MW 20x18 / N38 - magnes neodymowy walcowy
magnes neodymowy walcowy
Numer katalogowy 010040
GTIN/EAN: 5906301810391
Średnica Ø
20 mm [±0,1 mm]
Wysokość
18 mm [±0,1 mm]
Waga
42.41 g
Kierunek magnesowania
↑ osiowy
Udźwig
13.19 kg / 129.35 N
Indukcja magnetyczna
541.64 mT / 5416 Gs
Powłoka
[NiCuNi] nikiel
23.54 ZŁ z VAT / szt. + cena za transport
19.14 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?
Zadzwoń już teraz
+48 22 499 98 98
lub pisz przez
formularz zgłoszeniowy
na naszej stronie.
Udźwig a także budowę magnesów obliczysz dzięki naszemu
kalkulatorze masy magnetycznej.
Realizacja tego samego dnia przy zamówieniu do 14:00.
Specyfikacja produktu - MW 20x18 / N38 - magnes neodymowy walcowy
Specyfikacja / charakterystyka - MW 20x18 / N38 - magnes neodymowy walcowy
| właściwości | wartości |
|---|---|
| Nr kat. | 010040 |
| GTIN/EAN | 5906301810391 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Średnica Ø | 20 mm [±0,1 mm] |
| Wysokość | 18 mm [±0,1 mm] |
| Waga | 42.41 g |
| Kierunek magnesowania | ↑ osiowy |
| Udźwig ~ ? | 13.19 kg / 129.35 N |
| Indukcja magnetyczna ~ ? | 541.64 mT / 5416 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [min. - maks.] ? | 12.2-12.6 | kGs |
| remanencja Br [min. - maks.] ? | 1220-1260 | mT |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [min. - maks.] ? | 36-38 | BH max MGOe |
| gęstość energii [min. - maks.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Temperatura Curie TC | 312 - 380 | °C |
| Temperatura Curie TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅cm |
| Siła wyginania | 250 | MPa |
| Wytrzymałość na ściskanie | 1000~1100 | MPa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 10-6 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Analiza techniczna magnesu - parametry techniczne
Przedstawione wartości stanowią bezpośredni efekt analizy fizycznej. Wyniki bazują na algorytmach dla materiału Nd2Fe14B. Realne osiągi mogą nieznacznie się różnić. Traktuj te dane jako wstępny drogowskaz dla projektantów.
Tabela 1: Siła prostopadła statyczna (siła vs odległość) - charakterystyka
MW 20x18 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg/lbs/g/N) | Status ryzyka |
|---|---|---|---|
| 0 mm |
5414 Gs
541.4 mT
|
13.19 kg / 29.08 lbs
13190.0 g / 129.4 N
|
miażdżący |
| 1 mm |
4870 Gs
487.0 mT
|
10.67 kg / 23.52 lbs
10669.5 g / 104.7 N
|
miażdżący |
| 2 mm |
4330 Gs
433.0 mT
|
8.43 kg / 18.59 lbs
8434.2 g / 82.7 N
|
uwaga |
| 3 mm |
3816 Gs
381.6 mT
|
6.55 kg / 14.45 lbs
6552.7 g / 64.3 N
|
uwaga |
| 5 mm |
2913 Gs
291.3 mT
|
3.82 kg / 8.42 lbs
3818.4 g / 37.5 N
|
uwaga |
| 10 mm |
1455 Gs
145.5 mT
|
0.95 kg / 2.10 lbs
952.2 g / 9.3 N
|
niskie ryzyko |
| 15 mm |
775 Gs
77.5 mT
|
0.27 kg / 0.60 lbs
