MP 40x22x10 / N38 - magnes neodymowy pierścieniowy
magnes neodymowy pierścieniowy
Numer katalogowy 030344
GTIN/EAN: 5906301812296
Średnica
40 mm [±0,1 mm]
Średnica wewnętrzna Ø
22 mm [±0,1 mm]
Wysokość
10 mm [±0,1 mm]
Waga
65.74 g
Kierunek magnesowania
↑ osiowy
Udźwig
19.34 kg / 189.71 N
Indukcja magnetyczna
277.22 mT / 2772 Gs
Powłoka
[NiCuNi] nikiel
40.59 ZŁ z VAT / szt. + cena za transport
33.00 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?
Skontaktuj się z nami telefonicznie
+48 888 99 98 98
ewentualnie skontaktuj się za pomocą
formularz zgłoszeniowy
w sekcji kontakt.
Parametry a także wygląd magnesów neodymowych obliczysz dzięki naszemu
narzędziu online do obliczeń.
Zamów do 14:00, a wyślemy dziś!
Dane techniczne - MP 40x22x10 / N38 - magnes neodymowy pierścieniowy
Specyfikacja / charakterystyka - MP 40x22x10 / N38 - magnes neodymowy pierścieniowy
| właściwości | wartości |
|---|---|
| Nr kat. | 030344 |
| GTIN/EAN | 5906301812296 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Średnica | 40 mm [±0,1 mm] |
| Średnica wewnętrzna Ø | 22 mm [±0,1 mm] |
| Wysokość | 10 mm [±0,1 mm] |
| Waga | 65.74 g |
| Kierunek magnesowania | ↑ osiowy |
| Udźwig ~ ? | 19.34 kg / 189.71 N |
| Indukcja magnetyczna ~ ? | 277.22 mT / 2772 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [min. - maks.] ? | 12.2-12.6 | kGs |
| remanencja Br [min. - maks.] ? | 1220-1260 | mT |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [min. - maks.] ? | 36-38 | BH max MGOe |
| gęstość energii [min. - maks.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Temperatura Curie TC | 312 - 380 | °C |
| Temperatura Curie TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅cm |
| Siła wyginania | 250 | MPa |
| Wytrzymałość na ściskanie | 1000~1100 | MPa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 10-6 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Analiza inżynierska magnesu - raport
Przedstawione informacje są rezultat symulacji inżynierskiej. Wyniki oparte są na algorytmach dla materiału Nd2Fe14B. Rzeczywiste osiągi mogą nieznacznie różnić się od wartości teoretycznych. Traktuj te wyliczenia jako wstępny drogowskaz przy projektowaniu systemów.
Tabela 1: Siła prostopadła statyczna (siła vs odległość) - wykres oddziaływania
MP 40x22x10 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg/lbs/g/N) | Status ryzyka |
|---|---|---|---|
| 0 mm |
5269 Gs
526.9 mT
|
19.34 kg / 42.64 lbs
19340.0 g / 189.7 N
|
niebezpieczny! |
| 1 mm |
5005 Gs
500.5 mT
|
17.46 kg / 38.48 lbs
17455.9 g / 171.2 N
|
niebezpieczny! |
| 2 mm |
4739 Gs
473.9 mT
|
15.65 kg / 34.50 lbs
15647.5 g / 153.5 N
|
niebezpieczny! |
| 3 mm |
4475 Gs
447.5 mT
|
13.95 kg / 30.75 lbs
13950.0 g / 136.8 N
|
niebezpieczny! |
| 5 mm |
3960 Gs
396.0 mT
|
10.93 kg / 24.09 lbs
10927.7 g / 107.2 N
|
niebezpieczny! |
