MPL 10x10x4 / N38 - magnes neodymowy płytkowy
magnes neodymowy płytkowy
Numer katalogowy 020112
GTIN/EAN: 5906301811183
Długość
10 mm [±0,1 mm]
Szerokość
10 mm [±0,1 mm]
Wysokość
4 mm [±0,1 mm]
Waga
3 g
Kierunek magnesowania
↑ osiowy
Udźwig
3.10 kg / 30.39 N
Indukcja magnetyczna
360.85 mT / 3608 Gs
Powłoka
[NiCuNi] nikiel
1.538 ZŁ z VAT / szt. + cena za transport
1.250 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?
Dzwoń do nas
+48 888 99 98 98
albo napisz przez
formularz
na naszej stronie.
Masę i wygląd magnesów neodymowych testujesz u nas w
kalkulatorze mocy.
Wysyłka tego samego dnia dla zamówień do godz. 14:00.
Karta produktu - MPL 10x10x4 / N38 - magnes neodymowy płytkowy
Specyfikacja / charakterystyka - MPL 10x10x4 / N38 - magnes neodymowy płytkowy
| właściwości | wartości |
|---|---|
| Nr kat. | 020112 |
| GTIN/EAN | 5906301811183 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Długość | 10 mm [±0,1 mm] |
| Szerokość | 10 mm [±0,1 mm] |
| Wysokość | 4 mm [±0,1 mm] |
| Waga | 3 g |
| Kierunek magnesowania | ↑ osiowy |
| Udźwig ~ ? | 3.10 kg / 30.39 N |
| Indukcja magnetyczna ~ ? | 360.85 mT / 3608 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [min. - maks.] ? | 12.2-12.6 | kGs |
| remanencja Br [min. - maks.] ? | 1220-1260 | mT |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [min. - maks.] ? | 36-38 | BH max MGOe |
| gęstość energii [min. - maks.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Temperatura Curie TC | 312 - 380 | °C |
| Temperatura Curie TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅cm |
| Siła wyginania | 250 | MPa |
| Wytrzymałość na ściskanie | 1000~1100 | MPa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 10-6 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Analiza inżynierska magnesu neodymowego - parametry techniczne
Niniejsze wartości stanowią wynik kalkulacji fizycznej. Wyniki bazują na modelach dla klasy Nd2Fe14B. Rzeczywiste osiągi mogą nieznacznie odbiegać od wyników symulacji. Prosimy traktować te dane jako punkt odniesienia dla projektantów.
Tabela 1: Siła prostopadła statyczna (udźwig vs odległość) - charakterystyka
MPL 10x10x4 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg/lbs/g/N) | Status ryzyka |
|---|---|---|---|
| 0 mm |
3606 Gs
360.6 mT
|
3.10 kg / 6.83 lbs
3100.0 g / 30.4 N
|
średnie ryzyko |
| 1 mm |
3035 Gs
303.5 mT
|
2.20 kg / 4.84 lbs
2195.5 g / 21.5 N
|
średnie ryzyko |
| 2 mm |
2436 Gs
243.6 mT
|
1.41 kg / 3.12 lbs
1413.8 g / 13.9 N
|
niskie ryzyko |
| 3 mm |
1900 Gs
190.0 mT
|
0.86 kg / 1.90 lbs
860.8 g / 8.4 N
|
niskie ryzyko |
| 5 mm |
1127 Gs
112.7 mT
|
0.30 kg / 0.67 lbs
302.7 g / 3.0 N
|
niskie ryzyko |
| 10 mm |
347 Gs
34.7 mT
|
0.03 kg / 0.06 lbs
28.8 g / 0.3 N
|
niskie ryzyko |
| 15 mm |
140 Gs
14.0 mT
|
0.00 kg / 0.01 lbs
4.6 g / 0.0 N
|
niskie ryzyko |
| 20 mm |
68 Gs
6.8 mT
|
0.00 kg / 0.00 lbs
1.1 g / 0.0 N
|
niskie ryzyko |
| 30 mm |
23 Gs
2.3 mT
|
0.00 kg / 0.00 lbs
0.1 g / 0.0 N
|
niskie ryzyko |
| 50 mm |
6 Gs
0.6 mT
|
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
niskie ryzyko |
Tabela 2: Równoległa siła zsuwania (pion)
MPL 10x10x4 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg/lbs/g/N) |
|---|---|---|
| 0 mm | Stal (~0.2) |
0.62 kg / 1.37 lbs
620.0 g / 6.1 N
|
| 1 mm | Stal (~0.2) |
0.44 kg / 0.97 lbs
440.0 g / 4.3 N
|
| 2 mm | Stal (~0.2) |
0.28 kg / 0.62 lbs
