.8 N
|
|
| 100 °C | -28.8% |
1.38 kg / 3.05 lbs
1381.3 g / 13.6 N
|
Tabela 6: Interakcja magnes-magnes (odpychanie) - kolizja pól
MW 9x3 / N38
| Szczelina (mm) | Przyciąganie (kg/lbs) (N-S) | Siła ścinająca (kg/lbs/g/N) | Odpychanie (kg/lbs) (N-N) |
|---|---|---|---|
| 0 mm |
4.62 kg / 10.19 lbs
4 949 Gs
|
0.69 kg / 1.53 lbs
693 g / 6.8 N
|
N/A |
| 1 mm |
3.82 kg / 8.43 lbs
6 244 Gs
|
0.57 kg / 1.26 lbs
573 g / 5.6 N
|
3.44 kg / 7.58 lbs
~0 Gs
|
| 2 mm |
3.02 kg / 6.65 lbs
5 548 Gs
|
0.45 kg / 1.00 lbs
453 g / 4.4 N
|
2.72 kg / 5.99 lbs
~0 Gs
|
| 3 mm |
2.30 kg / 5.08 lbs
4 847 Gs
|
0.35 kg / 0.76 lbs
346 g / 3.4 N
|
2.07 kg / 4.57 lbs
~0 Gs
|
| 5 mm |
1.25 kg / 2.76 lbs
3 575 Gs
|
0.19 kg / 0.41 lbs
188 g / 1.8 N
|
1.13 kg / 2.49 lbs
~0 Gs
|
| 10 mm |
0.25 kg / 0.55 lbs
1 591 Gs
|
0.04 kg / 0.08 lbs
37 g / 0.4 N
|
0.22 kg / 0.49 lbs
~0 Gs
|
| 20 mm |
0.02 kg / 0.04 lbs
410 Gs
|
0.00 kg / 0.01 lbs
2 g / 0.0 N
|
0.01 kg / 0.03 lbs
~0 Gs
|
| 50 mm |
0.00 kg / 0.00 lbs
39 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 60 mm |
0.00 kg / 0.00 lbs
23 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 70 mm |
0.00 kg / 0.00 lbs
15 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 80 mm |
0.00 kg / 0.00 lbs
10 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 90 mm |
0.00 kg / 0.00 lbs
7 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 100 mm |
0.00 kg / 0.00 lbs
5 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
Tabela 7: Strefy ochronne (implanty) - ostrzeżenia
MW 9x3 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 4.5 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 3.5 cm |
| Zegarek mechaniczny | 20 Gs (2.0 mT) | 2.5 cm |
| Telefon / Smartfon | 40 Gs (4.0 mT) | 2.0 cm |
| Pilot do auta | 50 Gs (5.0 mT) | 2.0 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 1.0 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 1.0 cm |
Tabela 8: Energia uderzenia (energia kinetyczna) - ostrzeżenie
MW 9x3 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
37.23 km/h
(10.34 m/s)
|
0.08 J | |
| 30 mm |
64.34 km/h
(17.87 m/s)
|
0.23 J | |
| 50 mm |
83.06 km/h
(23.07 m/s)
|
0.38 J | |
| 100 mm |
117.47 km/h
(32.63 m/s)
|
0.76 J |
Tabela 9: Odporność na korozję
MW 9x3 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
Tabela 10: Dane elektryczne (Pc)
MW 9x3 / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 2 314 Mx | 23.1 µWb |
| Współczynnik Pc | 0.44 | Niski (Płaski) |
Tabela 11: Zastosowanie podwodne
MW 9x3 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 1.94 kg | Standard |
| Woda (dno rzeki) |
2.22 kg
(+0.28 kg zysk z wyporności)
|
+14.5% |
1. Montaż na ścianie (ześlizg)
*Pamiętaj: Na pionowej ścianie magnes zachowa tylko ok. 20-30% siły prostopadłej.
2. Wpływ grubości blachy
*Zbyt cienki metal (np. obudowa PC 0.5mm) wyraźnie redukuje siłę trzymania.
3. Spadek mocy w temperaturze
*W klasie N38 krytyczny próg to 80°C.
4. Krzywa odmagnesowania i punkt pracy (B-H)
wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 0.44
Powyższy wykres prezentuje charakterystykę magnetyczną materiału w drugim kwadrancie pętli histerezy. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.
Specyfikacja materiałowa
| żelazo (Fe) | 64% – 68% |
| neodym (Nd) | 29% – 32% |
| bor (B) | 1.1% – 1.2% |
| dysproz (Dy) | 0.5% – 2.0% |
| powłoka (Ni-Cu-Ni) | < 0.05% |
Zrównoważony rozwój
| recyklowalność (EoL) | 100% |
| surowce z recyklingu | ~10% (pre-cons) |
| ślad węglowy | low / zredukowany |
| kod odpadu (EWC) | 16 02 16 |
Zobacz też inne oferty
Wady oraz zalety magnesów neodymowych Nd2Fe14B.
Korzyści
- Zachowują swoje właściwości przez lata – zakłada się, że po dekadzie słabną o symboliczny 1%.
- Są niewrażliwe na wpływ innych pól, co czyni je odpornymi na rozmagnesowanie w trudnych warunkach.
- Wykończenie materiałami takimi jak nikiel czy złoto nadaje im elegancki i gładki charakter.
- Wyróżniają się bardzo wysoką gęstością pola na powierzchni, co zapewnia silne chwytanie z dużą mocą.
