MPL 10x10x4 / N38 - magnes neodymowy płytkowy
magnes neodymowy płytkowy
Numer katalogowy 020112
GTIN/EAN: 5906301811183
Długość
10 mm [±0,1 mm]
Szerokość
10 mm [±0,1 mm]
Wysokość
4 mm [±0,1 mm]
Waga
3 g
Kierunek magnesowania
↑ osiowy
Udźwig
3.10 kg / 30.39 N
Indukcja magnetyczna
360.85 mT / 3608 Gs
Powłoka
[NiCuNi] nikiel
1.538 ZŁ z VAT / szt. + cena za transport
1.250 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?
Dzwoń do nas
+48 22 499 98 98
ewentualnie zostaw wiadomość przez
formularz zapytania
w sekcji kontakt.
Masę i formę elementów magnetycznych zobaczysz u nas w
kalkulatorze siły.
Wysyłka tego samego dnia dla zamówień do godz. 14:00.
Dane techniczne produktu - MPL 10x10x4 / N38 - magnes neodymowy płytkowy
Specyfikacja / charakterystyka - MPL 10x10x4 / N38 - magnes neodymowy płytkowy
| właściwości | wartości |
|---|---|
| Nr kat. | 020112 |
| GTIN/EAN | 5906301811183 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Długość | 10 mm [±0,1 mm] |
| Szerokość | 10 mm [±0,1 mm] |
| Wysokość | 4 mm [±0,1 mm] |
| Waga | 3 g |
| Kierunek magnesowania | ↑ osiowy |
| Udźwig ~ ? | 3.10 kg / 30.39 N |
| Indukcja magnetyczna ~ ? | 360.85 mT / 3608 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [min. - maks.] ? | 12.2-12.6 | kGs |
| remanencja Br [min. - maks.] ? | 1220-1260 | mT |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [min. - maks.] ? | 36-38 | BH max MGOe |
| gęstość energii [min. - maks.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Temperatura Curie TC | 312 - 380 | °C |
| Temperatura Curie TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅cm |
| Siła wyginania | 250 | MPa |
| Wytrzymałość na ściskanie | 1000~1100 | MPa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 10-6 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Symulacja inżynierska magnesu - dane
Przedstawione dane są rezultat kalkulacji matematycznej. Wartości oparte są na modelach dla materiału Nd2Fe14B. Rzeczywiste parametry mogą nieznacznie odbiegać od wyników symulacji. Traktuj te wyliczenia jako wstępny drogowskaz podczas planowania montażu.
Tabela 1: Siła prostopadła statyczna (siła vs dystans) - wykres oddziaływania
MPL 10x10x4 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg)(gram)(Niuton) | Status ryzyka |
|---|---|---|---|
| 0 mm |
3606 Gs
360.6 mT
|
3.10 kg / 3100.0 g
30.4 N
|
średnie ryzyko |
| 1 mm |
3035 Gs
303.5 mT
|
2.20 kg / 2195.5 g
21.5 N
|
średnie ryzyko |
| 2 mm |
2436 Gs
243.6 mT
|
1.41 kg / 1413.8 g
13.9 N
|
słaby uchwyt |
| 3 mm |
1900 Gs
190.0 mT
|
0.86 kg / 860.8 g
8.4 N
|
słaby uchwyt |
| 5 mm |
1127 Gs
112.7 mT
|
0.30 kg / 302.7 g
3.0 N
|
słaby uchwyt |
| 10 mm |
347 Gs
34.7 mT
|
0.03 kg / 28.8 g
0.3 N
|
słaby uchwyt |
| 15 mm |
140 Gs
14.0 mT
|
0.00 kg / 4.6 g
0.0 N
|
słaby uchwyt |
| 20 mm |
68 Gs
6.8 mT
|
0.00 kg / 1.1 g
0.0 N
|
słaby uchwyt |
| 30 mm |
23 Gs
2.3 mT
|
0.00 kg / 0.1 g
0.0 N
|
słaby uchwyt |
| 50 mm |
6 Gs
0.6 mT
|
0.00 kg / 0.0 g
0.0 N
|
słaby uchwyt |
Tabela 2: Siła równoległa zsuwania (pion)
MPL 10x10x4 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg)(gram)(Niuton) |
|---|---|---|
| 0 mm | Stal (~0.2) |
0.62 kg / 620.0 g
6.1 N
|
| 1 mm | Stal (~0.2) |
0.44 kg / 440.0 g
4.3 N
|
| 2 mm | Stal (~0.2) |
0.28 kg / 282.0 g
2.8 N
|
| 3 mm | Stal (~0.2) |
0.17 kg / 172.0 g
1.7 N
|
| 5 mm | Stal (~0.2) |
0.06 kg / 60.0 g
0.6 N
|
| 10 mm | Stal (~0.2) |