270.1 g / 2.7 N
|
niskie ryzyko |
| 20 mm |
450 Gs
45.0 mT
|
0.09 kg / 0.20 lbs
91.3 g / 0.9 N
|
niskie ryzyko |
| 30 mm |
188 Gs
18.8 mT
|
0.02 kg / 0.04 lbs
15.9 g / 0.2 N
|
niskie ryzyko |
| 50 mm |
54 Gs
5.4 mT
|
0.00 kg / 0.00 lbs
1.3 g / 0.0 N
|
niskie ryzyko |
Tabela 2: Równoległa siła zsuwania (ściana)
MW 20x18 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg/lbs/g/N) |
|---|---|---|
| 0 mm | Stal (~0.2) |
2.64 kg / 5.82 lbs
2638.0 g / 25.9 N
|
| 1 mm | Stal (~0.2) |
2.13 kg / 4.70 lbs
2134.0 g / 20.9 N
|
| 2 mm | Stal (~0.2) |
1.69 kg / 3.72 lbs
1686.0 g / 16.5 N
|
| 3 mm | Stal (~0.2) |
1.31 kg / 2.89 lbs
1310.0 g / 12.9 N
|
| 5 mm | Stal (~0.2) |
0.76 kg / 1.68 lbs
764.0 g / 7.5 N
|
| 10 mm | Stal (~0.2) |
0.19 kg / 0.42 lbs
190.0 g / 1.9 N
|
| 15 mm | Stal (~0.2) |
0.05 kg / 0.12 lbs
54.0 g / 0.5 N
|
| 20 mm | Stal (~0.2) |
0.02 kg / 0.04 lbs
18.0 g / 0.2 N
|
| 30 mm | Stal (~0.2) |
0.00 kg / 0.01 lbs
4.0 g / 0.0 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
Tabela 3: Siła na ścianie (poślizg) - zachowanie na śliskim podłożu
MW 20x18 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg/lbs/g/N) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
3.96 kg / 8.72 lbs
3957.0 g / 38.8 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
2.64 kg / 5.82 lbs
2638.0 g / 25.9 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
1.32 kg / 2.91 lbs
1319.0 g / 12.9 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
6.60 kg / 14.54 lbs
6595.0 g / 64.7 N
|
Tabela 4: Grubość stali (nasycenie) - dobór blachy
MW 20x18 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg/lbs/g/N) |
|---|---|---|
| 0.5 mm |
|
0.66 kg / 1.45 lbs
659.5 g / 6.5 N
|
| 1 mm |
|
1.65 kg / 3.63 lbs
1648.8 g / 16.2 N
|
| 2 mm |
|
3.30 kg / 7.27 lbs
3297.5 g / 32.3 N
|
| 3 mm |
|
4.95 kg / 10.90 lbs
4946.3 g / 48.5 N
|
| 5 mm |
|
8.24 kg / 18.17 lbs
8243.8 g / 80.9 N
|
| 10 mm |
|
13.19 kg / 29.08 lbs
13190.0 g / 129.4 N
|
| 11 mm |
|
13.19 kg / 29.08 lbs
13190.0 g / 129.4 N
|
| 12 mm |
|
13.19 kg / 29.08 lbs
13190.0 g / 129.4 N
|
Tabela 5: Wytrzymałość temperaturowa (stabilność) - próg odporności
MW 20x18 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig (kg/lbs/g/N) | Status |
|---|---|---|---|
| 20 °C | 0.0% |
13.19 kg / 29.08 lbs
13190.0 g / 129.4 N
|
OK |
| 40 °C | -2.2% |
12.90 kg / 28.44 lbs
12899.8 g / 126.5 N
|
OK |
| 60 °C | -4.4% |
12.61 kg / 27.80 lbs
12609.6 g / 123.7 N
|
OK |
| 80 °C | -6.6% |
12.32 kg / 27.16 lbs
12319.5 g / 120.9 N
|
|
| 100 °C | -28.8% |
9.39 kg / 20.70 lbs
9391.3 g / 92.1 N
|
Tabela 6: Interakcja magnes-magnes (odpychanie) - zasięg pola
MW 20x18 / N38
| Szczelina (mm) | Przyciąganie (kg/lbs) (N-S) | Opór ścinania (kg/lbs/g/N) | Odpychanie (kg/lbs) (N-N) |
