MW 20x18 / N38 - magnes neodymowy walcowy
magnes neodymowy walcowy
Numer katalogowy 010040
GTIN/EAN: 5906301810391
Średnica Ø
20 mm [±0,1 mm]
Wysokość
18 mm [±0,1 mm]
Waga
42.41 g
Kierunek magnesowania
↑ osiowy
Udźwig
13.19 kg / 129.35 N
Indukcja magnetyczna
541.64 mT / 5416 Gs
Powłoka
[NiCuNi] nikiel
23.54 ZŁ z VAT / szt. + cena za transport
19.14 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?
Zadzwoń już teraz
+48 22 499 98 98
alternatywnie pisz przez
formularz zgłoszeniowy
na naszej stronie.
Siłę i kształt elementów magnetycznych wyliczysz w naszym
modułowym kalkulatorze.
Zamówienia złożone do godziny 14:00 zostaną wysłane tego samego dnia roboczego.
Specyfikacja - MW 20x18 / N38 - magnes neodymowy walcowy
Specyfikacja / charakterystyka - MW 20x18 / N38 - magnes neodymowy walcowy
| właściwości | wartości |
|---|---|
| Nr kat. | 010040 |
| GTIN/EAN | 5906301810391 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Średnica Ø | 20 mm [±0,1 mm] |
| Wysokość | 18 mm [±0,1 mm] |
| Waga | 42.41 g |
| Kierunek magnesowania | ↑ osiowy |
| Udźwig ~ ? | 13.19 kg / 129.35 N |
| Indukcja magnetyczna ~ ? | 541.64 mT / 5416 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [min. - maks.] ? | 12.2-12.6 | kGs |
| remanencja Br [min. - maks.] ? | 1220-1260 | mT |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [min. - maks.] ? | 36-38 | BH max MGOe |
| gęstość energii [min. - maks.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Temperatura Curie TC | 312 - 380 | °C |
| Temperatura Curie TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅cm |
| Siła wyginania | 250 | MPa |
| Wytrzymałość na ściskanie | 1000~1100 | MPa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 10-6 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Symulacja inżynierska magnesu - parametry techniczne
Niniejsze wartości stanowią rezultat kalkulacji inżynierskiej. Wartości zostały wyliczone na algorytmach dla klasy Nd2Fe14B. Realne parametry mogą nieznacznie się różnić. Traktuj te dane jako wstępny drogowskaz podczas planowania montażu.
Tabela 1: Udźwig statyczny prostopadły (siła vs odległość) - wykres oddziaływania
MW 20x18 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg/lbs/g/N) | Status ryzyka |
|---|---|---|---|
| 0 mm |
5414 Gs
541.4 mT
|
13.19 kg / 29.08 lbs
13190.0 g / 129.4 N
|
miażdżący |
| 1 mm |
4870 Gs
487.0 mT
|
10.67 kg / 23.52 lbs
10669.5 g / 104.7 N
|
miażdżący |
| 2 mm |
4330 Gs
433.0 mT
|
8.43 kg / 18.59 lbs
8434.2 g / 82.7 N
|
mocny |
| 3 mm |
3816 Gs
381.6 mT
|
6.55 kg / 14.45 lbs
6552.7 g / 64.3 N
|
mocny |
| 5 mm |
2913 Gs
291.3 mT
|
3.82 kg / 8.42 lbs
3818.4 g / 37.5 N
|
mocny |
| 10 mm |
1455 Gs
145.5 mT
|
0.95 kg / 2.10 lbs
952.2 g / 9.3 N
|
bezpieczny |