0.01 kg / 6.0 g
0.1 N
|
| 15 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
| 20 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
| 30 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
Tabela 3: Montaż pionowy (poślizg) - zachowanie na śliskim podłożu
MPL 10x10x4 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
0.93 kg / 930.0 g
9.1 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
0.62 kg / 620.0 g
6.1 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
0.31 kg / 310.0 g
3.0 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
1.55 kg / 1550.0 g
15.2 N
|
Tabela 4: Efektywność materiałowa (wpływ podłoża) - straty mocy
MPL 10x10x4 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg) |
|---|---|---|
| 0.5 mm |
|
0.31 kg / 310.0 g
3.0 N
|
| 1 mm |
|
0.78 kg / 775.0 g
7.6 N
|
| 2 mm |
|
1.55 kg / 1550.0 g
15.2 N
|
| 5 mm |
|
3.10 kg / 3100.0 g
30.4 N
|
| 10 mm |
|
3.10 kg / 3100.0 g
30.4 N
|
Tabela 5: Praca w cieple (zachowanie materiału) - próg odporności
MPL 10x10x4 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig | Status |
|---|---|---|---|
| 20 °C | 0.0% |
3.10 kg / 3100.0 g
30.4 N
|
OK |
| 40 °C | -2.2% |
3.03 kg / 3031.8 g
29.7 N
|
OK |
| 60 °C | -4.4% |
2.96 kg / 2963.6 g
29.1 N
|
|
| 80 °C | -6.6% |
2.90 kg / 2895.4 g
28.4 N
|
|
| 100 °C | -28.8% |
2.21 kg / 2207.2 g
21.7 N
|
Tabela 6: Dwa magnesy (odpychanie) - siły w układzie
MPL 10x10x4 / N38
| Szczelina (mm) | Przyciąganie (kg) (N-S) | Odpychanie (kg) (N-N) |
|---|---|---|
| 0 mm |
8.02 kg / 8019 g
78.7 N
5 067 Gs
|
N/A |
| 1 mm |
6.85 kg / 6852 g
67.2 N
6 667 Gs
|
6.17 kg / 6167 g
60.5 N
~0 Gs
|
| 2 mm |
5.68 kg / 5679 g
55.7 N
6 070 Gs
|
5.11 kg / 5111 g
50.1 N
~0 Gs
|
| 3 mm |
4.60 kg / 4600 g
45.1 N
5 463 Gs
|
4.14 kg / 4140 g
40.6 N
~0 Gs
|
| 5 mm |
2.87 kg / 2868 g
28.1 N
4 313 Gs
|
2.58 kg / 2581 g
25.3 N
~0 Gs
|
| 10 mm |
0.78 kg / 783 g
7.7 N
2 254 Gs
|
0.70 kg / 705 g
6.9 N
~0 Gs
|
| 20 mm |
0.07 kg / 74 g
0.7 N
695 Gs
|
0.07 kg / 67 g
0.7 N
~0 Gs
|
| 50 mm |
0.00 kg / 1 g
0.0 N
76 Gs
|
0.00 kg / 0 g
0.0 N
~0 Gs
|
Tabela 7: Bezpieczeństwo (BHP) (implanty) - ostrzeżenia
MPL 10x10x4 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 5.5 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 4.5 cm |
| Zegarek mechaniczny | 20 Gs (2.0 mT) | 3.5 cm |
| Urządzenie mobilne | 40 Gs (4.0 mT) | 2.5 cm |
| Kluczyk samochodowy | 50 Gs (5.0 mT) | 2.5 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 1.0 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 1.0 cm |
Tabela 8: Energia uderzenia (energia kinetyczna) - ostrzeżenie
MPL 10x10x4 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
32.61 km/h
(9.06 m/s)
|
0.12 J | |
| 30 mm |
56.15 km/h
(15.60 m/s)
|
0.36 J | |
| 50 mm |
72.49 km/h
(20.14 m/s)
|
0.61 J | |
| 100 mm |
102.52 km/h
(28.48 m/s)
|
1.22 J |
Tabela 9: Specyfikacja ochrony powierzchni
MPL 10x10x4 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
Tabela 10: Dane elektryczne (Strumień)
MPL 10x10x4 / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 3 760 Mx | 37.6 µWb |
| Współczynnik Pc | 0.46 | Niski (Płaski) |
Tabela 11: Hydrostatyka i wyporność
MPL 10x10x4 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 3.10 kg | Standard |
| Woda (dno rzeki) |
3.55 kg
(+0.45 kg Zysk z wyporności)
|
+14.5% |
1. Udźwig w pionie
*Ważne: Na pionowej ścianie magnes utrzyma tylko ok. 20-30% siły oderwania.
