MPL 20x8x6 / N38 - magnes neodymowy płytkowy
magnes neodymowy płytkowy
Numer katalogowy 020134
GTIN/EAN: 5906301811404
Długość
20 mm [±0,1 mm]
Szerokość
8 mm [±0,1 mm]
Wysokość
6 mm [±0,1 mm]
Waga
7.2 g
Kierunek magnesowania
↑ osiowy
Udźwig
6.27 kg / 61.50 N
Indukcja magnetyczna
423.90 mT / 4239 Gs
Powłoka
[NiCuNi] nikiel
5.17 ZŁ z VAT / szt. + cena za transport
4.20 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?
Dzwoń do nas
+48 888 99 98 98
albo zostaw wiadomość poprzez
formularz zgłoszeniowy
na naszej stronie.
Udźwig oraz kształt magnesów przetestujesz w naszym
kalkulatorze mocy.
Zamów do 14:00, a wyślemy dziś!
Właściwości fizyczne MPL 20x8x6 / N38 - magnes neodymowy płytkowy
Specyfikacja / charakterystyka - MPL 20x8x6 / N38 - magnes neodymowy płytkowy
| właściwości | wartości |
|---|---|
| Nr kat. | 020134 |
| GTIN/EAN | 5906301811404 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Długość | 20 mm [±0,1 mm] |
| Szerokość | 8 mm [±0,1 mm] |
| Wysokość | 6 mm [±0,1 mm] |
| Waga | 7.2 g |
| Kierunek magnesowania | ↑ osiowy |
| Udźwig ~ ? | 6.27 kg / 61.50 N |
| Indukcja magnetyczna ~ ? | 423.90 mT / 4239 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [min. - maks.] ? | 12.2-12.6 | kGs |
| remanencja Br [min. - maks.] ? | 1220-1260 | mT |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [min. - maks.] ? | 36-38 | BH max MGOe |
| gęstość energii [min. - maks.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Temperatura Curie TC | 312 - 380 | °C |
| Temperatura Curie TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅cm |
| Siła wyginania | 250 | MPa |
| Wytrzymałość na ściskanie | 1000~1100 | MPa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 10-6 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Symulacja inżynierska magnesu - parametry techniczne
Przedstawione wartości są rezultat kalkulacji fizycznej. Wyniki zostały wyliczone na algorytmach dla klasy Nd2Fe14B. Rzeczywiste osiągi mogą różnić się od wartości teoretycznych. Traktuj te dane jako wstępny drogowskaz przy projektowaniu systemów.
Tabela 1: Udźwig statyczny prostopadły (udźwig vs dystans) - wykres oddziaływania
MPL 20x8x6 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg/lbs/g/N) | Status ryzyka |
|---|---|---|---|
| 0 mm |
4236 Gs
423.6 mT
|
6.27 kg / 13.82 lbs
6270.0 g / 61.5 N
|
średnie ryzyko |
| 1 mm |
3505 Gs
350.5 mT
|
4.29 kg / 9.47 lbs
4293.5 g / 42.1 N
|
średnie ryzyko |
| 2 mm |
2814 Gs
281.4 mT
|
2.77 kg / 6.10 lbs
2766.9 g / 27.1 N
|
średnie ryzyko |
| 3 mm |
2235 Gs
223.5 mT
|
1.75 kg / 3.85 lbs
1745.9 g / 17.1 N
|
bezpieczny |
| 5 mm |
1425 Gs
142.5 mT
|
0.71 kg / 1.56 lbs
709.0 g / 7.0 N
|
bezpieczny |
| 10 mm |
540 Gs
54.0 mT
|
0.10 kg / 0.22 lbs
101.9 g / 1.0 N
|
bezpieczny |
| 15 mm |
248 Gs
24.8 mT
|
0.02 kg / 0.05 lbs
21.5 g / 0.2 N
|
bezpieczny |
| 20 mm |
131 Gs
13.1 mT
|
0.01 kg / 0.01 lbs
6.0 g / 0.1 N
|
bezpieczny |
| 30 mm |
48 Gs
4.8 mT
|
0.00 kg / 0.00 lbs
0.8 g / 0.0 N
|
bezpieczny |
| 50 mm |
12 Gs
1.2 mT
|
0.00 kg / 0.00 lbs
0.1 g / 0.0 N
|
bezpieczny |
Tabela 2: Równoległa siła ześlizgu (pion)
MPL 20x8x6 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg/lbs/g/N) |
|---|---|---|
| 0 mm | Stal (~0.2) |
1.25 kg / 2.76 lbs
1254.0 g / 12.3 N
|
| 1 mm | Stal (~0.2) |
0.86 kg / 1.89 lbs
858.0 g / 8.4 N
|
| 2 mm | Stal (~0.2) |
0.55 kg / 1.22 lbs