| 15 mm |
775 Gs
77.5 mT
|
0.27 kg / 0.60 lbs
270.1 g / 2.7 N
|
bezpieczny |
| 20 mm |
450 Gs
45.0 mT
|
0.09 kg / 0.20 lbs
91.3 g / 0.9 N
|
bezpieczny |
| 30 mm |
188 Gs
18.8 mT
|
0.02 kg / 0.04 lbs
15.9 g / 0.2 N
|
bezpieczny |
| 50 mm |
54 Gs
5.4 mT
|
0.00 kg / 0.00 lbs
1.3 g / 0.0 N
|
bezpieczny |
Tabela 2: Równoległa siła obsunięcia (pion)
MW 20x18 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg/lbs/g/N) |
|---|---|---|
| 0 mm | Stal (~0.2) |
2.64 kg / 5.82 lbs
2638.0 g / 25.9 N
|
| 1 mm | Stal (~0.2) |
2.13 kg / 4.70 lbs
2134.0 g / 20.9 N
|
| 2 mm | Stal (~0.2) |
1.69 kg / 3.72 lbs
1686.0 g / 16.5 N
|
| 3 mm | Stal (~0.2) |
1.31 kg / 2.89 lbs
1310.0 g / 12.9 N
|
| 5 mm | Stal (~0.2) |
0.76 kg / 1.68 lbs
764.0 g / 7.5 N
|
| 10 mm | Stal (~0.2) |
0.19 kg / 0.42 lbs
190.0 g / 1.9 N
|
| 15 mm | Stal (~0.2) |
0.05 kg / 0.12 lbs
54.0 g / 0.5 N
|
| 20 mm | Stal (~0.2) |
0.02 kg / 0.04 lbs
18.0 g / 0.2 N
|
| 30 mm | Stal (~0.2) |
0.00 kg / 0.01 lbs
4.0 g / 0.0 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
Tabela 3: Siła na ścianie (ścinanie) - udźwig wertykalny
MW 20x18 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg/lbs/g/N) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
3.96 kg / 8.72 lbs
3957.0 g / 38.8 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
2.64 kg / 5.82 lbs
2638.0 g / 25.9 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
1.32 kg / 2.91 lbs
1319.0 g / 12.9 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
6.60 kg / 14.54 lbs
6595.0 g / 64.7 N
|
Tabela 4: Efektywność materiałowa (wpływ podłoża) - straty mocy
MW 20x18 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg/lbs/g/N) |
|---|---|---|
| 0.5 mm |
|
0.66 kg / 1.45 lbs
659.5 g / 6.5 N
|
| 1 mm |
|
1.65 kg / 3.63 lbs
1648.8 g / 16.2 N
|
| 2 mm |
|
3.30 kg / 7.27 lbs
3297.5 g / 32.3 N
|
| 3 mm |
|
4.95 kg / 10.90 lbs
4946.3 g / 48.5 N
|
| 5 mm |
|
8.24 kg / 18.17 lbs
8243.8 g / 80.9 N
|
| 10 mm |
|
13.19 kg / 29.08 lbs
13190.0 g / 129.4 N
|
| 11 mm |
|
13.19 kg / 29.08 lbs
13190.0 g / 129.4 N
|
| 12 mm |
|
13.19 kg / 29.08 lbs
13190.0 g / 129.4 N
|
Tabela 5: Stabilność termiczna (zachowanie materiału) - próg odporności
MW 20x18 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig (kg/lbs/g/N) | Status |
|---|---|---|---|
| 20 °C | 0.0% |
13.19 kg / 29.08 lbs
13190.0 g / 129.4 N
|
OK |
| 40 °C | -2.2% |
12.90 kg / 28.44 lbs
12899.8 g / 126.5 N
|
OK |
| 60 °C | -4.4% |
12.61 kg / 27.80 lbs
12609.6 g / 123.7 N
|
OK |
| 80 °C | -6.6% |
12.32 kg / 27.16 lbs
12319.5 g / 120.9 N
|
|
| 100 °C | -28.8% |
9.39 kg / 20.70 lbs
9391.3 g / 92.1 N
|
Tabela 6: Dwa magnesy (przyciąganie) - siły w układzie
MW 20x18 / N38
| Szczelina (mm) | Przyciąganie (kg/lbs) (N-S) | Siła ścinająca (kg/lbs/g/N) | Odpychanie (kg/lbs) (N-N) |
