MP 15x7/3.5x5 / N38 - magnes neodymowy pierścieniowy
magnes neodymowy pierścieniowy
Numer katalogowy 030390
GTIN/EAN: 5906301812302
Średnica
15 mm [±0,1 mm]
Średnica wewnętrzna Ø
7/3.5 mm [±0,1 mm]
Wysokość
5 mm [±0,1 mm]
Waga
6.27 g
Kierunek magnesowania
↑ osiowy
Udźwig
5.09 kg / 49.95 N
Indukcja magnetyczna
343.70 mT / 3437 Gs
Powłoka
[NiCuNi] nikiel
3.44 ZŁ z VAT / szt. + cena za transport
2.80 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?
Zadzwoń już teraz
+48 888 99 98 98
alternatywnie pisz za pomocą
formularz zapytania
na stronie kontaktowej.
Moc i budowę magnesów neodymowych obliczysz u nas w
modułowym kalkulatorze.
Realizacja tego samego dnia przy zamówieniu do 14:00.
Dane techniczne - MP 15x7/3.5x5 / N38 - magnes neodymowy pierścieniowy
Specyfikacja / charakterystyka - MP 15x7/3.5x5 / N38 - magnes neodymowy pierścieniowy
| właściwości | wartości |
|---|---|
| Nr kat. | 030390 |
| GTIN/EAN | 5906301812302 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Średnica | 15 mm [±0,1 mm] |
| Średnica wewnętrzna Ø | 7/3.5 mm [±0,1 mm] |
| Wysokość | 5 mm [±0,1 mm] |
| Waga | 6.27 g |
| Kierunek magnesowania | ↑ osiowy |
| Udźwig ~ ? | 5.09 kg / 49.95 N |
| Indukcja magnetyczna ~ ? | 343.70 mT / 3437 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [min. - maks.] ? | 12.2-12.6 | kGs |
| remanencja Br [min. - maks.] ? | 1220-1260 | mT |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [min. - maks.] ? | 36-38 | BH max MGOe |
| gęstość energii [min. - maks.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Temperatura Curie TC | 312 - 380 | °C |
| Temperatura Curie TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅cm |
| Siła wyginania | 250 | MPa |
| Wytrzymałość na ściskanie | 1000~1100 | MPa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 10-6 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Symulacja fizyczna magnesu - raport
Przedstawione dane są wynik kalkulacji inżynierskiej. Wyniki bazują na modelach dla klasy Nd2Fe14B. Rzeczywiste osiągi mogą odbiegać od wyników symulacji. Traktuj te wyliczenia jako pomoc pomocniczą podczas planowania montażu.
Tabela 1: Udźwig statyczny prostopadły (siła vs dystans) - wykres oddziaływania
MP 15x7/3.5x5 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg/lbs/g/N) | Status ryzyka |
|---|---|---|---|
| 0 mm |
3054 Gs
305.4 mT
|
5.09 kg / 11.22 lbs
5090.0 g / 49.9 N
|
uwaga |
| 1 mm |
2736 Gs
273.6 mT
|
4.09 kg / 9.01 lbs
4085.7 g / 40.1 N
|
uwaga |
| 2 mm |
2372 Gs
237.2 mT
|
3.07 kg / 6.77 lbs
3069.9 g / 30.1 N
|
uwaga |
| 3 mm |
2007 Gs
200.7 mT
|
2.20 kg / 4.84 lbs
2197.4 g / 21.6 N
|
uwaga |
| 5 mm |
1377 Gs
137.7 mT
|
1.03 kg / 2.28 lbs
1034.5 g / 10.1 N
|
słaby uchwyt |
| 10 mm |
526 Gs
52.6 mT
|
0.15 kg / 0.33 lbs
151.3 g / 1.5 N
|
słaby uchwyt |
| 15 mm |
232 Gs
23.2 mT
|
0.03 kg / 0.06 lbs
29.3 g / 0.3 N
|
słaby uchwyt |
| 20 mm |
118 Gs
11.8 mT
|
0.01 kg / 0.02 lbs
7.6 g / 0.1 N
|
słaby uchwyt |
| 30 mm |
42 Gs
4.2 mT
|
0.00 kg / 0.00 lbs
0.9 g / 0.0 N
|
słaby uchwyt |
| 50 mm |
10 Gs
1.0 mT
|
0.00 kg / 0.00 lbs
0.1 g / 0.0 N
|
słaby uchwyt |
Tabela 2: Równoległa siła zsuwania (ściana)
MP 15x7/3.5x5 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg/lbs/g/N) |
|---|---|---|
| 0 mm | Stal (~0.2) |
1.02 kg / 2.24 lbs
1018.0 g / 10.0 N
|
| 1 mm | Stal (~0.2) |
0.82 kg / 1.80 lbs
818.0 g / 8.0 N
|
| 2 mm | Stal (~0.2) |