2. Nasycenie magnetyczne
*Zbyt cienki metal (np. blacha karoseryjna) wyraźnie osłabia udźwig magnesu.
3. Spadek mocy w temperaturze
*Dla standardowych magnesów krytyczny próg to 80°C.
4. Krzywa odmagnesowania i punkt pracy (B-H)
wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 0.46
Powyższy wykres prezentuje charakterystykę magnetyczną materiału w drugim kwadrancie pętli histerezy. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.
Skład chemiczny materiału
| żelazo (Fe) | 64% – 68% |
| neodym (Nd) | 29% – 32% |
| bor (B) | 1.1% – 1.2% |
| dysproz (Dy) | 0.5% – 2.0% |
| powłoka (Ni-Cu-Ni) | < 0.05% |
Zrównoważony rozwój
| recyklowalność (EoL) | 100% |
| surowce z recyklingu | ~10% (pre-cons) |
| ślad węglowy | low / zredukowany |
| kod odpadu (EWC) | 16 02 16 |
Sprawdź inne propozycje
Zalety oraz wady magnesów z neodymu Nd2Fe14B.
Mocne strony
- Utrzymują swoje właściwości przez lata – szacuje się, że po dekadzie słabną o symboliczny 1%.
- Są stabilne magnetycznie, gdyż wykazują wysoką odporność na zewnętrzne czynniki.
- Warstwa ochronna (np. niklowa) zapewnia im atrakcyjny wygląd, co podnosi ich walory wizualne.
- Wytwarzają skoncentrowane pole magnetyczne przy biegunach, co jest ich znakiem rozpoznawczym.
- Wersje specjalistyczne funkcjonują w temperaturach sięgających 230°C, zachowując swoje właściwości.
- Dają się łatwo formować do niestandardowych wymiarów, co ułatwia ich adaptację w skomplikowanych urządzeniach.
- Znajdują szerokie zastosowanie w przemyśle high-tech – od dysków twardych i silników, po zaawansowaną aparaturę medyczną.
- Moc w skali mikro – ich mała masa nie przeszkadza w generowaniu dużej siły przyciągania.
Słabe strony
- Pamiętaj o ich kruchości – bez odpowiedniej obudowy mogą pękać przy upadku na twarde podłoże.
- Wrażliwość na ciepło: przekroczenie 80°C może trwale osłabić magnes (zależnie od bryły). Rozwiązaniem są nasze magnesy wysokotemperaturowe [AH].
- Nie lubią wody – szybko rdzewieją. Jeśli planujesz montaż w ogrodzie, najlepszą opcją są magnesy w gumowej otulinie.
- Trudności montażowe: zamiast próbować robić otwory kruchy magnes, skorzystaj z uchwytów w stalowej obudowie, które posiadają gwinty.
- Zachowaj ostrożność – połknięcie magnesów przez dziecko to zagrożenie życia. Ponadto, ich obecność w ciele uniemożliwia diagnostykę obrazową.
- Wysoki koszt zakupu w porównaniu do tańszych zamienników to ich minus, szczególnie przy zakupach hurtowych.