554.0 g / 5.4 N
|
| 3 mm | Stal (~0.2) |
0.35 kg / 0.77 lbs
350.0 g / 3.4 N
|
| 5 mm | Stal (~0.2) |
0.14 kg / 0.31 lbs
142.0 g / 1.4 N
|
| 10 mm | Stal (~0.2) |
0.02 kg / 0.04 lbs
20.0 g / 0.2 N
|
| 15 mm | Stal (~0.2) |
0.00 kg / 0.01 lbs
4.0 g / 0.0 N
|
| 20 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
2.0 g / 0.0 N
|
| 30 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
Tabela 3: Montaż pionowy (ścinanie) - zachowanie na śliskim podłożu
MPL 20x8x6 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg/lbs/g/N) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
1.88 kg / 4.15 lbs
1881.0 g / 18.5 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
1.25 kg / 2.76 lbs
1254.0 g / 12.3 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
0.63 kg / 1.38 lbs
627.0 g / 6.2 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
3.14 kg / 6.91 lbs
3135.0 g / 30.8 N
|
Tabela 4: Grubość stali (nasycenie) - dobór blachy
MPL 20x8x6 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg/lbs/g/N) |
|---|---|---|
| 0.5 mm |
|
0.63 kg / 1.38 lbs
627.0 g / 6.2 N
|
| 1 mm |
|
1.57 kg / 3.46 lbs
1567.5 g / 15.4 N
|
| 2 mm |
|
3.14 kg / 6.91 lbs
3135.0 g / 30.8 N
|
| 3 mm |
|
4.70 kg / 10.37 lbs
4702.5 g / 46.1 N
|
| 5 mm |
|
6.27 kg / 13.82 lbs
6270.0 g / 61.5 N
|
| 10 mm |
|
6.27 kg / 13.82 lbs
6270.0 g / 61.5 N
|
| 11 mm |
|
6.27 kg / 13.82 lbs
6270.0 g / 61.5 N
|
| 12 mm |
|
6.27 kg / 13.82 lbs
6270.0 g / 61.5 N
|
Tabela 5: Wytrzymałość temperaturowa (stabilność) - spadek mocy
MPL 20x8x6 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig (kg/lbs/g/N) | Status |
|---|---|---|---|
| 20 °C | 0.0% |
6.27 kg / 13.82 lbs
6270.0 g / 61.5 N
|
OK |
| 40 °C | -2.2% |
6.13 kg / 13.52 lbs
6132.1 g / 60.2 N
|
OK |
| 60 °C | -4.4% |
5.99 kg / 13.21 lbs
5994.1 g / 58.8 N
|
|
| 80 °C | -6.6% |
5.86 kg / 12.91 lbs
5856.2 g / 57.4 N
|
|
| 100 °C | -28.8% |
4.46 kg / 9.84 lbs
4464.2 g / 43.8 N
|
Tabela 6: Interakcja magnes-magnes (odpychanie) - kolizja pól
MPL 20x8x6 / N38
| Szczelina (mm) | Przyciąganie (kg/lbs) (N-S) | Siła zsuwania (kg/lbs/g/N) | Odpychanie (kg/lbs) (N-N) |
|---|---|---|---|
| 0 mm |
17.70 kg / 39.02 lbs
5 386 Gs
|
2.66 kg / 5.85 lbs
2655 g / 26.0 N
|
N/A |
| 1 mm |
14.82 kg / 32.66 lbs
7 751 Gs
|
2.22 kg / 4.90 lbs
2222 g / 21.8 N
|
13.33 kg / 29.40 lbs
~0 Gs
|
| 2 mm |
12.12 kg / 26.72 lbs
7 011 Gs
|
1.82 kg / 4.01 lbs
1818 g / 17.8 N
|
10.91 kg / 24.05 lbs
~0 Gs
|
| 3 mm |
9.78 kg / 21.55 lbs
6 296 Gs
|
1.47 kg / 3.23 lbs
1466 g / 14.4 N
|
8.80 kg / 19.40 lbs
~0 Gs
|
| 5 mm |
6.21 kg / 13.69 lbs
5 018 Gs
|
0.93 kg / 2.05 lbs
932 g / 9.1 N
|
5.59 kg / 12.32 lbs
~0 Gs
|
| 10 mm |
2.00 kg / 4.41 lbs
2 849 Gs
|
0.30 kg / 0.66 lbs
300 g / 2.9 N
|
1.80 kg / 3.97 lbs
~0 Gs
|
| 20 mm |
0.29 kg / 0.63 lbs
1 080 Gs
|
0.04 kg / 0.10 lbs
43 g / 0.4 N
|
0.26 kg / 0.57 lbs
~0 Gs
|
| 50 mm |
0.01 kg / 0.01 lbs
153 Gs
|
0.00 kg / 0.00 lbs
1 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 60 mm |
0.00 kg / 0.01 lbs
97 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 70 mm |
0.00 kg / 0.00 lbs
65 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 80 mm |
0.00 kg / 0.00 lbs
45 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 90 mm |
0.00 kg / 0.00 lbs
33 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 100 mm |
0.00 kg / 0.00 lbs