282.0 g / 2.8 N
|
| 3 mm | Stal (~0.2) |
0.17 kg / 0.38 lbs
172.0 g / 1.7 N
|
| 5 mm | Stal (~0.2) |
0.06 kg / 0.13 lbs
60.0 g / 0.6 N
|
| 10 mm | Stal (~0.2) |
0.01 kg / 0.01 lbs
6.0 g / 0.1 N
|
| 15 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
| 20 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
| 30 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
Tabela 3: Siła na ścianie (poślizg) - udźwig wertykalny
MPL 10x10x4 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg/lbs/g/N) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
0.93 kg / 2.05 lbs
930.0 g / 9.1 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
0.62 kg / 1.37 lbs
620.0 g / 6.1 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
0.31 kg / 0.68 lbs
310.0 g / 3.0 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
1.55 kg / 3.42 lbs
1550.0 g / 15.2 N
|
Tabela 4: Efektywność materiałowa (nasycenie) - straty mocy
MPL 10x10x4 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg/lbs/g/N) |
|---|---|---|
| 0.5 mm |
|
0.31 kg / 0.68 lbs
310.0 g / 3.0 N
|
| 1 mm |
|
0.78 kg / 1.71 lbs
775.0 g / 7.6 N
|
| 2 mm |
|
1.55 kg / 3.42 lbs
1550.0 g / 15.2 N
|
| 3 mm |
|
2.33 kg / 5.13 lbs
2325.0 g / 22.8 N
|
| 5 mm |
|
3.10 kg / 6.83 lbs
3100.0 g / 30.4 N
|
| 10 mm |
|
3.10 kg / 6.83 lbs
3100.0 g / 30.4 N
|
| 11 mm |
|
3.10 kg / 6.83 lbs
3100.0 g / 30.4 N
|
| 12 mm |
|
3.10 kg / 6.83 lbs
3100.0 g / 30.4 N
|
Tabela 5: Stabilność termiczna (stabilność) - próg odporności
MPL 10x10x4 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig (kg/lbs/g/N) | Status |
|---|---|---|---|
| 20 °C | 0.0% |
3.10 kg / 6.83 lbs
3100.0 g / 30.4 N
|
OK |
| 40 °C | -2.2% |
3.03 kg / 6.68 lbs
3031.8 g / 29.7 N
|
OK |
| 60 °C | -4.4% |
2.96 kg / 6.53 lbs
2963.6 g / 29.1 N
|
|
| 80 °C | -6.6% |
2.90 kg / 6.38 lbs
2895.4 g / 28.4 N
|
|
| 100 °C | -28.8% |
2.21 kg / 4.87 lbs
2207.2 g / 21.7 N
|
Tabela 6: Dwa magnesy (przyciąganie) - zasięg pola
MPL 10x10x4 / N38
| Szczelina (mm) | Przyciąganie (kg/lbs) (N-S) | Siła ścinająca (kg/lbs/g/N) | Odpychanie (kg/lbs) (N-N) |
|---|---|---|---|
| 0 mm |
8.02 kg / 17.68 lbs
5 067 Gs
|
1.20 kg / 2.65 lbs
1203 g / 11.8 N
|
N/A |
| 1 mm |
6.85 kg / 15.11 lbs
6 667 Gs
|
1.03 kg / 2.27 lbs
1028 g / 10.1 N
|
6.17 kg / 13.59 lbs
~0 Gs
|
| 2 mm |
5.68 kg / 12.52 lbs
6 070 Gs
|
0.85 kg / 1.88 lbs
852 g / 8.4 N
|
5.11 kg / 11.27 lbs
~0 Gs
|
| 3 mm |
4.60 kg / 10.14 lbs
5 463 Gs
|
0.69 kg / 1.52 lbs
690 g / 6.8 N
|
4.14 kg / 9.13 lbs
~0 Gs
|
| 5 mm |
2.87 kg / 6.32 lbs
4 313 Gs
|
0.43 kg / 0.95 lbs
430 g / 4.2 N
|
2.58 kg / 5.69 lbs
~0 Gs
|
| 10 mm |
0.78 kg / 1.73 lbs
2 254 Gs
|
0.12 kg / 0.26 lbs
117 g / 1.2 N
|
0.70 kg / 1.55 lbs
~0 Gs
|
| 20 mm |
0.07 kg / 0.16 lbs
695 Gs
|
0.01 kg / 0.02 lbs
11 g / 0.1 N
|
0.07 kg / 0.15 lbs
~0 Gs
|
| 50 mm |
0.00 kg / 0.00 lbs
76 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 60 mm |
0.00 kg / 0.00 lbs
46 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 70 mm |
0.00 kg / 0.00 lbs
30 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 80 mm |
0.00 kg / 0.00 lbs
21 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 90 mm |
0.00 kg / 0.00 lbs
15 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 100 mm |
0.00 kg / 0.00 lbs
11 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
Tabela 7: Bezpieczeństwo (BHP) (elektronika) - ostrzeżenia