|---|---|---|---|
| 0 mm |
56.78 kg / 125.17 lbs
5 968 Gs
|
8.52 kg / 18.78 lbs
8516 g / 83.5 N
|
N/A |
| 1 mm |
51.26 kg / 113.01 lbs
10 289 Gs
|
7.69 kg / 16.95 lbs
7689 g / 75.4 N
|
46.13 kg / 101.71 lbs
~0 Gs
|
| 2 mm |
45.93 kg / 101.25 lbs
9 739 Gs
|
6.89 kg / 15.19 lbs
6889 g / 67.6 N
|
41.33 kg / 91.13 lbs
~0 Gs
|
| 3 mm |
40.93 kg / 90.24 lbs
9 194 Gs
|
6.14 kg / 13.54 lbs
6140 g / 60.2 N
|
36.84 kg / 81.22 lbs
~0 Gs
|
| 5 mm |
32.06 kg / 70.68 lbs
8 137 Gs
|
4.81 kg / 10.60 lbs
4809 g / 47.2 N
|
28.86 kg / 63.62 lbs
~0 Gs
|
| 10 mm |
16.44 kg / 36.24 lbs
5 826 Gs
|
2.47 kg / 5.44 lbs
2465 g / 24.2 N
|
14.79 kg / 32.61 lbs
~0 Gs
|
| 20 mm |
4.10 kg / 9.04 lbs
2 909 Gs
|
0.61 kg / 1.36 lbs
615 g / 6.0 N
|
3.69 kg / 8.13 lbs
~0 Gs
|
| 50 mm |
0.15 kg / 0.34 lbs
565 Gs
|
0.02 kg / 0.05 lbs
23 g / 0.2 N
|
0.14 kg / 0.31 lbs
~0 Gs
|
| 60 mm |
0.07 kg / 0.15 lbs
376 Gs
|
0.01 kg / 0.02 lbs
10 g / 0.1 N
|
0.06 kg / 0.14 lbs
~0 Gs
|
| 70 mm |
0.03 kg / 0.07 lbs
262 Gs
|
0.00 kg / 0.01 lbs
5 g / 0.0 N
|
0.03 kg / 0.07 lbs
~0 Gs
|
| 80 mm |
0.02 kg / 0.04 lbs
190 Gs
|
0.00 kg / 0.01 lbs
3 g / 0.0 N
|
0.02 kg / 0.03 lbs
~0 Gs
|
| 90 mm |
0.01 kg / 0.02 lbs
142 Gs
|
0.00 kg / 0.00 lbs
1 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 100 mm |
0.01 kg / 0.01 lbs
109 Gs
|
0.00 kg / 0.00 lbs
1 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
Tabela 7: Bezpieczeństwo (BHP) (elektronika) - środki ostrożności
MW 20x18 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 12.5 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 9.5 cm |
| Zegarek mechaniczny | 20 Gs (2.0 mT) | 7.5 cm |
| Telefon / Smartfon | 40 Gs (4.0 mT) | 6.0 cm |
| Immobilizer | 50 Gs (5.0 mT) | 5.5 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 2.5 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 2.0 cm |
Tabela 8: Dynamika (ryzyko pęknięcia) - skutki zderzenia
MW 20x18 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
18.57 km/h
(5.16 m/s)
|
0.56 J | |
| 30 mm |
30.83 km/h
(8.56 m/s)
|
1.56 J | |
| 50 mm |
39.77 km/h
(11.05 m/s)
|
2.59 J | |
| 100 mm |
56.24 km/h
(15.62 m/s)
|
5.18 J |
Tabela 9: Specyfikacja ochrony powierzchni
MW 20x18 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
Tabela 10: Dane konstrukcyjne (Pc)
MW 20x18 / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 17 374 Mx | 173.7 µWb |
| Współczynnik Pc | 0.85 | Wysoki (Stabilny) |
Tabela 11: Praca w wodzie (Magnet Fishing)
MW 20x18 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 13.19 kg | Standard |
| Woda (dno rzeki) |
15.10 kg
(+1.91 kg zysk z wyporności)
|
+14.5% |
1. Siła zsuwająca
*Ważne: Na powierzchni pionowej magnes zachowa tylko ułamek siły prostopadłej.
