MW 20x18 / N38 - magnes neodymowy walcowy
magnes neodymowy walcowy
Numer katalogowy 010040
GTIN/EAN: 5906301810391
Średnica Ø
20 mm [±0,1 mm]
Wysokość
18 mm [±0,1 mm]
Waga
42.41 g
Kierunek magnesowania
↑ osiowy
Udźwig
13.19 kg / 129.35 N
Indukcja magnetyczna
541.64 mT / 5416 Gs
Powłoka
[NiCuNi] nikiel
23.54 ZŁ z VAT / szt. + cena za transport
19.14 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?
Zadzwoń już teraz
+48 22 499 98 98
ewentualnie skontaktuj się korzystając z
formularz zgłoszeniowy
na naszej stronie.
Moc i budowę magnesu wyliczysz u nas w
modułowym kalkulatorze.
Realizacja tego samego dnia przy zamówieniu do 14:00.
Szczegóły techniczne - MW 20x18 / N38 - magnes neodymowy walcowy
Specyfikacja / charakterystyka - MW 20x18 / N38 - magnes neodymowy walcowy
| właściwości | wartości |
|---|---|
| Nr kat. | 010040 |
| GTIN/EAN | 5906301810391 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Średnica Ø | 20 mm [±0,1 mm] |
| Wysokość | 18 mm [±0,1 mm] |
| Waga | 42.41 g |
| Kierunek magnesowania | ↑ osiowy |
| Udźwig ~ ? | 13.19 kg / 129.35 N |
| Indukcja magnetyczna ~ ? | 541.64 mT / 5416 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [min. - maks.] ? | 12.2-12.6 | kGs |
| remanencja Br [min. - maks.] ? | 1220-1260 | mT |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [min. - maks.] ? | 36-38 | BH max MGOe |
| gęstość energii [min. - maks.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Temperatura Curie TC | 312 - 380 | °C |
| Temperatura Curie TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅cm |
| Siła wyginania | 250 | MPa |
| Wytrzymałość na ściskanie | 1000~1100 | MPa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 10-6 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Analiza inżynierska magnesu - parametry techniczne
Niniejsze wartości są rezultat analizy fizycznej. Wyniki zostały wyliczone na modelach dla materiału Nd2Fe14B. Realne osiągi mogą nieznacznie różnić się od wartości teoretycznych. Traktuj te dane jako pomoc pomocniczą dla projektantów.
Tabela 1: Udźwig statyczny prostopadły (udźwig vs odległość) - wykres oddziaływania
MW 20x18 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg/lbs/g/N) | Status ryzyka |
|---|---|---|---|
| 0 mm |
5414 Gs
541.4 mT
|
13.19 kg / 29.08 lbs
13190.0 g / 129.4 N
|
miażdżący |
| 1 mm |
4870 Gs
487.0 mT
|
10.67 kg / 23.52 lbs
10669.5 g / 104.7 N
|
miażdżący |
| 2 mm |
4330 Gs
433.0 mT
|
8.43 kg / 18.59 lbs
8434.2 g / 82.7 N
|
uwaga |
| 3 mm |
3816 Gs
381.6 mT
|
6.55 kg / 14.45 lbs
6552.7 g / 64.3 N
|
uwaga |
| 5 mm |
2913 Gs
291.3 mT
|
3.82 kg / 8.42 lbs
3818.4 g / 37.5 N
|
uwaga |
| 10 mm |
1455 Gs
145.5 mT
|
0.95 kg / 2.10 lbs
952.2 g / 9.3 N
|
niskie ryzyko |
| 15 mm |