|---|---|---|---|
| 0 mm |
56.78 kg / 125.17 lbs
5 968 Gs
|
8.52 kg / 18.78 lbs
8516 g / 83.5 N
|
N/A |
| 1 mm |
51.26 kg / 113.01 lbs
10 289 Gs
|
7.69 kg / 16.95 lbs
7689 g / 75.4 N
|
46.13 kg / 101.71 lbs
~0 Gs
|
| 2 mm |
45.93 kg / 101.25 lbs
9 739 Gs
|
6.89 kg / 15.19 lbs
6889 g / 67.6 N
|
41.33 kg / 91.13 lbs
~0 Gs
|
| 3 mm |
40.93 kg / 90.24 lbs
9 194 Gs
|
6.14 kg / 13.54 lbs
6140 g / 60.2 N
|
36.84 kg / 81.22 lbs
~0 Gs
|
| 5 mm |
32.06 kg / 70.68 lbs
8 137 Gs
|
4.81 kg / 10.60 lbs
4809 g / 47.2 N
|
28.86 kg / 63.62 lbs
~0 Gs
|
| 10 mm |
16.44 kg / 36.24 lbs
5 826 Gs
|
2.47 kg / 5.44 lbs
2465 g / 24.2 N
|
14.79 kg / 32.61 lbs
~0 Gs
|
| 20 mm |
4.10 kg / 9.04 lbs
2 909 Gs
|
0.61 kg / 1.36 lbs
615 g / 6.0 N
|
3.69 kg / 8.13 lbs
~0 Gs
|
| 50 mm |
0.15 kg / 0.34 lbs
565 Gs
|
0.02 kg / 0.05 lbs
23 g / 0.2 N
|
0.14 kg / 0.31 lbs
~0 Gs
|
| 60 mm |
0.07 kg / 0.15 lbs
376 Gs
|
0.01 kg / 0.02 lbs
10 g / 0.1 N
|
0.06 kg / 0.14 lbs
~0 Gs
|
| 70 mm |
0.03 kg / 0.07 lbs
262 Gs
|
0.00 kg / 0.01 lbs
5 g / 0.0 N
|
0.03 kg / 0.07 lbs
~0 Gs
|
| 80 mm |
0.02 kg / 0.04 lbs
190 Gs
|
0.00 kg / 0.01 lbs
3 g / 0.0 N
|
0.02 kg / 0.03 lbs
~0 Gs
|
| 90 mm |
0.01 kg / 0.02 lbs
142 Gs
|
0.00 kg / 0.00 lbs
1 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 100 mm |
0.01 kg / 0.01 lbs
109 Gs
|
0.00 kg / 0.00 lbs
1 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
Tabela 7: Bezpieczeństwo (BHP) (elektronika) - środki ostrożności
MW 20x18 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 12.5 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 9.5 cm |
| Zegarek mechaniczny | 20 Gs (2.0 mT) | 7.5 cm |
| Telefon / Smartfon | 40 Gs (4.0 mT) | 6.0 cm |
| Pilot do auta | 50 Gs (5.0 mT) | 5.5 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 2.5 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 2.0 cm |
Tabela 8: Energia uderzenia (ryzyko pęknięcia) - ostrzeżenie
MW 20x18 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
18.57 km/h
(5.16 m/s)
|
0.56 J | |
| 30 mm |
30.83 km/h
(8.56 m/s)
|
1.56 J | |
| 50 mm |
39.77 km/h
(11.05 m/s)
|
2.59 J | |
| 100 mm |
56.24 km/h
(15.62 m/s)
|
5.18 J |
Tabela 9: Specyfikacja ochrony powierzchni
MW 20x18 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
Tabela 10: Dane konstrukcyjne (Flux)
MW 20x18 / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 17 374 Mx | 173.7 µWb |
| Współczynnik Pc | 0.85 | Wysoki (Stabilny) |
Tabela 11: Praca w wodzie (Magnet Fishing)
MW 20x18 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 13.19 kg | Standard |
| Woda (dno rzeki) |
15.10 kg
(+1.91 kg zysk z wyporności)
|
+14.5% |
1. Ześlizg (ściana)
*Uwaga: Na pionowej ścianie magnes zachowa zaledwie ok. 20-30% siły prostopadłej.