MPL 10x10x4 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 5.5 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 4.5 cm |
| Zegarek mechaniczny | 20 Gs (2.0 mT) | 3.5 cm |
| Telefon / Smartfon | 40 Gs (4.0 mT) | 2.5 cm |
| Immobilizer | 50 Gs (5.0 mT) | 2.5 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 1.0 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 1.0 cm |
Tabela 8: Dynamika (energia kinetyczna) - skutki zderzenia
MPL 10x10x4 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
32.61 km/h
(9.06 m/s)
|
0.12 J | |
| 30 mm |
56.15 km/h
(15.60 m/s)
|
0.36 J | |
| 50 mm |
72.49 km/h
(20.14 m/s)
|
0.61 J | |
| 100 mm |
102.52 km/h
(28.48 m/s)
|
1.22 J |
Tabela 9: Trwałość powłoki antykorozyjnej
MPL 10x10x4 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
Tabela 10: Dane elektryczne (Flux)
MPL 10x10x4 / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 3 760 Mx | 37.6 µWb |
| Współczynnik Pc | 0.46 | Niski (Płaski) |
Tabela 11: Hydrostatyka i wyporność
MPL 10x10x4 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 3.10 kg | Standard |
| Woda (dno rzeki) |
3.55 kg
(+0.45 kg zysk z wyporności)
|
+14.5% |
1. Siła zsuwająca
*Uwaga: Na pionowej ścianie magnes utrzyma tylko ok. 20-30% nominalnego udźwigu.
2. Grubość podłoża
*Zbyt cienki metal (np. blacha karoseryjna) znacząco redukuje siłę trzymania.
3. Spadek mocy w temperaturze
*W klasie N38 granica bezpieczeństwa to 80°C.
4. Krzywa odmagnesowania i punkt pracy (B-H)
wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 0.46
Niniejsza symulacja obrazuje stabilność magnetyczną wybranego magnesu w konkretnych warunkach geometrycznych. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.
Skład chemiczny materiału
| żelazo (Fe) | 64% – 68% |
| neodym (Nd) | 29% – 32% |
| bor (B) | 1.1% – 1.2% |
| dysproz (Dy) | 0.5% – 2.0% |
| powłoka (Ni-Cu-Ni) | < 0.05% |
Ekologia i recykling (GPSR)
| recyklowalność (EoL) | 100% |
| surowce z recyklingu | ~10% (pre-cons) |
| ślad węglowy | low / zredukowany |
| kod odpadu (EWC) | 16 02 16 |
Sprawdź inne produkty
Wady oraz zalety neodymowych magnesów Nd2Fe14B.
Mocne strony
- Utrzymują swoje właściwości przez lata – szacuje się, że po dekadzie tracą na sile o symboliczny 1%.
- Są stabilne magnetycznie, gdyż wykazują potężną odporność na zewnętrzne czynniki.
- Dzięki powłoce (NiCuNi, złoto, srebro) mają nowoczesny, błyszczący wygląd.
- Indukcja magnetyczna na powierzchni tych magnesów jest imponująca, co czyni je najwydajniejszymi w swojej klasie.
- Odpowiedni skład sprawia, że są odporne na wysokie temperatury (zależnie od kształtu, nawet do 230°C).
- Duża swoboda w doborze kształtu i wymiaru to ich ogromny plus w inżynierii.
- Pełnią kluczową rolę w przemyśle, będąc sercem silników, dysków i urządzeń ratujących życie.
- Mały rozmiar, wielka moc – przy niewielkich gabarytach oferują ogromną siłę, co jest kluczowe przy miniaturyzacji.
Minusy
- Pamiętaj o ich kruchości – bez zabezpieczenia mogą pękać przy upadku na twarde podłoże.
- Ograniczenia termiczne – dla zwykłych magnesów limit to 80°C. W gorącym środowisku (do 230°C) należy używać modele z oznaczeniem [AH].
- Wilgoć powoduje korozję w kontakcie z wodą. Na zewnątrz konieczne jest użycie magnesów wodoszczelnych (np. w gumie).
- Obróbka jest trudna – wykonanie gwintu w samym magnesie jest ryzykowne. Lepiej wybrać gotowe uchwyty magnetyczne (magnes w obudowie).