2. Grubość podłoża
*Cienka blacha (np. obudowa PC 0.5mm) znacząco redukuje udźwig magnesu.
3. Praca w cieple
*Dla materiału N38 krytyczny próg to 80°C.
4. Krzywa odmagnesowania i punkt pracy (B-H)
wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 0.85
Powyższy wykres prezentuje charakterystykę magnetyczną materiału w drugim kwadrancie pętli histerezy. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.
Analiza pierwiastkowa
| żelazo (Fe) | 64% – 68% |
| neodym (Nd) | 29% – 32% |
| bor (B) | 1.1% – 1.2% |
| dysproz (Dy) | 0.5% – 2.0% |
| powłoka (Ni-Cu-Ni) | < 0.05% |
Ekologia i recykling (GPSR)
| recyklowalność (EoL) | 100% |
| surowce z recyklingu | ~10% (pre-cons) |
| ślad węglowy | low / zredukowany |
| kod odpadu (EWC) | 16 02 16 |
Inne oferty
Wady i zalety magnesów z neodymu Nd2Fe14B.
Korzyści
- Długowieczność to ich atut – nawet po 10 lat spadek siły magnetycznej wynosi zaledwie ~1% (wg testów).
- Trudno je rozmagnesować, gdyż wykazują potężną odporność na zewnętrzne czynniki.
- Łączą moc z estetyką – poprzez niklowanie lub złocenie ich powierzchnia jest refleksyjna i wygląda estetycznie.
- Indukcja magnetyczna na powierzchni tych magnesów jest bardzo wysoka, co czyni je najwydajniejszymi w swojej klasie.
- Mogą pracować w ekstremalnym cieple – wybrane modele znoszą temperaturę do 230°C (zależnie od wymiarów).
- Dają się łatwo formować do niestandardowych wymiarów, co ułatwia ich adaptację w skomplikowanych urządzeniach.
- Znajdują powszechne zastosowanie w nowoczesnej technice – od napędów HDD i motorów elektrycznych, po zaawansowaną diagnostykę.
- Dzięki kompaktowości, nie wymagają dużej przestrzeni, a jednocześnie zapewniają wysoką skuteczność.
Wady
- Delikatność mechaniczna to ich mankament. Łatwo ulegają uszkodzeniu przy zderzeniu, dlatego zalecamy obudowy lub uchwyty.
- Wrażliwość na ciepło: przekroczenie 80°C może trwale osłabić magnes (zależnie od bryły). Rozwiązaniem są nasze magnesy wysokotemperaturowe [AH].
- Ryzyko korozji: bez osłony magnes ulegnie utlenieniu na deszczu. Rozważ wersje w obudowie z tworzywa do zastosowań zewnętrznych.
- Ze względu na twardość, nie zaleca się obróbki mechanicznej magnesu. Bezpieczniej użyć magnesu wklejonego w stalowy kubek z gwintem.
- Drobne magnesy to ryzyko – połknięcie wymaga interwencji chirurga. Mogą też być problemem przy badaniach lekarskich.
- Wyższa cena w porównaniu do tańszych zamienników to ich minus, szczególnie przy dużych ilościach.
Analiza siły trzymania
Wytrzymałość na oderwanie magnesu w warunkach idealnych – od czego zależy?