| 10 mm |
2832 Gs
283.2 mT
|
5.59 kg / 12.32 lbs
5589.2 g / 54.8 N
|
uwaga |
| 15 mm |
1990 Gs
199.0 mT
|
2.76 kg / 6.09 lbs
2760.5 g / 27.1 N
|
uwaga |
| 20 mm |
1407 Gs
140.7 mT
|
1.38 kg / 3.04 lbs
1379.2 g / 13.5 N
|
niskie ryzyko |
| 30 mm |
745 Gs
74.5 mT
|
0.39 kg / 0.85 lbs
386.2 g / 3.8 N
|
niskie ryzyko |
| 50 mm |
268 Gs
26.8 mT
|
0.05 kg / 0.11 lbs
50.1 g / 0.5 N
|
niskie ryzyko |
Tabela 2: Siła równoległa zsuwania (ściana)
MP 40x22x10 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg/lbs/g/N) |
|---|---|---|
| 0 mm | Stal (~0.2) |
3.87 kg / 8.53 lbs
3868.0 g / 37.9 N
|
| 1 mm | Stal (~0.2) |
3.49 kg / 7.70 lbs
3492.0 g / 34.3 N
|
| 2 mm | Stal (~0.2) |
3.13 kg / 6.90 lbs
3130.0 g / 30.7 N
|
| 3 mm | Stal (~0.2) |
2.79 kg / 6.15 lbs
2790.0 g / 27.4 N
|
| 5 mm | Stal (~0.2) |
2.19 kg / 4.82 lbs
2186.0 g / 21.4 N
|
| 10 mm | Stal (~0.2) |
1.12 kg / 2.46 lbs
1118.0 g / 11.0 N
|
| 15 mm | Stal (~0.2) |
0.55 kg / 1.22 lbs
552.0 g / 5.4 N
|
| 20 mm | Stal (~0.2) |
0.28 kg / 0.61 lbs
276.0 g / 2.7 N
|
| 30 mm | Stal (~0.2) |
0.08 kg / 0.17 lbs
78.0 g / 0.8 N
|
| 50 mm | Stal (~0.2) |
0.01 kg / 0.02 lbs
10.0 g / 0.1 N
|
Tabela 3: Montaż pionowy (poślizg) - zachowanie na śliskim podłożu
MP 40x22x10 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg/lbs/g/N) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
5.80 kg / 12.79 lbs
5802.0 g / 56.9 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
3.87 kg / 8.53 lbs
3868.0 g / 37.9 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
1.93 kg / 4.26 lbs
1934.0 g / 19.0 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
9.67 kg / 21.32 lbs
9670.0 g / 94.9 N
|
Tabela 4: Grubość stali (nasycenie) - straty mocy
MP 40x22x10 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg/lbs/g/N) |
|---|---|---|
| 0.5 mm |
|
0.97 kg / 2.13 lbs
967.0 g / 9.5 N
|
| 1 mm |
|
2.42 kg / 5.33 lbs
2417.5 g / 23.7 N
|
| 2 mm |
|
4.84 kg / 10.66 lbs
4835.0 g / 47.4 N
|
| 3 mm |
|
7.25 kg / 15.99 lbs
7252.5 g / 71.1 N
|
| 5 mm |
|
12.09 kg / 26.65 lbs
12087.5 g / 118.6 N
|
| 10 mm |
|
19.34 kg / 42.64 lbs
19340.0 g / 189.7 N
|
| 11 mm |
|
19.34 kg / 42.64 lbs
19340.0 g / 189.7 N
|
| 12 mm |
|
19.34 kg / 42.64 lbs
19340.0 g / 189.7 N
|
Tabela 5: Praca w cieple (zachowanie materiału) - limit termiczny
MP 40x22x10 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig (kg/lbs/g/N) | Status |
|---|---|---|---|
| 20 °C | 0.0% |
19.34 kg / 42.64 lbs
19340.0 g / 189.7 N
|
OK |
| 40 °C | -2.2% |
18.91 kg / 41.70 lbs
18914.5 g / 185.6 N
|
OK |
| 60 °C | -4.4% |
18.49 kg / 40.76 lbs
18489.0 g / 181.4 N
|
OK |
| 80 °C | -6.6% |
18.06 kg / 39.82 lbs
18063.6 g / 177.2 N
|
|
| 100 °C | -28.8% |
13.77 kg / 30.36 lbs
13770.1 g / 135.1 N
|
Tabela 6: Dwa magnesy (odpychanie) - siły w układzie
MP 40x22x10 / N38
