MP 15x7/3.5x5 / N38 - magnes neodymowy pierścieniowy
magnes neodymowy pierścieniowy
Numer katalogowy 030390
GTIN/EAN: 5906301812302
Średnica
15 mm [±0,1 mm]
Średnica wewnętrzna Ø
7/3.5 mm [±0,1 mm]
Wysokość
5 mm [±0,1 mm]
Waga
6.27 g
Kierunek magnesowania
↑ osiowy
Udźwig
5.09 kg / 49.95 N
Indukcja magnetyczna
343.70 mT / 3437 Gs
Powłoka
[NiCuNi] nikiel
3.44 ZŁ z VAT / szt. + cena za transport
2.80 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?
Zadzwoń już teraz
+48 22 499 98 98
lub napisz korzystając z
formularz zapytania
na stronie kontakt.
Parametry oraz formę magnesu neodymowego wyliczysz dzięki naszemu
kalkulatorze magnetycznym.
Zamów do 14:00, a wyślemy dziś!
Parametry techniczne produktu - MP 15x7/3.5x5 / N38 - magnes neodymowy pierścieniowy
Specyfikacja / charakterystyka - MP 15x7/3.5x5 / N38 - magnes neodymowy pierścieniowy
| właściwości | wartości |
|---|---|
| Nr kat. | 030390 |
| GTIN/EAN | 5906301812302 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Średnica | 15 mm [±0,1 mm] |
| Średnica wewnętrzna Ø | 7/3.5 mm [±0,1 mm] |
| Wysokość | 5 mm [±0,1 mm] |
| Waga | 6.27 g |
| Kierunek magnesowania | ↑ osiowy |
| Udźwig ~ ? | 5.09 kg / 49.95 N |
| Indukcja magnetyczna ~ ? | 343.70 mT / 3437 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [min. - maks.] ? | 12.2-12.6 | kGs |
| remanencja Br [min. - maks.] ? | 1220-1260 | mT |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [min. - maks.] ? | 36-38 | BH max MGOe |
| gęstość energii [min. - maks.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Temperatura Curie TC | 312 - 380 | °C |
| Temperatura Curie TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅cm |
| Siła wyginania | 250 | MPa |
| Wytrzymałość na ściskanie | 1000~1100 | MPa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 10-6 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Symulacja inżynierska magnesu neodymowego - raport
Niniejsze informacje stanowią bezpośredni efekt symulacji matematycznej. Wyniki oparte są na modelach dla klasy Nd2Fe14B. Rzeczywiste warunki mogą się różnić. Traktuj te dane jako wstępny drogowskaz podczas planowania montażu.
Tabela 1: Siła prostopadła statyczna (siła vs dystans) - wykres oddziaływania
MP 15x7/3.5x5 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg/lbs/g/N) | Status ryzyka |
|---|---|---|---|
| 0 mm |
3054 Gs
305.4 mT
|
5.09 kg / 11.22 lbs
5090.0 g / 49.9 N
|
średnie ryzyko |
| 1 mm |
2736 Gs
273.6 mT
|
4.09 kg / 9.01 lbs
4085.7 g / 40.1 N
|
średnie ryzyko |
| 2 mm |
2372 Gs
237.2 mT
|
3.07 kg / 6.77 lbs
3069.9 g / 30.1 N
|
średnie ryzyko |
| 3 mm |
2007 Gs
200.7 mT
|
2.20 kg / 4.84 lbs
2197.4 g / 21.6 N
|
średnie ryzyko |
| 5 mm |
1377 Gs
137.7 mT
|
1.03 kg / 2.28 lbs
1034.5 g / 10.1 N
|
słaby uchwyt |
| 10 mm |
526 Gs
52.6 mT
|
0.15 kg / 0.33 lbs
151.3 g / 1.5 N
|
słaby uchwyt |
| 15 mm |
232 Gs
23.2 mT
|
0.03 kg / 0.06 lbs
29.3 g / 0.3 N
|
słaby uchwyt |
| 20 mm |
118 Gs
11.8 mT
|
0.01 kg / 0.02 lbs
7.6 g / 0.1 N
|
słaby uchwyt |
| 30 mm |
42 Gs
4.2 mT
|
0.00 kg / 0.00 lbs
0.9 g / 0.0 N
|
słaby uchwyt |
| 50 mm |
10 Gs
1.0 mT
|
0.00 kg / 0.00 lbs
0.1 g / 0.0 N
|
słaby uchwyt |
Tabela 2: Równoległa siła ześlizgu (ściana)
MP 15x7/3.5x5 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg/lbs/g/N) |
|---|---|---|
| 0 mm | Stal (~0.2) |
1.02 kg / 2.24 lbs
1018.0 g / 10.0 N
|
| 1 mm | Stal (~0.2) |
