MW 20x18 / N38 - magnes neodymowy walcowy
magnes neodymowy walcowy
Numer katalogowy 010040
GTIN/EAN: 5906301810391
Średnica Ø
20 mm [±0,1 mm]
Wysokość
18 mm [±0,1 mm]
Waga
42.41 g
Kierunek magnesowania
↑ osiowy
Udźwig
13.19 kg / 129.35 N
Indukcja magnetyczna
541.64 mT / 5416 Gs
Powłoka
[NiCuNi] nikiel
23.54 ZŁ z VAT / szt. + cena za transport
19.14 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?
Skontaktuj się z nami telefonicznie
+48 22 499 98 98
albo napisz za pomocą
nasz formularz online
w sekcji kontakt.
Moc oraz wygląd magnesu obliczysz dzięki naszemu
kalkulatorze siły.
Zamów do 14:00, a wyślemy dziś!
Szczegóły techniczne - MW 20x18 / N38 - magnes neodymowy walcowy
Specyfikacja / charakterystyka - MW 20x18 / N38 - magnes neodymowy walcowy
| właściwości | wartości |
|---|---|
| Nr kat. | 010040 |
| GTIN/EAN | 5906301810391 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Średnica Ø | 20 mm [±0,1 mm] |
| Wysokość | 18 mm [±0,1 mm] |
| Waga | 42.41 g |
| Kierunek magnesowania | ↑ osiowy |
| Udźwig ~ ? | 13.19 kg / 129.35 N |
| Indukcja magnetyczna ~ ? | 541.64 mT / 5416 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [min. - maks.] ? | 12.2-12.6 | kGs |
| remanencja Br [min. - maks.] ? | 1220-1260 | mT |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [min. - maks.] ? | 36-38 | BH max MGOe |
| gęstość energii [min. - maks.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Temperatura Curie TC | 312 - 380 | °C |
| Temperatura Curie TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅cm |
| Siła wyginania | 250 | MPa |
| Wytrzymałość na ściskanie | 1000~1100 | MPa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 10-6 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Analiza fizyczna magnesu neodymowego - raport
Przedstawione informacje stanowią bezpośredni efekt analizy inżynierskiej. Wartości oparte są na modelach dla materiału Nd2Fe14B. Rzeczywiste osiągi mogą nieznacznie się różnić. Traktuj te dane jako wstępny drogowskaz przy projektowaniu systemów.
Tabela 1: Siła prostopadła statyczna (siła vs dystans) - wykres oddziaływania
MW 20x18 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg/lbs/g/N) | Status ryzyka |
|---|---|---|---|
| 0 mm |
5414 Gs
541.4 mT
|
13.19 kg / 29.08 lbs
13190.0 g / 129.4 N
|
krytyczny poziom |
| 1 mm |
4870 Gs
487.0 mT
|
10.67 kg / 23.52 lbs
10669.5 g / 104.7 N
|
krytyczny poziom |
| 2 mm |
4330 Gs
433.0 mT
|
8.43 kg / 18.59 lbs
8434.2 g / 82.7 N
|
uwaga |
| 3 mm |
3816 Gs
381.6 mT
|
6.55 kg / 14.45 lbs
6552.7 g / 64.3 N
|
uwaga |
| 5 mm |
2913 Gs
291.3 mT
|
3.82 kg / 8.42 lbs
3818.4 g / 37.5 N
|
uwaga |
| 10 mm |
1455 Gs
145.5 mT
|
0.95 kg / 2.10 lbs
952.2 g / 9.3 N
|
bezpieczny |
| 15 mm |
775 Gs