25 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
Tabela 7: Strefy ochronne (elektronika) - środki ostrożności
MPL 20x8x6 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 7.0 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 5.5 cm |
| Zegarek mechaniczny | 20 Gs (2.0 mT) | 4.5 cm |
| Telefon / Smartfon | 40 Gs (4.0 mT) | 3.5 cm |
| Pilot do auta | 50 Gs (5.0 mT) | 3.0 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 1.5 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 1.0 cm |
Tabela 8: Zderzenia (ryzyko pęknięcia) - skutki zderzenia
MPL 20x8x6 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
30.06 km/h
(8.35 m/s)
|
0.25 J | |
| 30 mm |
51.55 km/h
(14.32 m/s)
|
0.74 J | |
| 50 mm |
66.55 km/h
(18.49 m/s)
|
1.23 J | |
| 100 mm |
94.11 km/h
(26.14 m/s)
|
2.46 J |
Tabela 9: Specyfikacja ochrony powierzchni
MPL 20x8x6 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
Tabela 10: Dane konstrukcyjne (Pc)
MPL 20x8x6 / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 6 558 Mx | 65.6 µWb |
| Współczynnik Pc | 0.52 | Niski (Płaski) |
Tabela 11: Zastosowanie podwodne
MPL 20x8x6 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 6.27 kg | Standard |
| Woda (dno rzeki) |
7.18 kg
(+0.91 kg zysk z wyporności)
|
+14.5% |
1. Udźwig w pionie
*Ważne: Na powierzchni pionowej magnes zachowa zaledwie ~20-30% siły prostopadłej.
2. Efektywność, a grubość stali
*Cienka blacha (np. blacha karoseryjna) znacząco osłabia udźwig magnesu.
3. Praca w cieple
*W klasie N38 maksymalna temperatura to 80°C.
4. Krzywa odmagnesowania i punkt pracy (B-H)
wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 0.52
Niniejsza symulacja obrazuje stabilność magnetyczną wybranego magnesu w konkretnych warunkach geometrycznych. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.
Specyfikacja materiałowa
| żelazo (Fe) | 64% – 68% |
| neodym (Nd) | 29% – 32% |
| bor (B) | 1.1% – 1.2% |
| dysproz (Dy) | 0.5% – 2.0% |
| powłoka (Ni-Cu-Ni) | < 0.05% |
Ekologia i recykling (GPSR)
| recyklowalność (EoL) | 100% |
| surowce z recyklingu | ~10% (pre-cons) |
| ślad węglowy | low / zredukowany |
| kod odpadu (EWC) | 16 02 16 |
Sprawdź inne propozycje
Zalety oraz wady magnesów z neodymu Nd2Fe14B.
Korzyści
- Ich parametry są stabilne w czasie; po 10 latach eksploatacji redukcja udźwigu to znikome ~1%.
- Są stabilne magnetycznie, gdyż wykazują wysoką odporność na zewnętrzne czynniki.
- Są nie tylko silne, ale i ładne – dzięki powłokom ich powierzchnia jest błyszcząca i wygląda estetycznie.
- Oferują maksymalną indukcję magnetyczną bezpośrednio na powierzchni, co przekłada się na skuteczność.
- Specjalna mieszanka pierwiastków sprawia, że wykazują odporność na wysokie temperatury (zależnie od kształtu, nawet do 230°C).
- Szerokie możliwości w doborze kształtu i wymiaru to ich wielka zaleta w inżynierii.
- Znajdują powszechne zastosowanie w nowoczesnej technice – od dysków twardych i motorów elektrycznych, po precyzyjną diagnostykę.
- Potęga w małej formie – ich mała masa nie przeszkadza w generowaniu dużej siły przyciągania.
Minusy
- Ze względu na brak elastyczności, wymagają ostrożności. Silne uderzenie może je zniszczyć, stąd zalecenie stosowania osłon.
- Wysoka temperatura to wróg neodymów – powyżej 80°C tracą właściwości. Do zadań specjalnych polecamy wersje odporne [AH], działającą stabilnie aż do 230°C.