0.61 kg / 1.35 lbs
614.0 g / 6.0 N
|
| 3 mm | Stal (~0.2) |
0.44 kg / 0.97 lbs
440.0 g / 4.3 N
|
| 5 mm | Stal (~0.2) |
0.21 kg / 0.45 lbs
206.0 g / 2.0 N
|
| 10 mm | Stal (~0.2) |
0.03 kg / 0.07 lbs
30.0 g / 0.3 N
|
| 15 mm | Stal (~0.2) |
0.01 kg / 0.01 lbs
6.0 g / 0.1 N
|
| 20 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
2.0 g / 0.0 N
|
| 30 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
Tabela 3: Montaż pionowy (poślizg) - udźwig wertykalny
MP 15x7/3.5x5 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg/lbs/g/N) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
1.53 kg / 3.37 lbs
1527.0 g / 15.0 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
1.02 kg / 2.24 lbs
1018.0 g / 10.0 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
0.51 kg / 1.12 lbs
509.0 g / 5.0 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
2.55 kg / 5.61 lbs
2545.0 g / 25.0 N
|
Tabela 4: Grubość stali (wpływ podłoża) - dobór blachy
MP 15x7/3.5x5 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg/lbs/g/N) |
|---|---|---|
| 0.5 mm |
|
0.51 kg / 1.12 lbs
509.0 g / 5.0 N
|
| 1 mm |
|
1.27 kg / 2.81 lbs
1272.5 g / 12.5 N
|
| 2 mm |
|
2.55 kg / 5.61 lbs
2545.0 g / 25.0 N
|
| 3 mm |
|
3.82 kg / 8.42 lbs
3817.5 g / 37.4 N
|
| 5 mm |
|
5.09 kg / 11.22 lbs
5090.0 g / 49.9 N
|
| 10 mm |
|
5.09 kg / 11.22 lbs
5090.0 g / 49.9 N
|
| 11 mm |
|
5.09 kg / 11.22 lbs
5090.0 g / 49.9 N
|
| 12 mm |
|
5.09 kg / 11.22 lbs
5090.0 g / 49.9 N
|
Tabela 5: Praca w cieple (zachowanie materiału) - próg odporności
MP 15x7/3.5x5 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig (kg/lbs/g/N) | Status |
|---|---|---|---|
| 20 °C | 0.0% |
5.09 kg / 11.22 lbs
5090.0 g / 49.9 N
|
OK |
| 40 °C | -2.2% |
4.98 kg / 10.97 lbs
4978.0 g / 48.8 N
|
OK |
| 60 °C | -4.4% |
4.87 kg / 10.73 lbs
4866.0 g / 47.7 N
|
|
| 80 °C | -6.6% |
4.75 kg / 10.48 lbs
4754.1 g / 46.6 N
|
|
| 100 °C | -28.8% |
3.62 kg / 7.99 lbs
3624.1 g / 35.6 N
|
Tabela 6: Interakcja magnes-magnes (odpychanie) - zasięg pola
MP 15x7/3.5x5 / N38
| Szczelina (mm) | Przyciąganie (kg/lbs) (N-S) | Siła ścinająca (kg/lbs/g/N) | Odpychanie (kg/lbs) (N-N) |
|---|---|---|---|
| 0 mm |
8.17 kg / 18.00 lbs
4 643 Gs
|
1.22 kg / 2.70 lbs
1225 g / 12.0 N
|
N/A |
| 1 mm |
7.39 kg / 16.29 lbs
5 810 Gs
|
1.11 kg / 2.44 lbs
1108 g / 10.9 N
|
6.65 kg / 14.66 lbs
~0 Gs
|
| 2 mm |
6.55 kg / 14.45 lbs
5 472 Gs
|
0.98 kg / 2.17 lbs
983 g / 9.6 N
|
5.90 kg / 13.01 lbs
~0 Gs
|
| 3 mm |
5.72 kg / 12.62 lbs
5 113 Gs
|
0.86 kg / 1.89 lbs
858 g / 8.4 N
|
5.15 kg / 11.35 lbs
~0 Gs
|
| 5 mm |
4.19 kg / 9.23 lbs
4 374 Gs
|
0.63 kg / 1.38 lbs
628 g / 6.2 N
|
3.77 kg / 8.31 lbs
~0 Gs
|
| 10 mm |
1.66 kg / 3.66 lbs
2 753 Gs
|
0.25 kg / 0.55 lbs
249 g / 2.4 N
|
1.49 kg / 3.29 lbs
~0 Gs
|
| 20 mm |
0.24 kg / 0.54 lbs
1 053 Gs
|
0.04 kg / 0.08 lbs
36 g / 0.4 N
|
0.22 kg / 0.48 lbs
~0 Gs
|
| 50 mm |
0.00 kg / 0.01 lbs
134 Gs
|
0.00 kg / 0.00 lbs
1 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 60 mm |
0.00 kg / 0.00 lbs
83 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 70 mm |
0.00 kg / 0.00 lbs
55 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 80 mm |
0.00 kg / 0.00 lbs
38 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 90 mm |
0.00 kg / 0.00 lbs
27 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 100 mm |
0.00 kg / 0.00 lbs
20 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