- na podłożu wykonanej ze stali miękkiej, optymalnie przewodzącej strumień magnetyczny
- posiadającej grubość co najmniej 10 mm aby uniknąć nasycenia
- charakteryzującej się gładkością
- bez najmniejszej warstwy izolującej pomiędzy magnesem a stalą
- dla siły przyłożonej pod kątem prostym (na odrywanie, nie zsuwanie)
- przy temperaturze pokojowej
Determinanty praktycznego udźwigu magnesu
- Szczelina – występowanie ciała obcego (rdza, brud, powietrze) przerywa obwód magnetyczny, co redukuje moc lawinowo (nawet o 50% przy 0,5 mm).
- Wektor obciążenia – maksymalny parametr uzyskujemy tylko przy ciągnięciu pod kątem 90°. Siła ścinająca magnesu po powierzchni jest standardowo kilkukrotnie niższa (ok. 1/5 udźwigu).
- Masywność podłoża – za chuda płyta nie zamyka strumienia, przez co część strumienia marnuje się w powietrzu.
- Gatunek stali – idealnym podłożem jest czysta stal żelazna. Stale hartowane mogą mieć gorsze właściwości magnetyczne.
- Jakość powierzchni – im równiejsza blacha, tym lepsze przyleganie i silniejsze trzymanie. Nierówności działają jak mikroszczeliny.
- Temperatura pracy – spieki NdFeB posiadają wrażliwość na temperaturę. Gdy jest gorąco są słabsze, a na mrozie mogą być silniejsze (do pewnej granicy).
Pomiar udźwigu przeprowadzano na blachach o gładkiej powierzchni o odpowiedniej grubości, przy prostopadłym działaniu siły, z kolei przy działaniu siły na zsuwanie udźwig jest mniejszy nawet 75%. Dodatkowo, nawet niewielka szczelina między magnesem, a blachą redukuje nośność.
BHP przy magnesach
Ochrona urządzeń
Ochrona danych: Magnesy neodymowe mogą zdegradować karty bankomatowe oraz urządzenia precyzyjne (rozruszniki serca, protezy słuchu, zegarki mechaniczne).
Poważne obrażenia
Dbaj o palce. Dwa duże magnesy zderzą z ogromną prędkością z siłą wielu ton, niszcząc wszystko na swojej drodze. Bądź ostrożny!
Podatność na pękanie
Magnesy neodymowe to materiał ceramiczny, co oznacza, że są bardzo kruche. Upadek dwóch magnesów wywoła ich pęknięcie na ostre odłamki.
Uczulenie na powłokę
Wiedza medyczna potwierdza, że powłoka niklowa (standardowe zabezpieczenie magnesów) jest częstą przyczyną uczuleń. Jeśli masz uczulenie, wystrzegaj się bezpośredniego dotyku lub wybierz wersje w obudowie plastikowej.
Zakaz zabawy
Koniecznie chroń magnesy przed najmłodszymi. Ryzyko zadławienia jest bardzo duże, a skutki zwarcia magnesów wewnątrz organizmu są nieodwracalne.
Nie wierć w magnesach
Ryzyko wybuchu: Pył neodymowy jest skrajnie łatwopalny. Nie modyfikuj mechanicznie magnesów amatorsko, gdyż może to wywołać pożar.
Nie przegrzewaj magnesów
Kontroluj ciepło. Ekspozycja magnesu na wysoką temperaturę zdegraduje jego strukturę magnetyczną i siłę przyciągania.
Elektronika precyzyjna
Intensywne promieniowanie magnetyczne zakłóca działanie magnetometrów w smartfonach i nawigacjach GPS. Nie zbliżaj magnesów do smartfona, aby nie uszkodzić czujników.
Świadome użytkowanie
Przed przystąpieniem do pracy, zapoznaj się z zasadami. Gwałtowne złączenie może połamać magnes lub uszkodzić palce. Myśl o krok do przodu.
Zagrożenie życia
Osoby z stymulatorem serca muszą zachować duży odstęp od magnesów. Pole magnetyczne może zakłócić pracę implantu.