- Wilgoć powoduje korozję w mokrym otoczeniu. Na zewnątrz konieczne jest użycie magnesów hermetycznych (np. w gumie).
- Magnesy ciężko się obrabia – do montażu śrubowego przeznaczone są specjalne uchwyty magnetyczne z wbudowanym gwintem.
- Drobne magnesy to ryzyko – połknięcie wymaga interwencji chirurga. Mogą też być problemem przy badaniach lekarskich.
- Wyższa cena w porównaniu do tańszych zamienników to ich minus, szczególnie przy zakupach hurtowych.
Analiza siły trzymania
Wytrzymałość magnetyczna na maksimum – co ma na to wpływ?
- na płycie wykonanej ze stali konstrukcyjnej, optymalnie przewodzącej pole magnetyczne
- posiadającej masywność co najmniej 10 mm aby uniknąć nasycenia
- o wypolerowanej powierzchni kontaktu
- przy całkowitym braku odstępu (brak farby)
- przy osiowym wektorze siły (kąt 90 stopni)
- przy temperaturze otoczenia ok. 20 stopni Celsjusza
Co wpływa na udźwig w praktyce
- Szczelina – występowanie jakiejkolwiek warstwy (rdza, brud, powietrze) przerywa obwód magnetyczny, co redukuje moc lawinowo (nawet o 50% przy 0,5 mm).
- Kąt przyłożenia siły – maksymalny parametr osiągamy tylko przy ciągnięciu pod kątem 90°. Opór przy zsuwaniu magnesu po powierzchni jest z reguły wielokrotnie mniejsza (ok. 1/5 udźwigu).
- Grubość stali – zbyt cienka stal nie zamyka strumienia, przez co część mocy jest tracona w powietrzu.
- Typ metalu – nie każda stal reaguje tak samo. Wysoka zawartość węgla osłabiają efekt przyciągania.
- Faktura blachy – powierzchnie gładkie zapewniają maksymalny styk, co poprawia siłę. Powierzchnie chropowate zmniejszają efektywność.
- Wpływ temperatury – gorące środowisko zmniejsza siłę przyciągania. Zbyt wysoka temperatura może trwale uszkodzić magnes.
Udźwig mierzono używając wypolerowanej blachy o właściwej grubości (min. 20 mm), przy działaniu siły prostopadłej, z kolei przy działaniu siły na zsuwanie udźwig jest mniejszy nawet pięciokrotnie. Ponadto, nawet drobny odstęp pomiędzy powierzchnią magnesu, a blachą zmniejsza udźwig.
Ostrzeżenia
Ryzyko uczulenia
Ostrzeżenie dla alergików: powłoka Ni-Cu-Ni ma w składzie nikiel. W przypadku wystąpienia świądu lub podrażnienia, należy natychmiast zakończyć pracę z magnesami i użyć środków ochronnych.
Pył jest łatwopalny
Zagrożenie pożarowe: Pył neodymowy jest wysoce łatwopalny. Nie poddawaj magnesów obróbce amatorsko, gdyż może to wywołać pożar.
Smartfony i tablety
Urządzenia nawigacyjne są wyjątkowo podatne na wpływ magnesów. Bliskie sąsiedztwo z silnym magnesem może rozalibrować sensory w Twoim telefonie.
Podatność na pękanie
Magnesy neodymowe to spiek proszkowy, co oznacza, że są bardzo kruche. Upadek dwóch magnesów spowoduje ich rozkruszenie na drobne kawałki.
Świadome użytkowanie
Używaj magnesy świadomie. Ich ogromna siła może zaskoczyć nawet profesjonalistów. Zachowaj czujność i nie lekceważ ich siły.
Poważne obrażenia
Ryzyko obrażeń: Siła przyciągania jest tak duża, że może spowodować krwiaki, zgniecenia, a nawet złamania kości. Stosuj solidne rękawice ochronne.
Limity termiczne
Kontroluj ciepło. Ekspozycja magnesu powyżej 80 stopni Celsjusza zdegraduje jego domenę magnetyczną i udźwig.
Zagrożenie dla najmłodszych
Koniecznie chroń magnesy przed dostępem dzieci. Ryzyko zadławienia jest bardzo duże, a konsekwencje połączenia się magnesów wewnątrz organizmu są dramatyczne.
Interferencja medyczna
Osoby z rozrusznikiem serca muszą utrzymać duży odstęp od magnesów. Pole magnetyczne może rozregulować działanie implantu.
Zagrożenie dla elektroniki
Ekstremalne oddziaływanie może usunąć informacje na kartach kredytowych, dyskach twardych i innych pamięciach. Zachowaj odstęp min. 10 cm.
