magnesy neodymowe

Magnesy neodymowe Nd2Fe14B - oferta naszego sklepu. Wszystkie dostępne w naszym magazynie magnesy neodymowe znajdują się na spisie poniżej sprawdź cennik magnesów

uchwyt z magnesem do poszukiwań w wodzie F 400 POWER z silnym uchem bocznym i liną

Gdzie kupić mocny UM neodymowy magnes do poszukiwań? Uchwyty magnetyczne w solidnej i szczelnej obudowie ze stali nadają się doskonale do pracy w niesprzyjających warunkach klimatycznych, na przykład podczas opadów deszczu i śniegu sprawdź ofertę...

uchwyty magnetyczne

Magnetyczne uchwyty mogą być stosowane do usprawniania produkcji, odkrywania dna morza lub do poszukiwania skał kosmicznych ze złota. Mocowania to śruba 3x [M10] duża siła zobacz...

Obiecujemy wysyłkę zamówienia z magnesami tego samego dnia jeśli zamówienie przyjęte jest przed godziną 14:00 w dni pracujące.

logo Dhit sp. z o.o.
Produkt dostępny wysyłka jutro

SM 32x450 [2xM8] / N52 - separator magnetyczny

separator magnetyczny

Numer katalogowy 130465

GTIN: 5906301813361

0

Średnica Ø [±0,1 mm]

32 mm

Wysokość [±0,1 mm]

450 mm

Waga

2490 g

1414.50 z VAT / szt. + cena za transport

1150.00 ZŁ netto + 23% VAT / szt.

upusty ilościowe:

Potrzebujesz więcej?

cena od 1 szt.
1150.00 ZŁ
1414.50 ZŁ
cena od 5 szt.
1035.00 ZŁ
1273.05 ZŁ

Potrzebujesz porady?

Dzwoń do nas +48 22 499 98 98 alternatywnie napisz przez formularz zgłoszeniowy na stronie kontakt.
Właściwości a także formę elementów magnetycznych obliczysz dzięki naszemu modułowym kalkulatorze.

Zamówienia złożone do godziny 14:00 zostaną wysłane tego samego dnia roboczego.

SM 32x450 [2xM8] / N52 - separator magnetyczny

Specyfikacja/charakterystyka SM 32x450 [2xM8] / N52 - separator magnetyczny
właściwości
wartości
Nr kat.
130465
GTIN
5906301813361
Produkcja/Dystrybucja
Dhit sp. z o.o.
Kraj pochodzenia
Polska / Chiny / Niemcy
Kod celny
85059029
Średnica Ø
32 mm [±0,1 mm]
Wysokość
450 mm [±0,1 mm]
Waga
2490 g [±0,1 mm]
Tolerancja wykonania
± 0.1 mm

Własności magnetyczne materiału N52

właściwości
wartości
jednostki
remanencja Br [Min. - Max.] ?
14.2-14.7
kGs
remanencja Br [Min. - Max.] ?
1420-1470
T
koercja bHc ?
10.8-12.5
kOe
koercja bHc ?
860-995
kA/m
faktyczna wewnętrzna siła iHc
≥ 12
kOe
faktyczna wewnętrzna siła iHc
≥ 955
kA/m
gęstość energii [Min. - Max.] ?
48-53
BH max MGOe
gęstość energii [Min. - Max.] ?
380-422
BH max KJ/m
max. temperatura ?
≤ 80
°C

Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C

właściwości
wartości
jednostki
Twardość Vickersa
≥550
Hv
Gęstość
≥7.4
g/cm3
Curie Temperatura TC
312 - 380
°C
Curie Temperatura TF
593 - 716
°F
Specyficzna oporność
150
μΩ⋅Cm
Siła wyginania
250
Mpa
Wytrzymałość na ściskanie
1000~1100
Mpa
Rozszerzenie termiczne równoległe (∥) do orientacji (M)
(3-4) x 106
°C-1
Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M)
-(1-3) x 10-6
°C-1
Moduł Younga
1.7 x 104
kg/mm²