77.5 mT
|
0.27 kg / 0.60 lbs
270.1 g / 2.7 N
|
bezpieczny |
| 20 mm |
450 Gs
45.0 mT
|
0.09 kg / 0.20 lbs
91.3 g / 0.9 N
|
bezpieczny |
| 30 mm |
188 Gs
18.8 mT
|
0.02 kg / 0.04 lbs
15.9 g / 0.2 N
|
bezpieczny |
| 50 mm |
54 Gs
5.4 mT
|
0.00 kg / 0.00 lbs
1.3 g / 0.0 N
|
bezpieczny |
Tabela 2: Siła równoległa obsunięcia (pion)
MW 20x18 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg/lbs/g/N) |
|---|---|---|
| 0 mm | Stal (~0.2) |
2.64 kg / 5.82 lbs
2638.0 g / 25.9 N
|
| 1 mm | Stal (~0.2) |
2.13 kg / 4.70 lbs
2134.0 g / 20.9 N
|
| 2 mm | Stal (~0.2) |
1.69 kg / 3.72 lbs
1686.0 g / 16.5 N
|
| 3 mm | Stal (~0.2) |
1.31 kg / 2.89 lbs
1310.0 g / 12.9 N
|
| 5 mm | Stal (~0.2) |
0.76 kg / 1.68 lbs
764.0 g / 7.5 N
|
| 10 mm | Stal (~0.2) |
0.19 kg / 0.42 lbs
190.0 g / 1.9 N
|
| 15 mm | Stal (~0.2) |
0.05 kg / 0.12 lbs
54.0 g / 0.5 N
|
| 20 mm | Stal (~0.2) |
0.02 kg / 0.04 lbs
18.0 g / 0.2 N
|
| 30 mm | Stal (~0.2) |
0.00 kg / 0.01 lbs
4.0 g / 0.0 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
Tabela 3: Montaż pionowy (ścinanie) - udźwig wertykalny
MW 20x18 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg/lbs/g/N) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
3.96 kg / 8.72 lbs
3957.0 g / 38.8 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
2.64 kg / 5.82 lbs
2638.0 g / 25.9 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
1.32 kg / 2.91 lbs
1319.0 g / 12.9 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
6.60 kg / 14.54 lbs
6595.0 g / 64.7 N
|
Tabela 4: Efektywność materiałowa (wpływ podłoża) - straty mocy
MW 20x18 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg/lbs/g/N) |
|---|---|---|
| 0.5 mm |
|
0.66 kg / 1.45 lbs
659.5 g / 6.5 N
|
| 1 mm |
|
1.65 kg / 3.63 lbs
1648.8 g / 16.2 N
|
| 2 mm |
|
3.30 kg / 7.27 lbs
3297.5 g / 32.3 N
|
| 3 mm |
|
4.95 kg / 10.90 lbs
4946.3 g / 48.5 N
|
| 5 mm |
|
8.24 kg / 18.17 lbs
8243.8 g / 80.9 N
|
| 10 mm |
|
13.19 kg / 29.08 lbs
13190.0 g / 129.4 N
|
| 11 mm |
|
13.19 kg / 29.08 lbs
13190.0 g / 129.4 N
|
| 12 mm |
|
13.19 kg / 29.08 lbs
13190.0 g / 129.4 N
|
Tabela 5: Stabilność termiczna (zachowanie materiału) - próg odporności
MW 20x18 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig (kg/lbs/g/N) | Status |
|---|---|---|---|
| 20 °C | 0.0% |
13.19 kg / 29.08 lbs
13190.0 g / 129.4 N
|
OK |
| 40 °C | -2.2% |
12.90 kg / 28.44 lbs
12899.8 g / 126.5 N
|
OK |
| 60 °C | -4.4% |
12.61 kg / 27.80 lbs
12609.6 g / 123.7 N
|
OK |
| 80 °C | -6.6% |
12.32 kg / 27.16 lbs
12319.5 g / 120.9 N
|
|
| 100 °C | -28.8% |
9.39 kg / 20.70 lbs
9391.3 g / 92.1 N
|
Tabela 6: Dwa magnesy (przyciąganie) - siły w układzie
MW 20x18 / N38
| Szczelina (mm) | Przyciąganie (kg/lbs) (N-S) | Siła ścinająca (kg/lbs/g/N) | Odpychanie (kg/lbs) (N-N) |