- Dbaj o bezpieczeństwo – połknięcie magnesów przez dziecko to zagrożenie życia. Ponadto, ich obecność w ciele komplikuje diagnostykę obrazową.
- Cena – są droższe niż magnesy ferrytowe, co przy produkcji masowej może być barierą.
Charakterystyka udźwigu
Optymalny udźwig magnesu neodymowego – co się na to składa?
- z użyciem podłoża ze stali niskowęglowej, działającej jako element zamykający obwód
- posiadającej masywność minimum 10 mm dla pełnego zamknięcia strumienia
- o idealnie gładkiej powierzchni styku
- bez żadnej szczeliny pomiędzy magnesem a stalą
- podczas odrywania w kierunku pionowym do powierzchni mocowania
- przy temperaturze otoczenia pokojowej
Co wpływa na udźwig w praktyce
- Przerwa między powierzchniami – każdy milimetr odległości (spowodowany np. okleiną lub nierównością) znacząco osłabia siłę przyciągania, często o połowę przy zaledwie 0,5 mm.
- Kierunek siły – deklarowany udźwig dotyczy ciągnięcia w pionie. Przy ześlizgiwaniu, magnes trzyma dużo słabiej (często ok. 20-30% siły nominalnej).
- Grubość ścianki – cienki materiał nie pozwala na pełne wykorzystanie magnesu. Część pola magnetycznego przenika na wylot, zamiast zamienić się w udźwig.
- Gatunek stali – najlepszym wyborem jest czysta stal żelazna. Stale nierdzewne mogą mieć gorsze właściwości magnetyczne.
- Faktura blachy – szlifowane elementy zapewniają maksymalny styk, co poprawia siłę. Powierzchnie chropowate osłabiają chwyt.
- Czynnik termiczny – gorące środowisko osłabia pole magnetyczne. Przekroczenie temperatury granicznej może trwale uszkodzić magnes.
Siłę trzymania testowano na powierzchni blachy o grubości 20 mm, kiedy przyłożono siłę prostopadłą, z kolei przy działaniu siły na zsuwanie udźwig jest mniejszy nawet 5 razy. Ponadto, nawet niewielka szczelina między powierzchnią magnesu, a blachą zmniejsza nośność.
Instrukcja bezpiecznej obsługi magnesów
Ryzyko złamań
Silne magnesy mogą zdruzgotać palce błyskawicznie. Pod żadnym pozorem wkładaj dłoni pomiędzy dwa przyciągające się elementy.
Nie lekceważ mocy
Przed użyciem, zapoznaj się z zasadami. Niekontrolowane przyciągnięcie może zniszczyć magnes lub uszkodzić palce. Myśl o krok do przodu.
Produkt nie dla dzieci
Magnesy neodymowe to nie zabawki. Przypadkowe zjedzenie dwóch lub więcej magnesów może skutkować ich przyciągnięciem przez ścianki jelit, co stwarza śmiertelne niebezpieczeństwo i wiąże się z koniecznością pilnej interwencji chirurgicznej.
Temperatura pracy
Unikaj gorąca. Magnesy neodymowe są wrażliwe na temperaturę. Jeśli potrzebujesz odporności powyżej 80°C, zapytaj nas o specjalne serie wysokotemperaturowe (H, SH, UH).
Niebezpieczeństwo dla rozruszników
Ostrzeżenie dla sercowców: Silne pole magnetyczne zakłóca urządzenia medyczne. Zachowaj co najmniej 30 cm odstępu lub zleć komuś innemu obsługę magnesów.
Dla uczulonych
Informacja alergiczna: powłoka Ni-Cu-Ni zawiera nikiel. W przypadku pojawienia się świądu lub podrażnienia, należy bezzwłocznie przerwać pracę z magnesami i zabezpieczyć dłonie.
Ryzyko pęknięcia
Magnesy neodymowe to materiał ceramiczny, co oznacza, że są podatne na pęknięcia. Zderzenie dwóch magnesów wywoła ich pęknięcie na drobne kawałki.
Zagrożenie wybuchem pyłu
Ryzyko wybuchu: Pył neodymowy jest skrajnie łatwopalny. Nie poddawaj magnesów obróbce amatorsko, gdyż grozi to zapłonem.
Trzymaj z dala od elektroniki
Ważna informacja: magnesy neodymowe wytwarzają pole, które dezorientują systemy nawigacji. Zachowaj bezpieczny dystans od telefonu, tabletu i nawigacji.
Pole magnetyczne a elektronika
Bezpieczeństwo sprzętu: Magnesy neodymowe mogą zdegradować nośniki danych oraz delikatną elektronikę (implanty, aparaty słuchowe, zegarki mechaniczne).