Porady zakupowe

Magnetyczny wkład do szuflady, nazywany również rdzeń magnetyczny, wykorzystuje działanie magnesów neodymowych, osadzonych w rurze ze stali nierdzewnej AISI304. Pozwala na wyłapywania cząstek ferromagnetycznych z substancji sypkich, takich jak mieszanki proszkowe. Mechanizm opiera się na polu magnetycznym magnesów NdFeB, które skutecznie wyłapują metaliczne zanieczyszczenia. Średnica rdzenia i odległości między magnesami określają siłę działania. Tego typu wkłady są powszechnie stosowane w przemyśle spożywczym, zapewniając niezawodne filtrowanie. Dzięki swojej konstrukcji wkład idealnie pasuje do szuflady magnetycznej, gwarantując wyjątkowo mocny efekt magnetyczny nawet w intensywnych procesach produkcyjnych.
Ogólnie rzecz biorąc, separatory magnetyczne służą do segregowania cząstek ferromagnetycznych. W przypadku puszek, które są wykonane z materiałów ferromagnetycznych, separator będzie w stanie je oddzielić. Jednakże, jeśli puszki są wykonane z materiałów nieferromagnetycznych, takich jak aluminium, separator magnetyczny nie będzie skuteczny.
Zgadza się, wałki magnetyczne są wykorzystywane w przemyśle spożywczym aby oczyścić z zanieczyszczeń metalowych, np. żelazne odłamki czy pył żelazny. Nasze pręty magnetyczne skonstruowane zostały z wytrzymałej stali przeciw kwasowej, EN 1.4301, dopuszczonej do kontaktu z żywnością.
Wałki magnetyczne, często nazywane separatorami magnetycznymi, są stosowane w produkcji żywności, separacji metali oraz recyklingu. Pomagają one w usuwaniu pyłu żelaznego podczas procesu separacji metali z innych odpadów.
Nasze wałki magnetyczne składają się z magnesu neodymowego osadzonego w cylindrze rury z nierzewnej stali grubość ścianki 1mm.
Z obu stron wałka magnetycznego będą gwintowanymi otworami M8, co umożliwia szybką instalację w maszynach lub szufladach filtrów magnetycznych. Możliwa jest również wersja "ślepa" przy separatorach ręcznych.
Pod względem cech magnetycznych, wałki różnią się pod względem gęstości strumienia indukcji, linii sił magnetycznych oraz obszaru działania magnetycznego. Produkujemy je w dwóch materiałach N42 i N52.
Często uważa się, że im większa moc magnesu, tym skuteczniej. Ale, siła mocy magnesu jest uzależniona od od wysokości zastosowanego magnesu oraz jakości materiału [N42] czy [N52], jak również zależy to od obszaru zastosowania oraz oczekiwanych potrzeb. Standardowa temperatura pracy wałka magnetycznego to 80°C.
W przypadku gdy magnes jest bardziej płaski, linie sił magnetycznych są bardziej skompresowane. Dla porównania, jeśli chodzi o grubszy magnes, linie sił będą rozciągnięte i rozciągają się na większą odległość.
Do tworzenia obudów separatorów magnetycznych - wałków, najczęściej stosuje się stal nierdzewną, w szczególności typy AISI 304, AISI 316 i AISI 316L.
W środowisku słoną wodą, stal AISI 316 jest zalecana ze względu na jej znakomitym właściwościom przeciwdziałającym korozji.
Wałki magnetyczne charakteryzują się unikalnym rozmieszczeniem biegunów oraz możliwością przyciągania substancji magnetycznych bezpośrednio na ich powierzchni, w odróżnieniu od pozostałych urządzeń które często używają bardziej skomplikowane systemy filtracji.
Techniczne oznaczenia i terminy dotyczące separatorów magnetycznych dotyczą m.in. skoku magnesów, biegunowości, i indukcji magnetycznej oraz typu stali zastosowanej.
Indukcję magnetyczną wałka pomiar przeprowadza się za pomocą teslametru czy gaussomierza z hallotronową sondą płaską, dążąc do znalezienia najwyższej wartości pola magnetycznego blisko bieguna magnetycznego. Wynik sprawdzamy w tabeli wartości – najniższa to N30. Wszystkie oznaczenia niżej N27 lub N25 sugerują na recykling nie spełniający normy - nie nadają się.
Neodymowe wałki magnetyczne oferują wiele zalet, w tym doskonałą efektywność w separacji, mocne pole magnetyczne oraz trwałość. Z drugiej strony, wśród wad można wymienić potrzebę regularnego czyszczenia, wyższy koszt oraz ewentualne trudności w instalacji.
Aby odpowiednio konserwować neodymowych wałków magnetycznych, należy czyszczenie ich regularnie z osadów, unikanie ekstremalnych temperatur powyżej 80 stopni, oraz chronienie przed wilgocią o ile gwinty nie są szczelne - w naszych są. Wałki posiadają wodoodporność IP67, więc jeśli są nieszczelne, magnesy wewnątrz mogą utlenić się i stracić swoją moc. Badania wałków należy przeprowadzać raz na 24 miesiące. Trzeba zachować ostrożność, gdyż istnieje ryzyko policzkowania się. Jeśli rura osłonowa ma grubość tylko 0,5 mm, może dojść do jej zużycia, co z kolei może prowadzić do problemy z rozszczelnieniem pręta magnetycznego i zanieczyszczeniem produktu. Skuteczny zasięg działania wałka odpowiada jego średnicy fi25mm to około 25mm aktywny zasięg dla fi32 to około 40mm.
Wałki magnetyczne to cylindryczne magnesy neodymowe umieszczone w osłonie z kwasoodpornej stali nierdzewnej, które wykorzystywane są do usuwania metalowych zanieczyszczeń z surowców sypkich i lejnych. Stosuje się je w branżach takich jak przemysł spożywczy, ceramika czy recykling, gdzie separacja metali jest kluczowa.