775 Gs
77.5 mT
|
0.27 kg / 0.60 lbs
270.1 g / 2.7 N
|
niskie ryzyko |
| 20 mm |
450 Gs
45.0 mT
|
0.09 kg / 0.20 lbs
91.3 g / 0.9 N
|
niskie ryzyko |
| 30 mm |
188 Gs
18.8 mT
|
0.02 kg / 0.04 lbs
15.9 g / 0.2 N
|
niskie ryzyko |
| 50 mm |
54 Gs
5.4 mT
|
0.00 kg / 0.00 lbs
1.3 g / 0.0 N
|
niskie ryzyko |
Tabela 2: Siła równoległa zsuwania (pion)
MW 20x18 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg/lbs/g/N) |
|---|---|---|
| 0 mm | Stal (~0.2) |
2.64 kg / 5.82 lbs
2638.0 g / 25.9 N
|
| 1 mm | Stal (~0.2) |
2.13 kg / 4.70 lbs
2134.0 g / 20.9 N
|
| 2 mm | Stal (~0.2) |
1.69 kg / 3.72 lbs
1686.0 g / 16.5 N
|
| 3 mm | Stal (~0.2) |
1.31 kg / 2.89 lbs
1310.0 g / 12.9 N
|
| 5 mm | Stal (~0.2) |
0.76 kg / 1.68 lbs
764.0 g / 7.5 N
|
| 10 mm | Stal (~0.2) |
0.19 kg / 0.42 lbs
190.0 g / 1.9 N
|
| 15 mm | Stal (~0.2) |
0.05 kg / 0.12 lbs
54.0 g / 0.5 N
|
| 20 mm | Stal (~0.2) |
0.02 kg / 0.04 lbs
18.0 g / 0.2 N
|
| 30 mm | Stal (~0.2) |
0.00 kg / 0.01 lbs
4.0 g / 0.0 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
Tabela 3: Montaż pionowy (ścinanie) - zachowanie na śliskim podłożu
MW 20x18 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg/lbs/g/N) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
3.96 kg / 8.72 lbs
3957.0 g / 38.8 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
2.64 kg / 5.82 lbs
2638.0 g / 25.9 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
1.32 kg / 2.91 lbs
1319.0 g / 12.9 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
6.60 kg / 14.54 lbs
6595.0 g / 64.7 N
|
Tabela 4: Grubość stali (wpływ podłoża) - straty mocy
MW 20x18 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg/lbs/g/N) |
|---|---|---|
| 0.5 mm |
|
0.66 kg / 1.45 lbs
659.5 g / 6.5 N
|
| 1 mm |
|
1.65 kg / 3.63 lbs
1648.8 g / 16.2 N
|
| 2 mm |
|
3.30 kg / 7.27 lbs
3297.5 g / 32.3 N
|
| 3 mm |
|
4.95 kg / 10.90 lbs
4946.3 g / 48.5 N
|
| 5 mm |
|
8.24 kg / 18.17 lbs
8243.8 g / 80.9 N
|
| 10 mm |
|
13.19 kg / 29.08 lbs
13190.0 g / 129.4 N
|
| 11 mm |
|
13.19 kg / 29.08 lbs
13190.0 g / 129.4 N
|
| 12 mm |
|
13.19 kg / 29.08 lbs
13190.0 g / 129.4 N
|
Tabela 5: Wytrzymałość temperaturowa (stabilność) - spadek mocy
MW 20x18 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig (kg/lbs/g/N) | Status |
|---|---|---|---|
| 20 °C | 0.0% |
13.19 kg / 29.08 lbs
13190.0 g / 129.4 N
|
OK |
| 40 °C | -2.2% |
12.90 kg / 28.44 lbs
12899.8 g / 126.5 N
|
OK |
| 60 °C | -4.4% |
12.61 kg / 27.80 lbs
12609.6 g / 123.7 N
|
OK |
| 80 °C | -6.6% |
12.32 kg / 27.16 lbs
12319.5 g / 120.9 N
|
|
| 100 °C | -28.8% |
9.39 kg / 20.70 lbs
9391.3 g / 92.1 N
|
Tabela 6: Dwa magnesy (przyciąganie) - kolizja pól
MW 20x18 / N38
| Szczelina (mm) | Przyciąganie (kg/lbs) (N-S) | Siła ścinająca (kg/lbs/g/N) | Odpychanie (kg/lbs) (N-N) |