| Szczelina (mm) | Przyciąganie (kg/lbs) (N-S) | Opór ścinania (kg/lbs/g/N) | Odpychanie (kg/lbs) (N-N) |
|---|---|---|---|
| 0 mm |
171.37 kg / 377.80 lbs
5 920 Gs
|
25.71 kg / 56.67 lbs
25705 g / 252.2 N
|
N/A |
| 1 mm |
163.01 kg / 359.38 lbs
10 277 Gs
|
24.45 kg / 53.91 lbs
24452 g / 239.9 N
|
146.71 kg / 323.44 lbs
~0 Gs
|
| 2 mm |
154.67 kg / 341.00 lbs
10 011 Gs
|
23.20 kg / 51.15 lbs
23201 g / 227.6 N
|
139.21 kg / 306.90 lbs
~0 Gs
|
| 3 mm |
146.55 kg / 323.08 lbs
9 744 Gs
|
21.98 kg / 48.46 lbs
21982 g / 215.6 N
|
131.89 kg / 290.77 lbs
~0 Gs
|
| 5 mm |
131.00 kg / 288.81 lbs
9 213 Gs
|
19.65 kg / 43.32 lbs
19650 g / 192.8 N
|
117.90 kg / 259.92 lbs
~0 Gs
|
| 10 mm |
96.83 kg / 213.47 lbs
7 921 Gs
|
14.52 kg / 32.02 lbs
14524 g / 142.5 N
|
87.15 kg / 192.12 lbs
~0 Gs
|
| 20 mm |
49.53 kg / 109.18 lbs
5 665 Gs
|
7.43 kg / 16.38 lbs
7429 g / 72.9 N
|
44.57 kg / 98.27 lbs
~0 Gs
|
| 50 mm |
6.33 kg / 13.95 lbs
2 025 Gs
|
0.95 kg / 2.09 lbs
949 g / 9.3 N
|
5.69 kg / 12.55 lbs
~0 Gs
|
| 60 mm |
3.42 kg / 7.55 lbs
1 489 Gs
|
0.51 kg / 1.13 lbs
513 g / 5.0 N
|
3.08 kg / 6.79 lbs
~0 Gs
|
| 70 mm |
1.94 kg / 4.27 lbs
1 120 Gs
|
0.29 kg / 0.64 lbs
290 g / 2.8 N
|
1.74 kg / 3.84 lbs
~0 Gs
|
| 80 mm |
1.14 kg / 2.52 lbs
860 Gs
|
0.17 kg / 0.38 lbs
171 g / 1.7 N
|
1.03 kg / 2.27 lbs
~0 Gs
|
| 90 mm |
0.70 kg / 1.54 lbs
673 Gs
|
0.10 kg / 0.23 lbs
105 g / 1.0 N
|
0.63 kg / 1.39 lbs
~0 Gs
|
| 100 mm |
0.44 kg / 0.98 lbs
536 Gs
|
0.07 kg / 0.15 lbs
67 g / 0.7 N
|
0.40 kg / 0.88 lbs
~0 Gs
|
Tabela 7: Zagrożenia (implanty) - środki ostrożności
MP 40x22x10 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 24.0 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 18.5 cm |
| Zegarek mechaniczny | 20 Gs (2.0 mT) | 14.5 cm |
| Telefon / Smartfon | 40 Gs (4.0 mT) | 11.0 cm |
| Pilot do auta | 50 Gs (5.0 mT) | 10.5 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 4.5 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 3.5 cm |
Tabela 8: Dynamika (energia kinetyczna) - skutki zderzenia
MP 40x22x10 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
20.18 km/h
(5.61 m/s)
|
1.03 J | |
| 30 mm |
30.33 km/h
(8.43 m/s)
|
2.33 J | |
| 50 mm |
38.74 km/h
(10.76 m/s)
|
3.81 J | |
| 100 mm |
54.70 km/h
(15.20 m/s)
|
7.59 J |
Tabela 9: Trwałość powłoki antykorozyjnej
MP 40x22x10 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
Tabela 10: Dane elektryczne (Flux)
MP 40x22x10 / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 54 070 Mx | 540.7 µWb |
| Współczynnik Pc | 0.81 | Wysoki (Stabilny) |
Tabela 11: Zastosowanie podwodne
MP 40x22x10 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 19.34 kg | Standard |
| Woda (dno rzeki) |
22.14 kg
(+2.80 kg zysk z wyporności)
|
+14.5% |
1. Ześlizg (ściana)
*Ważne: Na powierzchni pionowej magnes zachowa tylko ułamek nominalnego udźwigu.