- Są przystosowane do pracy w gorącym otoczeniu – wybrane modele znoszą temperaturę do 230°C (zależnie od wymiarów).
- Duża swoboda w doborze kształtu i wymiaru to ich wielka zaleta w inżynierii.
- Są niezbędne w technologiach przyszłości, zasilając silniki, sprzęt szpitalny czy komputery.
- Idealny stosunek wielkości do siły – są małe, ale niezwykle mocne, co pozwala na ich montaż w ciasnych przestrzeniach.
Minusy
- Ze względu na kruchość, wymagają ostrożności. Gwałtowne złączenie może je zniszczyć, stąd zalecenie stosowania osłon.
- Uwaga na temperaturę – dla zwykłych magnesów limit to 80°C. W gorącym środowisku (do 230°C) sprawdzą się tylko modele z oznaczeniem [AH].
- Są podatne na rdzewienie w kontakcie z wodą. Na zewnątrz zalecamy użycie magnesów wodoszczelnych (np. w gumie).
- Obróbka jest trudna – wiercenie otworów w samym magnesie jest ryzykowne. Lepiej wybrać gotowe uchwyty magnetyczne (magnes w obudowie).
- Produkt niebezpieczny po połknięciu. Bezwzględnie chronić przed dziećmi. Wewnątrz ciała magnesy mogą się połączyć, powodując poważne urazy.
- Wyższa cena w porównaniu do ferrytów to ich minus, szczególnie przy dużych ilościach.
Charakterystyka udźwigu
Najlepsza nośność magnesu w idealnych parametrach – od czego zależy?
- na podłożu wykonanej ze stali konstrukcyjnej, efektywnie zamykającej strumień magnetyczny
- której grubość to min. 10 mm
- o idealnie gładkiej powierzchni kontaktu
- przy całkowitym braku odstępu (bez powłok)
- podczas ciągnięcia w kierunku prostopadłym do płaszczyzny mocowania
- w temperaturze pokojowej
Praktyczny udźwig: czynniki wpływające
- Przerwa między powierzchniami – nawet ułamek milimetra dystansu (spowodowany np. okleiną lub brudem) drastycznie redukuje siłę przyciągania, często o połowę przy zaledwie 0,5 mm.
- Sposób obciążenia – deklarowany udźwig dotyczy odrywania w pionie. Przy sile działającej równolegle, magnes trzyma znacznie mniejszą moc (często ok. 20-30% siły nominalnej).
- Grubość stali – za chuda płyta powoduje nasycenie magnetyczne, przez co część strumienia jest tracona na drugą stronę.
- Materiał blachy – stal niskowęglowa przyciąga najlepiej. Domieszki stopowe obniżają właściwości magnetyczne i siłę trzymania.
- Stan powierzchni – powierzchnie gładkie zapewniają maksymalny styk, co zwiększa nasycenie pola. Nierówny metal osłabiają chwyt.
- Temperatura – podgrzanie magnesu powoduje tymczasowy spadek indukcji. Warto sprawdzić maksymalną temperaturę pracy dla danego modelu.
Pomiar udźwigu realizowano na gładkiej blaszce o odpowiedniej grubości, przy prostopadłym działaniu siły, natomiast przy działaniu siły na zsuwanie nośność jest mniejsza nawet pięć razy. Co więcej, nawet niewielka szczelina pomiędzy magnesem, a blachą obniża siłę trzymania.
BHP przy magnesach
Podatność na pękanie
Ryzyko skaleczenia. Magnesy mogą pęknąć przy gwałtownym złączeniu, rozrzucając ostre odłamki w powietrze. Zalecamy okulary ochronne.
Implanty kardiologiczne
Osoby z kardiowerterem muszą zachować bezpieczną odległość od magnesów. Silny magnes może zatrzymać działanie implantu.
Nie dawać dzieciom
Bezwzględnie zabezpiecz magnesy przed dostępem dzieci. Ryzyko zadławienia jest wysokie, a konsekwencje zwarcia magnesów wewnątrz organizmu są tragiczne.
Niszczenie danych
Bardzo silne oddziaływanie może skasować dane na kartach płatniczych, nośnikach HDD i innych pamięciach. Zachowaj odstęp min. 10 cm.
Przegrzanie magnesu
Typowe magnesy neodymowe (klasa N) ulegają rozmagnesowaniu po osiągnięciu temperatury 80°C. Strata siły jest trwała i nieodwracalna.
Łatwopalność
Pył generowany podczas cięcia magnesów jest wybuchowy. Unikaj wiercenia w magnesach w warunkach domowych.
Urazy ciała
Silne magnesy mogą połamać palce w ułamku sekundy. Pod żadnym pozorem umieszczaj dłoni między dwa silne magnesy.
Trzymaj z dala od elektroniki
Uwaga: magnesy neodymowe wytwarzają pole, które mylą elektronikę precyzyjną. Utrzymuj bezpieczny dystans od komórki, tabletu i nawigacji.
Nadwrażliwość na metale
Część populacji wykazuje alergię kontaktową na pierwiastek nikiel, którym zabezpieczane są magnesy neodymowe. Dłuższy kontakt może wywołać wysypkę. Wskazane jest noszenie rękawic bezlateksowych.
Zasady obsługi
Przed przystąpieniem do pracy, przeczytaj instrukcję. Niekontrolowane przyciągnięcie może połamać magnes lub uszkodzić palce. Bądź przewidujący.