|---|---|---|---|
| 0 mm |
56.78 kg / 125.17 lbs
5 968 Gs
|
8.52 kg / 18.78 lbs
8516 g / 83.5 N
|
N/A |
| 1 mm |
51.26 kg / 113.01 lbs
10 289 Gs
|
7.69 kg / 16.95 lbs
7689 g / 75.4 N
|
46.13 kg / 101.71 lbs
~0 Gs
|
| 2 mm |
45.93 kg / 101.25 lbs
9 739 Gs
|
6.89 kg / 15.19 lbs
6889 g / 67.6 N
|
41.33 kg / 91.13 lbs
~0 Gs
|
| 3 mm |
40.93 kg / 90.24 lbs
9 194 Gs
|
6.14 kg / 13.54 lbs
6140 g / 60.2 N
|
36.84 kg / 81.22 lbs
~0 Gs
|
| 5 mm |
32.06 kg / 70.68 lbs
8 137 Gs
|
4.81 kg / 10.60 lbs
4809 g / 47.2 N
|
28.86 kg / 63.62 lbs
~0 Gs
|
| 10 mm |
16.44 kg / 36.24 lbs
5 826 Gs
|
2.47 kg / 5.44 lbs
2465 g / 24.2 N
|
14.79 kg / 32.61 lbs
~0 Gs
|
| 20 mm |
4.10 kg / 9.04 lbs
2 909 Gs
|
0.61 kg / 1.36 lbs
615 g / 6.0 N
|
3.69 kg / 8.13 lbs
~0 Gs
|
| 50 mm |
0.15 kg / 0.34 lbs
565 Gs
|
0.02 kg / 0.05 lbs
23 g / 0.2 N
|
0.14 kg / 0.31 lbs
~0 Gs
|
| 60 mm |
0.07 kg / 0.15 lbs
376 Gs
|
0.01 kg / 0.02 lbs
10 g / 0.1 N
|
0.06 kg / 0.14 lbs
~0 Gs
|
| 70 mm |
0.03 kg / 0.07 lbs
262 Gs
|
0.00 kg / 0.01 lbs
5 g / 0.0 N
|
0.03 kg / 0.07 lbs
~0 Gs
|
| 80 mm |
0.02 kg / 0.04 lbs
190 Gs
|
0.00 kg / 0.01 lbs
3 g / 0.0 N
|
0.02 kg / 0.03 lbs
~0 Gs
|
| 90 mm |
0.01 kg / 0.02 lbs
142 Gs
|
0.00 kg / 0.00 lbs
1 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 100 mm |
0.01 kg / 0.01 lbs
109 Gs
|
0.00 kg / 0.00 lbs
1 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
Tabela 7: Zagrożenia (elektronika) - środki ostrożności
MW 20x18 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 12.5 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 9.5 cm |
| Zegarek mechaniczny | 20 Gs (2.0 mT) | 7.5 cm |
| Telefon / Smartfon | 40 Gs (4.0 mT) | 6.0 cm |
| Pilot do auta | 50 Gs (5.0 mT) | 5.5 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 2.5 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 2.0 cm |
Tabela 8: Zderzenia (ryzyko pęknięcia) - ostrzeżenie
MW 20x18 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
18.57 km/h
(5.16 m/s)
|
0.56 J | |
| 30 mm |
30.83 km/h
(8.56 m/s)
|
1.56 J | |
| 50 mm |
39.77 km/h
(11.05 m/s)
|
2.59 J | |
| 100 mm |
56.24 km/h
(15.62 m/s)
|
5.18 J |
Tabela 9: Trwałość powłoki antykorozyjnej
MW 20x18 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
Tabela 10: Dane elektryczne (Flux)
MW 20x18 / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 17 374 Mx | 173.7 µWb |
| Współczynnik Pc | 0.85 | Wysoki (Stabilny) |
Tabela 11: Hydrostatyka i wyporność
MW 20x18 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 13.19 kg | Standard |
| Woda (dno rzeki) |
15.10 kg
(+1.91 kg zysk z wyporności)
|
+14.5% |
1. Siła zsuwająca
*Uwaga: Na pionowej ścianie magnes zachowa tylko ułamek nominalnego udźwigu.