0.82 kg / 1.80 lbs
818.0 g / 8.0 N
|
| 2 mm | Stal (~0.2) |
0.61 kg / 1.35 lbs
614.0 g / 6.0 N
|
| 3 mm | Stal (~0.2) |
0.44 kg / 0.97 lbs
440.0 g / 4.3 N
|
| 5 mm | Stal (~0.2) |
0.21 kg / 0.45 lbs
206.0 g / 2.0 N
|
| 10 mm | Stal (~0.2) |
0.03 kg / 0.07 lbs
30.0 g / 0.3 N
|
| 15 mm | Stal (~0.2) |
0.01 kg / 0.01 lbs
6.0 g / 0.1 N
|
| 20 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
2.0 g / 0.0 N
|
| 30 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
Tabela 3: Siła na ścianie (ścinanie) - zachowanie na śliskim podłożu
MP 15x7/3.5x5 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg/lbs/g/N) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
1.53 kg / 3.37 lbs
1527.0 g / 15.0 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
1.02 kg / 2.24 lbs
1018.0 g / 10.0 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
0.51 kg / 1.12 lbs
509.0 g / 5.0 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
2.55 kg / 5.61 lbs
2545.0 g / 25.0 N
|
Tabela 4: Efektywność materiałowa (wpływ podłoża) - straty mocy
MP 15x7/3.5x5 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg/lbs/g/N) |
|---|---|---|
| 0.5 mm |
|
0.51 kg / 1.12 lbs
509.0 g / 5.0 N
|
| 1 mm |
|
1.27 kg / 2.81 lbs
1272.5 g / 12.5 N
|
| 2 mm |
|
2.55 kg / 5.61 lbs
2545.0 g / 25.0 N
|
| 3 mm |
|
3.82 kg / 8.42 lbs
3817.5 g / 37.4 N
|
| 5 mm |
|
5.09 kg / 11.22 lbs
5090.0 g / 49.9 N
|
| 10 mm |
|
5.09 kg / 11.22 lbs
5090.0 g / 49.9 N
|
| 11 mm |
|
5.09 kg / 11.22 lbs
5090.0 g / 49.9 N
|
| 12 mm |
|
5.09 kg / 11.22 lbs
5090.0 g / 49.9 N
|
Tabela 5: Stabilność termiczna (stabilność) - próg odporności
MP 15x7/3.5x5 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig (kg/lbs/g/N) | Status |
|---|---|---|---|
| 20 °C | 0.0% |
5.09 kg / 11.22 lbs
5090.0 g / 49.9 N
|
OK |
| 40 °C | -2.2% |
4.98 kg / 10.97 lbs
4978.0 g / 48.8 N
|
OK |
| 60 °C | -4.4% |
4.87 kg / 10.73 lbs
4866.0 g / 47.7 N
|
|
| 80 °C | -6.6% |
4.75 kg / 10.48 lbs
4754.1 g / 46.6 N
|
|
| 100 °C | -28.8% |
3.62 kg / 7.99 lbs
3624.1 g / 35.6 N
|
Tabela 6: Dwa magnesy (odpychanie) - siły w układzie
MP 15x7/3.5x5 / N38
| Szczelina (mm) | Przyciąganie (kg/lbs) (N-S) | Siła ścinająca (kg/lbs/g/N) | Odpychanie (kg/lbs) (N-N) |
|---|---|---|---|
| 0 mm |
8.17 kg / 18.00 lbs
4 643 Gs
|
1.22 kg / 2.70 lbs
1225 g / 12.0 N
|
N/A |
| 1 mm |
7.39 kg / 16.29 lbs
5 810 Gs
|
1.11 kg / 2.44 lbs
1108 g / 10.9 N
|
6.65 kg / 14.66 lbs
~0 Gs
|
| 2 mm |
6.55 kg / 14.45 lbs
5 472 Gs
|
0.98 kg / 2.17 lbs
983 g / 9.6 N
|
5.90 kg / 13.01 lbs
~0 Gs
|
| 3 mm |
5.72 kg / 12.62 lbs
5 113 Gs
|
0.86 kg / 1.89 lbs
858 g / 8.4 N
|
5.15 kg / 11.35 lbs
~0 Gs
|
| 5 mm |
4.19 kg / 9.23 lbs
4 374 Gs
|
0.63 kg / 1.38 lbs
628 g / 6.2 N
|
3.77 kg / 8.31 lbs
~0 Gs
|
| 10 mm |
1.66 kg / 3.66 lbs
2 753 Gs
|
0.25 kg / 0.55 lbs
249 g / 2.4 N
|
1.49 kg / 3.29 lbs
~0 Gs
|
| 20 mm |
0.24 kg / 0.54 lbs
1 053 Gs
|
0.04 kg / 0.08 lbs
36 g / 0.4 N
|
0.22 kg / 0.48 lbs
~0 Gs
|
| 50 mm |
0.00 kg / 0.01 lbs
134 Gs
|
0.00 kg / 0.00 lbs
1 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 60 mm |
0.00 kg / 0.00 lbs
83 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 70 mm |
0.00 kg / 0.00 lbs
55 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 80 mm |
0.00 kg / 0.00 lbs
38 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 90 mm |
0.00 kg / 0.00 lbs
27 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 100 mm |