2. Wpływ grubości blachy
*Zbyt cienki metal (np. obudowa PC 0.5mm) drastycznie redukuje udźwig magnesu.
3. Praca w cieple
*Dla materiału N38 granica bezpieczeństwa to 80°C.
4. Krzywa odmagnesowania i punkt pracy (B-H)
wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 0.85
Powyższy wykres prezentuje charakterystykę magnetyczną materiału w drugim kwadrancie pętli histerezy. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.
Skład chemiczny materiału
| żelazo (Fe) | 64% – 68% |
| neodym (Nd) | 29% – 32% |
| bor (B) | 1.1% – 1.2% |
| dysproz (Dy) | 0.5% – 2.0% |
| powłoka (Ni-Cu-Ni) | < 0.05% |
Dane środowiskowe
| recyklowalność (EoL) | 100% |
| surowce z recyklingu | ~10% (pre-cons) |
| ślad węglowy | low / zredukowany |
| kod odpadu (EWC) | 16 02 16 |
Zobacz też inne produkty
Zalety oraz wady neodymowych magnesów Nd2Fe14B.
Korzyści
- Ich parametry są stabilne w czasie; po 10 latach eksploatacji redukcja udźwigu to marginalne ~1%.
- Trudno je rozmagnesować, gdyż wykazują wysoką odporność na zewnętrzne czynniki.
- Dzięki powłoce (NiCuNi, Au, srebro) zyskują estetyczny, metaliczny wygląd.
- Indukcja magnetyczna na powierzchni tych magnesów jest imponująca, co czyni je najwydajniejszymi w swojej klasie.
- Wykazują imponującą wytrzymałość termiczną, co umożliwia ich stosowanie w warunkach do 230°C (dotyczy odpowiednich serii).
- Wszechstronność kształtowania – można je produkować w dowolnych formach, idealnych do wymagań klienta.
- Znajdują szerokie zastosowanie w nowoczesnej technice – od dysków twardych i motorów elektrycznych, po precyzyjną diagnostykę.
- Dzięki kompaktowości, nie wymagają dużej przestrzeni, a jednocześnie gwarantują wysoką skuteczność.
Wady
- Ze względu na brak elastyczności, trzeba się z nimi obchodzić delikatnie. Silne uderzenie może je zniszczyć, stąd zalecenie stosowania osłon.
- Uwaga na temperaturę – dla zwykłych magnesów limit to 80°C. W gorącym środowisku (do 230°C) należy używać modele z oznaczeniem [AH].
- Nie lubią wody – szybko rdzewieją. Jeśli planujesz montaż na dworze, najlepszą opcją są magnesy w plastikowej osłonie.
- Magnesy ciężko się obrabia – do montażu śrubowego przeznaczone są specjalne uchwyty magnetyczne z wbudowanym gwintem.
- Drobne magnesy to ryzyko – połknięcie wymaga interwencji chirurga. Mogą też być problemem przy diagnostyce MRI.
- Za jakość trzeba płacić – magnesy neodymowe są droższe od ceramicznych, co wpływa na budżet projektu.
Analiza siły trzymania
Maksymalny udźwig magnesu – co się na to składa?