|---|---|---|---|
| 0 mm |
56.78 kg / 125.17 lbs
5 968 Gs
|
8.52 kg / 18.78 lbs
8516 g / 83.5 N
|
N/A |
| 1 mm |
51.26 kg / 113.01 lbs
10 289 Gs
|
7.69 kg / 16.95 lbs
7689 g / 75.4 N
|
46.13 kg / 101.71 lbs
~0 Gs
|
| 2 mm |
45.93 kg / 101.25 lbs
9 739 Gs
|
6.89 kg / 15.19 lbs
6889 g / 67.6 N
|
41.33 kg / 91.13 lbs
~0 Gs
|
| 3 mm |
40.93 kg / 90.24 lbs
9 194 Gs
|
6.14 kg / 13.54 lbs
6140 g / 60.2 N
|
36.84 kg / 81.22 lbs
~0 Gs
|
| 5 mm |
32.06 kg / 70.68 lbs
8 137 Gs
|
4.81 kg / 10.60 lbs
4809 g / 47.2 N
|
28.86 kg / 63.62 lbs
~0 Gs
|
| 10 mm |
16.44 kg / 36.24 lbs
5 826 Gs
|
2.47 kg / 5.44 lbs
2465 g / 24.2 N
|
14.79 kg / 32.61 lbs
~0 Gs
|
| 20 mm |
4.10 kg / 9.04 lbs
2 909 Gs
|
0.61 kg / 1.36 lbs
615 g / 6.0 N
|
3.69 kg / 8.13 lbs
~0 Gs
|
| 50 mm |
0.15 kg / 0.34 lbs
565 Gs
|
0.02 kg / 0.05 lbs
23 g / 0.2 N
|
0.14 kg / 0.31 lbs
~0 Gs
|
| 60 mm |
0.07 kg / 0.15 lbs
376 Gs
|
0.01 kg / 0.02 lbs
10 g / 0.1 N
|
0.06 kg / 0.14 lbs
~0 Gs
|
| 70 mm |
0.03 kg / 0.07 lbs
262 Gs
|
0.00 kg / 0.01 lbs
5 g / 0.0 N
|
0.03 kg / 0.07 lbs
~0 Gs
|
| 80 mm |
0.02 kg / 0.04 lbs
190 Gs
|
0.00 kg / 0.01 lbs
3 g / 0.0 N
|
0.02 kg / 0.03 lbs
~0 Gs
|
| 90 mm |
0.01 kg / 0.02 lbs
142 Gs
|
0.00 kg / 0.00 lbs
1 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 100 mm |
0.01 kg / 0.01 lbs
109 Gs
|
0.00 kg / 0.00 lbs
1 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
Tabela 7: Strefy ochronne (elektronika) - ostrzeżenia
MW 20x18 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 12.5 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 9.5 cm |
| Zegarek mechaniczny | 20 Gs (2.0 mT) | 7.5 cm |
| Telefon / Smartfon | 40 Gs (4.0 mT) | 6.0 cm |
| Pilot do auta | 50 Gs (5.0 mT) | 5.5 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 2.5 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 2.0 cm |
Tabela 8: Zderzenia (ryzyko pęknięcia) - ostrzeżenie
MW 20x18 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
18.57 km/h
(5.16 m/s)
|
0.56 J | |
| 30 mm |
30.83 km/h
(8.56 m/s)
|
1.56 J | |
| 50 mm |
39.77 km/h
(11.05 m/s)
|
2.59 J | |
| 100 mm |
56.24 km/h
(15.62 m/s)
|
5.18 J |
Tabela 9: Parametry powłoki (trwałość)
MW 20x18 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
Tabela 10: Dane elektryczne (Flux)
MW 20x18 / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 17 374 Mx | 173.7 µWb |
| Współczynnik Pc | 0.85 | Wysoki (Stabilny) |
Tabela 11: Zastosowanie podwodne
MW 20x18 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 13.19 kg | Standard |
| Woda (dno rzeki) |
15.10 kg
(+1.91 kg zysk z wyporności)
|
+14.5% |
1. Ześlizg (ściana)
*Uwaga: Na powierzchni pionowej magnes zachowa jedynie ~20-30% siły oderwania.