0.00 kg / 0.00 lbs
20 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
Tabela 7: Strefy ochronne (elektronika) - środki ostrożności
MP 15x7/3.5x5 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 6.5 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 5.5 cm |
| Zegarek mechaniczny | 20 Gs (2.0 mT) | 4.0 cm |
| Telefon / Smartfon | 40 Gs (4.0 mT) | 3.5 cm |
| Immobilizer | 50 Gs (5.0 mT) | 3.0 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 1.5 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 1.0 cm |
Tabela 8: Energia uderzenia (energia kinetyczna) - skutki zderzenia
MP 15x7/3.5x5 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
29.26 km/h
(8.13 m/s)
|
0.21 J | |
| 30 mm |
49.78 km/h
(13.83 m/s)
|
0.60 J | |
| 50 mm |
64.25 km/h
(17.85 m/s)
|
1.00 J | |
| 100 mm |
90.87 km/h
(25.24 m/s)
|
2.00 J |
Tabela 9: Odporność na korozję
MP 15x7/3.5x5 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
Tabela 10: Dane elektryczne (Pc)
MP 15x7/3.5x5 / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 4 791 Mx | 47.9 µWb |
| Współczynnik Pc | 0.39 | Niski (Płaski) |
Tabela 11: Zastosowanie podwodne
MP 15x7/3.5x5 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 5.09 kg | Standard |
| Woda (dno rzeki) |
5.83 kg
(+0.74 kg zysk z wyporności)
|
+14.5% |
1. Montaż na ścianie (ześlizg)
*Ważne: Na powierzchni pionowej magnes utrzyma zaledwie ułamek siły oderwania.
2. Grubość podłoża
*Zbyt cienki metal (np. blacha karoseryjna) znacząco redukuje udźwig magnesu.
3. Stabilność termiczna
*Dla materiału N38 granica bezpieczeństwa to 80°C.
4. Krzywa odmagnesowania i punkt pracy (B-H)
wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 0.39
Niniejsza symulacja obrazuje stabilność magnetyczną wybranego magnesu w konkretnych warunkach geometrycznych. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.
Specyfikacja materiałowa
| żelazo (Fe) | 64% – 68% |
| neodym (Nd) | 29% – 32% |
| bor (B) | 1.1% – 1.2% |
| dysproz (Dy) | 0.5% – 2.0% |
| powłoka (Ni-Cu-Ni) | < 0.05% |
Dane środowiskowe
| recyklowalność (EoL) | 100% |
| surowce z recyklingu | ~10% (pre-cons) |
| ślad węglowy | low / zredukowany |
| kod odpadu (EWC) | 16 02 16 |
Zobacz też inne oferty
Zalety i wady magnesów neodymowych Nd2Fe14B.
Plusy
- Długowieczność to ich atut – po upływie dekady utrata siły magnetycznej wynosi zaledwie ~1% (teoretycznie).
- Są niewrażliwe na zewnętrzne zakłócenia, co czyni je odpornymi na rozmagnesowanie w trudnych warunkach.
- Powłoka ochronna (np. niklowa) zapewnia im atrakcyjny wygląd, co podnosi ich walory wizualne.
- Oferują maksymalną indukcję magnetyczną w punkcie styku, co przekłada się na skuteczność.
- Wersje specjalistyczne radzą sobie w temperaturach sięgających 230°C, zachowując swoje parametry.
- Duża swoboda w projektowaniu kształtu i wymiaru to ich wielka zaleta w inżynierii.
- Pełnią kluczową rolę w rozwoju technologii, będąc sercem generatorów, dysków i urządzeń ratujących życie.
- Dzięki kompaktowości, nie wymagają dużej przestrzeni, a jednocześnie gwarantują wysoką skuteczność.
Słabe strony
- Należy uważać na wstrząsy – materiał jest kruchy i grozi pęknięciem. Zabezpieczenie w postaci obudowy jest kluczowa.
- Ograniczenia termiczne – dla zwykłych magnesów limit to 80°C. W trudnych warunkach (do 230°C) należy używać modele z oznaczeniem [AH].