- przy użyciu zwory ze stali niskowęglowej, gwarantującej maksymalne skupienie pola
- posiadającej masywność min. 10 mm dla pełnego zamknięcia strumienia
- charakteryzującej się równą strukturą
- bez żadnej szczeliny pomiędzy magnesem a stalą
- przy pionowym przyłożeniu siły odrywającej (kąt 90 stopni)
- w standardowej temperaturze otoczenia
Kluczowe elementy wpływające na udźwig
- Szczelina powietrzna (pomiędzy magnesem a metalem), ponieważ nawet bardzo mała przerwa (np. 0,5 mm) powoduje drastyczny spadek udźwigu nawet o 50% (dotyczy to także farby, korozji czy brudu).
- Sposób obciążenia – parametr katalogowy dotyczy odrywania w pionie. Przy ześlizgiwaniu, magnes trzyma znacznie mniejszą moc (często ok. 20-30% siły maksymalnej).
- Grubość podłoża – dla pełnej efektywności, stal musi być odpowiednio gruba. Cienka blacha ogranicza udźwig (magnes „przebija” ją na wylot).
- Materiał blachy – stal niskowęglowa daje najlepsze rezultaty. Większa zawartość węgla zmniejszają właściwości magnetyczne i siłę trzymania.
- Wykończenie powierzchni – pełny kontakt jest możliwy tylko na wypolerowanej stali. Chropowata faktura zmniejszają realną powierzchnię styku, redukując siłę.
- Wpływ temperatury – wysoka temperatura osłabia siłę przyciągania. Zbyt wysoka temperatura może trwale rozmagnesować magnes.
Udźwig mierzono stosując blachy o gładkiej powierzchni o właściwej grubości (min. 20 mm), przy prostopadłym działaniu siły odrywającej, jednak przy działaniu siły na zsuwanie siła trzymania jest mniejsza nawet pięciokrotnie. Co więcej, nawet niewielka szczelina pomiędzy magnesem, a blachą redukuje udźwig.
Zasady bezpieczeństwa pracy przy magnesach neodymowych
Alergia na nikiel
Powszechnie wiadomo, że nikiel (standardowe zabezpieczenie magnesów) jest częstą przyczyną uczuleń. Jeśli Twoja skóra źle reaguje na metale, wystrzegaj się trzymania magnesów gołą dłonią lub wybierz wersje w obudowie plastikowej.
Wpływ na zdrowie
Zagrożenie życia: Magnesy neodymowe mogą wyłączyć rozruszniki serca i defibrylatory. Unikaj kontaktu, jeśli posiadasz implanty elektroniczne.
Siła neodymu
Postępuj ostrożnie. Magnesy neodymowe działają z dużej odległości i zwierają z impetem, często szybciej niż zdążysz zareagować.
Elektronika precyzyjna
Moduły GPS i smartfony są niezwykle podatne na pole magnetyczne. Bliskie sąsiedztwo z silnym magnesem może zniszczyć sensory w Twoim telefonie.
Łatwopalność
Obróbka mechaniczna magnesów neodymowych grozi pożarem. Proszek magnetyczny utlenia się błyskawicznie z tlenem i jest niebezpieczny.
Ochrona oczu
Magnesy neodymowe to materiał ceramiczny, co oznacza, że są bardzo kruche. Gwałtowne złączenie dwóch magnesów wywoła ich pęknięcie na ostre odłamki.
Tylko dla dorosłych
Magnesy neodymowe nie służą do zabawy. Przypadkowe zjedzenie dwóch lub więcej magnesów może skutkować ich zaciśnięciem jelit, co stwarza śmiertelne niebezpieczeństwo i wymaga pilnej interwencji chirurgicznej.
Ryzyko złamań
Duże magnesy mogą połamać palce w ułamku sekundy. Nigdy wkładaj dłoni pomiędzy dwa przyciągające się elementy.
Limity termiczne
Monitoruj warunki termiczne. Ekspozycja magnesu powyżej 80 stopni Celsjusza zniszczy jego domenę magnetyczną i udźwig.
Urządzenia elektroniczne
Ochrona danych: Magnesy neodymowe mogą zdegradować karty bankomatowe oraz delikatną elektronikę (implanty, aparaty słuchowe, zegarki mechaniczne).