Wady i zalety neodymowych magnesów NdFeB.

Oprócz niezwykłej mocy, elementy magnetyczne wyróżniają się następujące zalety:

  • Nie tracą magnetyzmu, nawet przez około 10 lat – redukcja mocy wynosi tylko ~1% (teoretycznie),
  • Magnesy neodymowe wykazują się bardzo dużą odpornością na utratę właściwości magnetycznych przez zewnętrzne pola,
  • Poprzez zastosowanie refleksyjnej powłoki z niklu, element otrzymuje nowoczesny wygląd,
  • Neodymowe magnesy generują maksymalną indukcję magnetyczną na punkcie kontaktu, co zwiększa koncentrację siły,
  • Dzięki odporności na wysoką temperaturę, są w stanie funkcjonować (w zależności od kształtu) nawet w temperaturach do 230°C i powyżej...
  • Z uwagi na potencjał dokładnego kształtowania oraz personalizacji do zindywidualizowanych potrzeb, magnesy typu NdFeB mogą być formowane w wielu konfiguracjach geometrycznych, co zwiększa ich wszechstronność zastosowań,
  • Fundamentalne znaczenie w przemyśle high-tech – mają zastosowanie w napędach HDD, elektrycznych układach napędowych, systemach diagnostycznych, i zaawansowanych technicznie konstrukcjach.
  • Kompaktowość – przy niewielkich rozmiarach zapewniają skuteczne działanie, co sprawia, że są idealne do precyzyjnych aplikacji

Wady neodymowych magnesów:

  • Mają tendencję do pęknięć pod wpływem dużych uderzeń. Sugerujemy używanie metalowych obudów do ich zabezpieczania. Dzięki temu nie tylko są chronione przed uszkodzeniami, ale także ich trwałość jest poprawiana,
  • Ostrzegamy, że magnesy neodymowe mogą tracić swoją wytrzymałość w wysokich temperaturach. Aby temu zapobiec, radzimy nasze specjalistyczne magnesy [AH], które działają efektywnie nawet przy 230°C,
  • Z uwagi na podatność magnesów na korozję w wilgotnym środowisku, radzimy stosowanie magnesów wodoodpornych wykonanych z gumy, tworzywa sztucznego lub innego materiału odpornego na wilgoć, w przypadku stosowania na zewnątrz,
  • Ograniczona możliwość zrealizowania nakrętek w magnesie oraz bardziej skomplikowanych form - preferowana obudowa - mechanizm mocujący.
  • Możliwe niebezpieczeństwo wynikające z małych fragmentów magnesów są ryzykowne, gdy zostaną przypadkowo połknięte, co staje się kluczowe w aspekcie ochrony najmłodszych. Warto też zauważyć, że małe elementy tych urządzeń potrafią zakłócić proces diagnostyczny medycznej w razie połknięcia.
  • Ze względu na kosztowne surowce, ich cena jest wyższa niż przeciętnie,