2. Wpływ grubości blachy
*Zbyt cienki metal (np. blacha karoseryjna) drastycznie redukuje siłę trzymania.
3. Wytrzymałość temperaturowa
*W klasie N38 krytyczny próg to 80°C.
4. Krzywa odmagnesowania i punkt pracy (B-H)
wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 0.85
Niniejsza symulacja obrazuje stabilność magnetyczną wybranego magnesu w konkretnych warunkach geometrycznych. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.
Analiza pierwiastkowa
| żelazo (Fe) | 64% – 68% |
| neodym (Nd) | 29% – 32% |
| bor (B) | 1.1% – 1.2% |
| dysproz (Dy) | 0.5% – 2.0% |
| powłoka (Ni-Cu-Ni) | < 0.05% |
Zrównoważony rozwój
| recyklowalność (EoL) | 100% |
| surowce z recyklingu | ~10% (pre-cons) |
| ślad węglowy | low / zredukowany |
| kod odpadu (EWC) | 16 02 16 |
Sprawdź inne oferty
Wady oraz zalety neodymowych magnesów Nd2Fe14B.
Zalety
- Długowieczność to ich atut – nawet po dekady spadek mocy wynosi tylko ~1% (wg testów).
- Są stabilne magnetycznie, gdyż wykazują wysoką odporność na pola rozmagnesowujące.
- Powłoka ochronna (np. niklowa) zapewnia im atrakcyjny wygląd, co podnosi ich walory wizualne.
- Generują niezwykle silne pole magnetyczne przy biegunach, co jest ich znakiem rozpoznawczym.
- Dzięki zaawansowanej technologii radzą sobie w temperaturach sięgających 230°C, zachowując swoje właściwości.
- Można je precyzyjnie obrabiać do niestandardowych wymiarów, co ułatwia ich adaptację w przemyśle.
- Pełnią kluczową rolę w rozwoju technologii, będąc sercem silników, dysków i urządzeń ratujących życie.
- Moc w skali mikro – ich mała masa nie przeszkadza w generowaniu dużej siły przyciągania.
Minusy
- Ze względu na kruchość, wymagają ostrożności. Gwałtowne złączenie może je zniszczyć, stąd rekomendacja stosowania osłon.
- Wysoka temperatura to wróg neodymów – powyżej 80°C tracą właściwości. Do zadań specjalnych polecamy serię [AH], działającą stabilnie aż do 230°C.
- Podatność na wilgoć skutkuje utlenianiem. Do zadań zewnętrznych rekomendujemy wyłącznie magnesy zabezpieczone antykorozyjnie (plastik/guma).
- Obróbka jest trudna – wiercenie otworów w samym magnesie jest ryzykowne. Lepiej wybrać gotowe uchwyty magnetyczne (magnes w obudowie).
- Produkt niebezpieczny po połknięciu. Bezwzględnie chronić przed dziećmi. Wewnątrz ciała magnesy mogą się połączyć, powodując uszkodzenia jelit.
- Wyższa cena w porównaniu do ferrytów to ich minus, szczególnie przy zakupach hurtowych.
Parametry udźwigu
Udźwig maksymalny dla magnesu neodymowego – od czego zależy?