2. Wpływ grubości blachy
*Cienka blacha (np. blacha karoseryjna) wyraźnie redukuje udźwig magnesu.
3. Wytrzymałość temperaturowa
*Dla materiału N38 krytyczny próg to 80°C.
4. Krzywa odmagnesowania i punkt pracy (B-H)
wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 0.81
Powyższy wykres prezentuje charakterystykę magnetyczną materiału w drugim kwadrancie pętli histerezy. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.
Specyfikacja materiałowa
| żelazo (Fe) | 64% – 68% |
| neodym (Nd) | 29% – 32% |
| bor (B) | 1.1% – 1.2% |
| dysproz (Dy) | 0.5% – 2.0% |
| powłoka (Ni-Cu-Ni) | < 0.05% |
Ekologia i recykling (GPSR)
| recyklowalność (EoL) | 100% |
| surowce z recyklingu | ~10% (pre-cons) |
| ślad węglowy | low / zredukowany |
| kod odpadu (EWC) | 16 02 16 |
Sprawdź inne produkty
Zalety i wady magnesów neodymowych Nd2Fe14B.
Zalety
- Ich parametry są stabilne w czasie; po 10 latach eksploatacji zmniejszenie udźwigu to marginalne ~1%.
- Wyróżniają się niezwykłą odpornością na rozmagnesowanie, nawet w silnych polach zewnętrznych.
- Dzięki warstwie ochronnej (NiCuNi, złoto, Ag) mają nowoczesny, metaliczny wygląd.
- Generują skoncentrowane pole magnetyczne na swojej powierzchni, co jest ich kluczową cechą.
- Odpowiedni skład sprawia, że są odporne na wysokie temperatury (zależnie od kształtu, nawet do 230°C).
- Elastyczność kształtowania – można je produkować w dowolnych formach, idealnych do wymagań klienta.
- Znajdują powszechne zastosowanie w nowoczesnej technice – od napędów HDD i silników, po precyzyjną diagnostykę.
- Moc w skali mikro – ich mała masa nie przeszkadza w generowaniu dużej siły przyciągania.
Ograniczenia
- Należy uważać na wstrząsy – materiał jest kruchy i grozi pęknięciem. Ochrona w postaci obudowy to dobre rozwiązanie.
- Standardowe magnesy tracą moc powyżej 80°C. Jeśli wymagasz pracy w wyższych temperaturach, zastosuj serię [AH] (odporną do 230°C).
- Nie lubią wody – szybko rdzewieją. Jeśli planujesz montaż w ogrodzie, najlepszą opcją są magnesy w gumowej otulinie.
- Trudności montażowe: zamiast próbować robić otwory kruchy magnes, wybierz uchwytów w stalowej obudowie, które posiadają gotowe mocowania.
- Ryzyko połknięcia – drobne magnesy są groźne dla najmłodszych. Połknięcie kilku sztuk grozi operacją. Dodatkowo mogą utrudniać badania (np. rezonans).
- Cena – są droższe niż magnesy ferrytowe, co przy wielkich nakładach może być barierą.
Charakterystyka udźwigu
Maksymalna siła przyciągania magnesu – co ma na to wpływ?