2. Wpływ grubości blachy
*Zbyt cienki metal (np. blacha karoseryjna) wyraźnie redukuje udźwig magnesu.
3. Praca w cieple
*Dla materiału N38 krytyczny próg to 80°C.
4. Krzywa odmagnesowania i punkt pracy (B-H)
wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 0.85
Powyższy wykres prezentuje charakterystykę magnetyczną materiału w drugim kwadrancie pętli histerezy. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.
Analiza pierwiastkowa
| żelazo (Fe) | 64% – 68% |
| neodym (Nd) | 29% – 32% |
| bor (B) | 1.1% – 1.2% |
| dysproz (Dy) | 0.5% – 2.0% |
| powłoka (Ni-Cu-Ni) | < 0.05% |
Zrównoważony rozwój
| recyklowalność (EoL) | 100% |
| surowce z recyklingu | ~10% (pre-cons) |
| ślad węglowy | low / zredukowany |
| kod odpadu (EWC) | 16 02 16 |
Sprawdź inne oferty
Zalety i wady magnesów neodymowych Nd2Fe14B.
Zalety
- Długowieczność to ich atut – po upływie 10 lat utrata siły magnetycznej wynosi jedynie ~1% (wg testów).
- Wyróżniają się niezwykłą odpornością na demagnetyzację, nawet w silnych polach zewnętrznych.
- Są nie tylko silne, ale i ładne – dzięki powłokom ich powierzchnia jest refleksyjna i wygląda estetycznie.
- Oferują najwyższą indukcję magnetyczną w punkcie styku, co przekłada się na ogromną siłę.
- Posiadają imponującą wytrzymałość termiczną, co umożliwia ich stosowanie w warunkach do 230°C (dotyczy odpowiednich serii).
- Szerokie możliwości w projektowaniu kształtu i wymiaru to ich wielka zaleta w inżynierii.
- Występują wszędzie tam, gdzie liczy się precyzja: w automatyce, rezonansach oraz systemach IT.
- Dzięki kompaktowości, zajmują mało miejsca, a jednocześnie gwarantują wysoką skuteczność.
Słabe strony
- Delikatność mechaniczna to ich słaba strona. Mogą pęknąć przy upadku, dlatego warto stosować obudowy lub montaż w stali.
- Wysoka temperatura to wróg neodymów – powyżej 80°C tracą właściwości. Do zadań specjalnych polecamy wersje odporne [AH], działającą stabilnie aż do 230°C.
- Wilgoć powoduje korozję w mokrym otoczeniu. Na zewnątrz konieczne jest użycie magnesów hermetycznych (np. w gumie).
- Z uwagi na specyfikę materiału, nie zaleca się obróbki mechanicznej magnesu. Bezpieczniej użyć magnesu wklejonego w stalowy kubek z gwintem.
- Uważaj na małe części – połknięcie wymaga interwencji chirurga. Mogą też być problemem przy badaniach lekarskich.
- Za jakość trzeba płacić – magnesy neodymowe są droższe od ceramicznych, co wpływa na ekonomię rozwiązania.
Charakterystyka udźwigu
Wytrzymałość na oderwanie magnesu w warunkach idealnych – od czego zależy?