- z zastosowaniem blachy ze miękkiej stali, działającej jako idealny przewodnik strumienia
- posiadającej grubość co najmniej 10 mm aby uniknąć nasycenia
- o wypolerowanej powierzchni styku
- przy całkowitym braku odstępu (bez zanieczyszczeń)
- dla siły przyłożonej pod kątem prostym (w osi magnesu)
- w standardowej temperaturze otoczenia
Co wpływa na udźwig w praktyce
- Odstęp (między magnesem a blachą), bowiem nawet bardzo mała odległość (np. 0,5 mm) może spowodować redukcję siły nawet o 50% (dotyczy to także lakieru, korozji czy zanieczyszczeń).
- Sposób obciążenia – deklarowany udźwig dotyczy ciągnięcia w pionie. Przy sile działającej równolegle, magnes wykazuje dużo słabiej (zazwyczaj ok. 20-30% siły nominalnej).
- Grubość podłoża – dla pełnej efektywności, stal musi być odpowiednio gruba. Blacha "papierowa" ogranicza siłę przyciągania (magnes „przebija” ją na wylot).
- Rodzaj materiału – idealnym podłożem jest czysta stal żelazna. Stale nierdzewne mogą przyciągać słabiej.
- Jakość powierzchni – im gładsza i bardziej polerowana blacha, tym lepsze przyleganie i silniejsze trzymanie. Chropowatość działają jak mikroszczeliny.
- Otoczenie termiczne – wzrost temperatury skutkuje osłabieniem indukcji. Warto sprawdzić maksymalną temperaturę pracy dla danego modelu.
Udźwig wyznaczano z wykorzystaniem wypolerowanej blachy o właściwej grubości (min. 20 mm), przy działaniu siły prostopadłej, natomiast przy działaniu siły na zsuwanie nośność jest mniejsza nawet pięciokrotnie. Dodatkowo, nawet drobny odstęp między powierzchnią magnesu, a blachą redukuje siłę trzymania.
BHP przy magnesach
Ogromna siła
Zachowaj rozwagę. Magnesy neodymowe działają z daleka i łączą się z impetem, często szybciej niż jesteś w stanie przewidzieć.
Smartfony i tablety
Silne pole magnetyczne wpływa negatywnie na działanie czujników w telefonach i urządzeniach lokalizacyjnych. Nie zbliżaj magnesów do smartfona, aby uniknąć awarii czujników.
Chronić przed dziećmi
Zawsze chroń magnesy przed najmłodszymi. Ryzyko zadławienia jest bardzo duże, a skutki połączenia się magnesów wewnątrz organizmu są dramatyczne.
Alergia na nikiel
Powszechnie wiadomo, że nikiel (typowe wykończenie magnesów) jest silnym alergenem. Jeśli masz uczulenie, unikaj kontaktu skóry z metalem lub zakup magnesy powlekane tworzywem.
Zagrożenie zapłonem
Pył generowany podczas obróbki magnesów jest wybuchowy. Zakaz wiercenia w magnesach w warunkach domowych.
Ochrona oczu
Chroń oczy. Magnesy mogą eksplodować przy gwałtownym złączeniu, rozrzucając ostre odłamki w powietrze. Ochrona wzroku wymagana.
Niebezpieczeństwo przytrzaśnięcia
Dbaj o palce. Dwa duże magnesy zderzą błyskawicznie z siłą kilkuset kilogramów, niszcząc wszystko na swojej drodze. Zachowaj ekstremalną uwagę!
Przegrzanie magnesu
Standardowe magnesy neodymowe (typ N) ulegają rozmagnesowaniu po osiągnięciu temperatury 80°C. Uszkodzenie jest permanentne.
Implanty kardiologiczne
Uwaga zdrowotna: Magnesy neodymowe mogą wyłączyć rozruszniki serca i defibrylatory. Nie zbliżaj się, jeśli posiadasz implanty elektroniczne.
Niszczenie danych
Ekstremalne pole magnetyczne może zniszczyć zapis na kartach płatniczych, dyskach twardych i innych nośnikach magnetycznych. Trzymaj dystans min. 10 cm.