- Brak odporności na wodę skutkuje utlenianiem. Do zadań zewnętrznych rekomendujemy wyłącznie magnesy zabezpieczone antykorozyjnie (plastik/guma).
- Magnesy ciężko się obrabia – do montażu śrubowego służą specjalne uchwyty magnetyczne z wbudowanym gwintem.
- Uważaj na małe części – połknięcie wymaga interwencji chirurga. Mogą też być problemem przy badaniach lekarskich.
- Wyższa cena w porównaniu do ferrytów to ich minus, szczególnie przy zakupach hurtowych.
Parametry udźwigu
Najwyższa nośność magnesu – co się na to składa?
- przy kontakcie z zwory ze specjalnej stali pomiarowej, zapewniającej maksymalne skupienie pola
- której grubość to min. 10 mm
- z powierzchnią oczyszczoną i gładką
- bez żadnej warstwy izolującej pomiędzy magnesem a stalą
- podczas odrywania w kierunku pionowym do płaszczyzny mocowania
- w standardowej temperaturze otoczenia
Wpływ czynników na nośność magnesu w praktyce
- Odstęp (pomiędzy magnesem a metalem), ponieważ nawet mikroskopijna odległość (np. 0,5 mm) może spowodować drastyczny spadek udźwigu nawet o 50% (dotyczy to także farby, korozji czy brudu).
- Kąt przyłożenia siły – maksymalny parametr osiągamy tylko przy prostopadłym odrywaniu. Siła potrzebna do przesunięcia magnesu po blasze jest z reguły kilkukrotnie niższa (ok. 1/5 udźwigu).
- Grubość podłoża – aby wykorzystać 100% mocy, stal musi być wystarczająco masywna. Cienka blacha ogranicza siłę przyciągania (magnes „przebija” ją na wylot).
- Rodzaj materiału – najlepszym wyborem jest stal o wysokiej przenikalności. Stale nierdzewne mogą przyciągać słabiej.
- Stan powierzchni – powierzchnie gładkie gwarantują idealne doleganie, co zwiększa nasycenie pola. Nierówny metal zmniejszają efektywność.
- Temperatura – wzrost temperatury skutkuje osłabieniem siły. Warto sprawdzić maksymalną temperaturę pracy dla danego modelu.
Udźwig wyznaczano używając wypolerowanej blachy o optymalnej grubości (min. 20 mm), przy siłach działających pionowo, natomiast przy siłach działających równolegle siła trzymania jest mniejsza nawet 75%. Co więcej, nawet niewielka szczelina pomiędzy powierzchnią magnesu, a blachą zmniejsza siłę trzymania.
Środki ostrożności podczas pracy przy magnesach neodymowych
Kruchy spiek
Uwaga na odpryski. Magnesy mogą pęknąć przy niekontrolowanym uderzeniu, rozrzucając kawałki metalu w powietrze. Zalecamy okulary ochronne.
Moc przyciągania
Używaj magnesy odpowiedzialnie. Ich ogromna siła może zszokować nawet doświadczonych użytkowników. Planuj ruchy i nie lekceważ ich siły.
Nadwrażliwość na metale
Pewna grupa użytkowników posiada alergię kontaktową na pierwiastek nikiel, którym pokryta jest większość nasze produkty. Dłuższy kontakt może wywołać zaczerwienienie skóry. Zalecamy stosowanie rękawiczek ochronnych.
To nie jest zabawka
Bezwzględnie chroń magnesy przed dostępem dzieci. Ryzyko zadławienia jest wysokie, a konsekwencje połączenia się magnesów wewnątrz organizmu są tragiczne.
Ryzyko zmiażdżenia
Chroń dłonie. Dwa duże magnesy zderzą z ogromną prędkością z siłą wielu ton, miażdżąc wszystko na swojej drodze. Zachowaj ekstremalną uwagę!
Kompas i GPS
Moduły GPS i smartfony są wyjątkowo wrażliwe na pole magnetyczne. Bliskie sąsiedztwo z silnym magnesem może rozalibrować czujniki w Twoim telefonie.
Bezpieczny dystans
Nie zbliżaj magnesów do dokumentów, komputera czy telewizora. Magnes może zniszczyć te urządzenia oraz skasować dane z kart.
Niebezpieczeństwo dla rozruszników
Pacjenci z rozrusznikiem serca muszą zachować duży odstęp od magnesów. Pole magnetyczne może zatrzymać działanie urządzenia ratującego życie.
Nie przegrzewaj magnesów
Typowe magnesy neodymowe (klasa N) tracą moc po przekroczeniu temperatury 80°C. Strata siły jest trwała i nieodwracalna.
Nie wierć w magnesach
Szlifowanie magnesów neodymowych grozi pożarem. Pył neodymowy utlenia się błyskawicznie z tlenem i jest trudny do gaszenia.