Tabela 7: Bezpieczeństwo (BHP) (implanty) - środki ostrożności
MP 15x7/3.5x5 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 6.5 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 5.5 cm |
| Zegarek mechaniczny | 20 Gs (2.0 mT) | 4.0 cm |
| Telefon / Smartfon | 40 Gs (4.0 mT) | 3.5 cm |
| Immobilizer | 50 Gs (5.0 mT) | 3.0 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 1.5 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 1.0 cm |
Tabela 8: Zderzenia (energia kinetyczna) - skutki zderzenia
MP 15x7/3.5x5 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
29.26 km/h
(8.13 m/s)
|
0.21 J | |
| 30 mm |
49.78 km/h
(13.83 m/s)
|
0.60 J | |
| 50 mm |
64.25 km/h
(17.85 m/s)
|
1.00 J | |
| 100 mm |
90.87 km/h
(25.24 m/s)
|
2.00 J |
Tabela 9: Specyfikacja ochrony powierzchni
MP 15x7/3.5x5 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
Tabela 10: Dane elektryczne (Strumień)
MP 15x7/3.5x5 / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 4 791 Mx | 47.9 µWb |
| Współczynnik Pc | 0.39 | Niski (Płaski) |
Tabela 11: Zastosowanie podwodne
MP 15x7/3.5x5 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 5.09 kg | Standard |
| Woda (dno rzeki) |
5.83 kg
(+0.74 kg zysk z wyporności)
|
+14.5% |
1. Montaż na ścianie (ześlizg)
*Ważne: Na powierzchni pionowej magnes utrzyma tylko ~20-30% nominalnego udźwigu.
2. Efektywność, a grubość stali
*Zbyt cienki metal (np. obudowa PC 0.5mm) drastycznie osłabia udźwig magnesu.
3. Spadek mocy w temperaturze
*Dla standardowych magnesów granica bezpieczeństwa to 80°C.
4. Krzywa odmagnesowania i punkt pracy (B-H)
wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 0.39
Niniejsza symulacja obrazuje stabilność magnetyczną wybranego magnesu w konkretnych warunkach geometrycznych. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.
Skład chemiczny materiału
| żelazo (Fe) | 64% – 68% |
| neodym (Nd) | 29% – 32% |
| bor (B) | 1.1% – 1.2% |
| dysproz (Dy) | 0.5% – 2.0% |
| powłoka (Ni-Cu-Ni) | < 0.05% |
Zrównoważony rozwój
| recyklowalność (EoL) | 100% |
| surowce z recyklingu | ~10% (pre-cons) |
| ślad węglowy | low / zredukowany |
| kod odpadu (EWC) | 16 02 16 |
Inne oferty
Zalety oraz wady magnesów neodymowych Nd2Fe14B.
Mocne strony
- Zachowują swoje właściwości przez lata – szacuje się, że po dekadzie tracą na sile o symboliczny 1%.
- Są stabilne magnetycznie, gdyż wykazują wysoką odporność na pola rozmagnesowujące.
- Dzięki warstwie ochronnej (NiCuNi, złoto, Ag) zyskują nowoczesny, metaliczny wygląd.
- Oferują maksymalną indukcję magnetyczną bezpośrednio na powierzchni, co przekłada się na ogromną siłę.
- Specjalna mieszanka pierwiastków sprawia, że wykazują odporność na wysokie temperatury (zależnie od kształtu, nawet do 230°C).
- Można je precyzyjnie obrabiać do niestandardowych wymiarów, co ułatwia ich adaptację w skomplikowanych urządzeniach.
- Znajdują powszechne zastosowanie w nowoczesnej technice – od napędów HDD i motorów elektrycznych, po precyzyjną diagnostykę.
- Dzięki kompaktowości, zajmują mało miejsca, a jednocześnie gwarantują silne pole.
Minusy
- Należy uważać na wstrząsy – materiał jest kruchy i grozi pęknięciem. Ochrona w postaci obudowy to dobre rozwiązanie.
- Wysoka temperatura to wróg neodymów – powyżej 80°C tracą właściwości. Do zadań specjalnych polecamy wersje odporne [AH], działającą stabilnie aż do 230°C.