- z zastosowaniem płyty ze miękkiej stali, która służy jako idealny przewodnik strumienia
- o grubości nie mniejszej niż 10 mm
- z płaszczyzną oczyszczoną i gładką
- w warunkach bezszczelinowych (powierzchnia do powierzchni)
- dla siły przyłożonej pod kątem prostym (w osi magnesu)
- przy temperaturze otoczenia ok. 20 stopni Celsjusza
Praktyczny udźwig: czynniki wpływające
- Szczelina – występowanie jakiejkolwiek warstwy (farba, brud, powietrze) działa jak izolator, co obniża udźwig gwałtownie (nawet o 50% przy 0,5 mm).
- Kąt odrywania – pamiętaj, że magnes najmocniej trzyma prostopadle. Przy działaniu sił bocznych, udźwig spada drastycznie, często do poziomu 20-30% wartości nominalnej.
- Grubość podłoża – dla pełnej efektywności, stal musi być odpowiednio gruba. Cienka blacha ogranicza siłę przyciągania (magnes „przebija” ją na wylot).
- Skład materiału – różne stopy przyciąga się identycznie. Dodatki stopowe pogarszają interakcję z magnesem.
- Gładkość podłoża – im równiejsza blacha, tym większa strefa kontaktu i wyższy udźwig. Nierówności działają jak mikroszczeliny.
- Wpływ temperatury – gorące środowisko osłabia siłę przyciągania. Zbyt wysoka temperatura może trwale uszkodzić magnes.
Udźwig mierzono z wykorzystaniem blachy o gładkiej powierzchni o optymalnej grubości (min. 20 mm), przy działaniu siły prostopadłej, natomiast przy działaniu siły na zsuwanie nośność jest mniejsza nawet pięciokrotnie. Dodatkowo, nawet minimalna przerwa między powierzchnią magnesu, a blachą zmniejsza siłę trzymania.
Bezpieczna praca z magnesami neodymowymi
Siła neodymu
Zachowaj rozwagę. Magnesy neodymowe działają z daleka i zwierają z ogromną siłą, często gwałtowniej niż zdążysz zareagować.
Siła zgniatająca
Chroń dłonie. Dwa duże magnesy złączą się z ogromną prędkością z siłą wielu ton, niszcząc wszystko na swojej drodze. Zachowaj ekstremalną uwagę!
Łamliwość magnesów
Mimo niklowej powłoki, neodym jest delikatny i nieodporny na uderzenia. Unikaj uderzeń, gdyż magnes może się rozpaść na drobiny.
Zakłócenia GPS i telefonów
Urządzenia nawigacyjne są niezwykle podatne na wpływ magnesów. Bezpośredni kontakt z silnym magnesem może rozalibrować sensory w Twoim telefonie.
Utrata mocy w cieple
Standardowe magnesy neodymowe (typ N) tracą moc po przekroczeniu temperatury 80°C. Proces ten jest nieodwracalny.
Samozapłon
Zagrożenie pożarowe: Pył neodymowy jest wysoce łatwopalny. Nie poddawaj magnesów obróbce amatorsko, gdyż może to wywołać pożar.
Implanty kardiologiczne
Dla posiadaczy implantów: Promieniowanie magnetyczne zakłóca elektronikę medyczną. Utrzymuj co najmniej 30 cm odstępu lub poproś inną osobę obsługę magnesów.
Uwaga: zadławienie
Zawsze zabezpiecz magnesy przed najmłodszymi. Ryzyko zadławienia jest bardzo duże, a konsekwencje połączenia się magnesów wewnątrz organizmu są nieodwracalne.
Reakcje alergiczne
Część populacji ma alergię kontaktową na pierwiastek nikiel, którym powlekane są standardowo nasze produkty. Dłuższy kontakt może skutkować wysypkę. Wskazane jest stosowanie rękawiczek ochronnych.
Ochrona urządzeń
Ochrona danych: Magnesy neodymowe mogą uszkodzić karty bankomatowe oraz delikatną elektronikę (rozruszniki serca, protezy słuchu, zegarki mechaniczne).