- na płycie wykonanej ze stali miękkiej, optymalnie przewodzącej pole magnetyczne
- posiadającej grubość co najmniej 10 mm dla pełnego zamknięcia strumienia
- z płaszczyzną idealnie równą
- w warunkach braku dystansu (powierzchnia do powierzchni)
- podczas ciągnięcia w kierunku pionowym do powierzchni mocowania
- w neutralnych warunkach termicznych
Praktyczny udźwig: czynniki wpływające
- Odstęp (między magnesem a metalem), ponieważ nawet bardzo mała przerwa (np. 0,5 mm) może spowodować drastyczny spadek siły nawet o 50% (dotyczy to także lakieru, rdzy czy zanieczyszczeń).
- Kąt przyłożenia siły – największą siłę osiągamy tylko przy ciągnięciu pod kątem 90°. Opór przy zsuwaniu magnesu po powierzchni jest zazwyczaj kilkukrotnie niższa (ok. 1/5 udźwigu).
- Grubość stali – zbyt cienka płyta nie zamyka strumienia, przez co część strumienia marnuje się w powietrzu.
- Rodzaj materiału – idealnym podłożem jest czysta stal żelazna. Stale nierdzewne mogą przyciągać słabiej.
- Faktura blachy – szlifowane elementy gwarantują idealne doleganie, co poprawia siłę. Nierówny metal zmniejszają efektywność.
- Warunki termiczne – magnesy neodymowe posiadają wrażliwość na temperaturę. Gdy jest gorąco tracą moc, a na mrozie mogą być silniejsze (do pewnej granicy).
Udźwig wyznaczano używając blachy o gładkiej powierzchni o właściwej grubości (min. 20 mm), przy działaniu siły prostopadłej, z kolei przy siłach działających równolegle siła trzymania jest mniejsza nawet 75%. Ponadto, nawet minimalna przerwa pomiędzy powierzchnią magnesu, a blachą redukuje nośność.
Instrukcja bezpiecznej obsługi magnesów
Kruchy spiek
Magnesy neodymowe to spiek proszkowy, co oznacza, że są łamliwe jak szkło. Zderzenie dwóch magnesów spowoduje ich rozpryśnięcie na ostre odłamki.
Pole magnetyczne a elektronika
Bezpieczeństwo sprzętu: Magnesy neodymowe mogą uszkodzić nośniki danych oraz urządzenia precyzyjne (rozruszniki serca, aparaty słuchowe, zegarki mechaniczne).
Urazy ciała
Silne magnesy mogą zdruzgotać palce w ułamku sekundy. Absolutnie nie wkładaj dłoni między dwa przyciągające się elementy.
Interferencja medyczna
Zagrożenie życia: Magnesy neodymowe mogą dezaktywować rozruszniki serca i defibrylatory. Nie zbliżaj się, jeśli posiadasz urządzenia wspomagające.
Zagrożenie wybuchem pyłu
Pył generowany podczas szlifowania magnesów jest samozapalny. Unikaj wiercenia w magnesach w warunkach domowych.
Reakcje alergiczne
Ostrzeżenie dla alergików: powłoka Ni-Cu-Ni zawiera nikiel. W przypadku pojawienia się świądu lub podrażnienia, należy natychmiast zakończyć pracę z magnesami i użyć środków ochronnych.
Chronić przed dziećmi
Magnesy neodymowe to nie zabawki. Połknięcie dwóch lub więcej magnesów może skutkować ich przyciągnięciem przez ścianki jelit, co stwarza śmiertelne niebezpieczeństwo i wiąże się z koniecznością pilnej interwencji chirurgicznej.
Limity termiczne
Unikaj gorąca. Magnesy neodymowe są wrażliwe na temperaturę. Jeśli potrzebujesz odporności powyżej 80°C, zapytaj nas o magnesy odporne na ciepło (H, SH, UH).
Zakłócenia GPS i telefonów
Silne pole magnetyczne wpływa negatywnie na funkcjonowanie czujników w telefonach i nawigacjach GPS. Nie zbliżaj magnesów do smartfona, aby nie uszkodzić czujników.
Potężne pole
Bądź ostrożny. Magnesy neodymowe przyciągają z dużej odległości i zwierają z impetem, często gwałtowniej niż zdążysz zareagować.