- Podatność na wilgoć skutkuje utlenianiem. Do zadań zewnętrznych rekomendujemy wyłącznie magnesy zabezpieczone antykorozyjnie (plastik/guma).
- Ze względu na twardość, nie zaleca się obróbki mechanicznej magnesu. Prościej użyć magnesu wklejonego w stalowy kubek z gwintem.
- Ryzyko połknięcia – małe elementy są groźne dla dzieci. Połknięcie kilku sztuk grozi poważnymi obrażeniami. Dodatkowo mogą utrudniać badania (np. rezonans).
- Cena – są droższe niż magnesy ferrytowe, co przy produkcji masowej może być istotnym kosztem.
Analiza siły trzymania
Siła oderwania magnesu w optymalnych warunkach – co się na to składa?
- przy użyciu blachy ze specjalnej stali pomiarowej, zapewniającej maksymalne skupienie pola
- której grubość wynosi ok. 10 mm
- charakteryzującej się brakiem chropowatości
- bez najmniejszej szczeliny pomiędzy magnesem a stalą
- przy osiowym wektorze siły (kąt 90 stopni)
- w stabilnej temperaturze pokojowej
Determinanty praktycznego udźwigu magnesu
- Dystans (pomiędzy magnesem a metalem), ponieważ nawet niewielka odległość (np. 0,5 mm) powoduje zmniejszenie udźwigu nawet o 50% (dotyczy to także farby, rdzy czy zanieczyszczeń).
- Kąt przyłożenia siły – największą siłę uzyskujemy tylko przy ciągnięciu pod kątem 90°. Siła ścinająca magnesu po blasze jest standardowo wielokrotnie niższa (ok. 1/5 udźwigu).
- Grubość elementu – dla pełnej efektywności, stal musi być odpowiednio gruba. Cienka blacha ogranicza udźwig (magnes „przebija” ją na wylot).
- Typ metalu – różne stopy reaguje tak samo. Dodatki stopowe pogarszają efekt przyciągania.
- Gładkość podłoża – im równiejsza blacha, tym lepsze przyleganie i wyższy udźwig. Nierówności tworzą dystans powietrzny.
- Otoczenie termiczne – wzrost temperatury skutkuje osłabieniem indukcji. Warto sprawdzić maksymalną temperaturę pracy dla danego modelu.
Siłę trzymania testowano na powierzchni blachy o grubości 20 mm, kiedy przyłożono siłę prostopadłą, z kolei przy siłach działających równolegle nośność jest mniejsza nawet 75%. Ponadto, nawet drobny odstęp między powierzchnią magnesu, a blachą obniża nośność.
Środki ostrożności podczas pracy przy magnesach z neodymem
Moc przyciągania
Postępuj ostrożnie. Magnesy neodymowe działają z dużej odległości i łączą się z impetem, często gwałtowniej niż zdążysz zareagować.
Kompas i GPS
Ważna informacja: magnesy neodymowe generują pole, które dezorientują elektronikę precyzyjną. Zachowaj odpowiednią odległość od komórki, tabletu i nawigacji.
Pole magnetyczne a elektronika
Bardzo silne pole magnetyczne może usunąć informacje na kartach płatniczych, nośnikach HDD i innych nośnikach magnetycznych. Trzymaj dystans min. 10 cm.
Temperatura pracy
Monitoruj warunki termiczne. Podgrzanie magnesu powyżej 80 stopni Celsjusza zniszczy jego domenę magnetyczną i siłę przyciągania.
Ryzyko zmiażdżenia
Duże magnesy mogą połamać palce błyskawicznie. Absolutnie nie wkładaj dłoni między dwa przyciągające się elementy.
Chronić przed dziećmi
Zawsze zabezpiecz magnesy przed najmłodszymi. Ryzyko zadławienia jest wysokie, a skutki połączenia się magnesów wewnątrz organizmu są nieodwracalne.
Samozapłon
Pył powstający podczas obróbki magnesów jest samozapalny. Unikaj wiercenia w magnesach w warunkach domowych.
Alergia na nikiel
Wiedza medyczna potwierdza, że nikiel (typowe wykończenie magnesów) jest częstą przyczyną uczuleń. Jeśli jesteś alergikiem, unikaj trzymania magnesów gołą dłonią lub wybierz magnesy powlekane tworzywem.
Magnesy są kruche
Magnesy neodymowe to spiek proszkowy, co oznacza, że są podatne na pęknięcia. Upadek dwóch magnesów wywoła ich pęknięcie na drobne kawałki.
Interferencja medyczna
Uwaga zdrowotna: Magnesy neodymowe mogą dezaktywować stymulatory i defibrylatory. Unikaj kontaktu, jeśli posiadasz implanty elektroniczne.