Parametry udźwigu
Najlepsza nośność magnesu w idealnych parametrach – co ma na to wpływ?
- na bloku wykonanej ze stali miękkiej, doskonale skupiającej strumień magnetyczny
- o grubości przynajmniej 10 mm
- charakteryzującej się brakiem chropowatości
- bez najmniejszej warstwy izolującej pomiędzy magnesem a stalą
- dla siły przyłożonej pod kątem prostym (na odrywanie, nie zsuwanie)
- w temperaturze pokojowej
Udźwig w praktyce – czynniki wpływu
- Dystans (pomiędzy magnesem a metalem), gdyż nawet niewielka przerwa (np. 0,5 mm) skutkuje drastyczny spadek udźwigu nawet o 50% (dotyczy to także farby, rdzy czy zanieczyszczeń).
- Kierunek siły – pamiętaj, że magnes najmocniej trzyma prostopadle. Przy zsuwaniu w dół, siła trzymania spada drastycznie, często do poziomu 20-30% wartości maksymalnej.
- Grubość elementu – aby wykorzystać 100% mocy, stal musi być odpowiednio gruba. Blacha "papierowa" limituje siłę przyciągania (magnes „przebija” ją na wylot).
- Skład chemiczny podłoża – stal niskowęglowa daje najlepsze rezultaty. Większa zawartość węgla redukują właściwości magnetyczne i siłę trzymania.
- Stan powierzchni – powierzchnie gładkie zapewniają maksymalny styk, co poprawia nasycenie pola. Powierzchnie chropowate osłabiają chwyt.
- Czynnik termiczny – wysoka temperatura osłabia siłę przyciągania. Zbyt wysoka temperatura może trwale rozmagnesować magnes.
Siłę trzymania testowano na powierzchni blachy o grubości 20 mm, kiedy przyłożono siłę prostopadłą, natomiast przy próbie przesunięcia magnesu nośność jest mniejsza nawet pięciokrotnie. Co więcej, nawet drobny odstęp pomiędzy magnesem, a blachą redukuje nośność.
Zasady BHP dla użytkowników magnesów
Bezpieczny dystans
Zagrożenie dla danych: Magnesy neodymowe mogą zdegradować nośniki danych oraz urządzenia precyzyjne (implanty, aparaty słuchowe, zegarki mechaniczne).
Produkt nie dla dzieci
Produkt przeznaczony dla dorosłych. Małe elementy mogą zostać aspirrowane, co prowadzi do perforacji jelit. Trzymaj poza zasięgiem dzieci i zwierząt.
Dla uczulonych
Uwaga na nikiel: warstwa ochronna Ni-Cu-Ni ma w składzie nikiel. W przypadku pojawienia się świądu lub podrażnienia, należy natychmiast przerwać pracę z magnesami i zabezpieczyć dłonie.
Samozapłon
Zagrożenie pożarowe: Pył neodymowy jest wysoce łatwopalny. Nie modyfikuj mechanicznie magnesów w warunkach domowych, gdyż może to wywołać pożar.
Wrażliwość na ciepło
Monitoruj warunki termiczne. Ekspozycja magnesu powyżej 80 stopni Celsjusza zniszczy jego strukturę magnetyczną i udźwig.
Niebezpieczeństwo przytrzaśnięcia
Dbaj o palce. Dwa duże magnesy zderzą z ogromną prędkością z siłą wielu ton, miażdżąc wszystko na swojej drodze. Bądź ostrożny!
Rozprysk materiału
Spieki NdFeB to spiek proszkowy, co oznacza, że są bardzo kruche. Gwałtowne złączenie dwóch magnesów spowoduje ich rozpryśnięcie na ostre odłamki.
Bezpieczna praca
Zachowaj rozwagę. Magnesy neodymowe przyciągają z daleka i łączą się z ogromną siłą, często szybciej niż zdążysz zareagować.
Smartfony i tablety
Silne pole magnetyczne wpływa negatywnie na funkcjonowanie kompasów w telefonach i nawigacjach GPS. Zachowaj odstęp magnesów do smartfona, aby nie uszkodzić czujników.
Rozruszniki serca
Osoby z stymulatorem serca muszą zachować bezwzględny dystans od magnesów. Pole magnetyczne może zakłócić działanie implantu.