Maksymalny udźwig magnesuco ma na to wpływ?

Podana siła przyciągania magnesu stanowi maksymalną siłę, ustalona w doskonałym środowisku, a mianowicie:

  • z użyciem blachy ze stali niskowęglowej pełniącej rolę zwora magnetyczna
  • o grubości minimum 10 mm
  • o gładkiej powierzchni
  • przy braku przerwy
  • przy prostopadłym działaniu siły odrywającej
  • w temperaturze pokojowej

Co wpływa na udźwig w praktyce

Udźwig magnesu jest determinowany w praktyce od kluczowych elementów, według ich znaczenia:

  • Szczelina pomiędzy magnesem a blachą, ponieważ nawet bardzo mała odległość (np. 0,5 mm) powoduje spadek udźwigu nawet o 50%.
  • Kierunek działania siły, ponieważ największy udźwig osiągamy przy prostopadłym przyłożeniu. Siła potrzebna do przesunięcia magnesu po blachach jest zazwyczaj kilkukrotnie mniejsza.
  • Grubość blachy, gdyż zbyt cienka płyta sprawia, że część strumienia magnetycznego nie jest wykorzystana i pozostaje bezużytecznie w powietrzu.
  • Materiał blachy, ponieważ większa zawartość węgla obniża nośność, a wyższa zawartość żelaza ją podnosi. Najlepszym wyborem jest stal o wysokiej przenikalności magnetycznej i dużym nasyceniu pola.
  • Powierzchnia blachy, ponieważ im bardziej gładka i polerowana, tym lepsze przyleganie i w konsekwencji większe nasycenie polem magnetycznym.
  • Temperatura pracy, gdyż wszystkie magnesy stałe mają ujemny współczynnik temperaturowy. Oznacza to, że w wysokich temperaturach są słabsze, a w ujemnych nieco silniejsze.

* Pomiar udźwigu wykonywano na gładkiej blaszce o optymalnej grubości, przy siłach prostopadłych, z kolei przy siłach działających równolegle nośność jest mniejsza nawet pięć razy. Ponadto, nawet minimalna przerwa pomiędzy powierzchnią magnesu, a blachą redukuje nośność.

Słowo ostrożności

Neodymowe magnesy charakteryzują się zwłaszcza duża mocą wewnętrzną. To sprawia, że przyciągają się do siebie. Jeśli na ich drodze pojawi się jakikolwiek element, wówczas pozostanie on naruszony.

Magnesy neodymowe będą podskakują oraz stykać razem o siebie w promieniu od kilku do około 10 cm od siebie. W przypadku położenia palca na drodze magnesu neodymowego, w takim przypadku może dojść do ścięcia albo nawet złamania.

Neodymowe magnesy mogą ulegać rozmagnesowaniu w wysokich temperaturach.

Mimo iż magnesy potwierdziły, że mają swoją skuteczność nawet do 80°C lub 175°F, temperatura ta może zmieniać się w zależności od rodzaju materiału, kształtu oraz zastosowania danego magnesu.

Magnesy neodymowe zalicza się do najsilniejszych magnesów na ziemi. Ich szokująca siła, jaka tworzy się między nimi, może Cię zszokować.

Prosimy zapoznać się z informacjami jak posługiwać się z magnesami neodymowymi oraz unikać niepotrzebnych znacznych naruszeń ciała i, aby przypadkowo nie uszkodzić magnesy.

Magnesy nie mogą znajdować się w pobliżu osób z rozrusznikiem serca.

Magnesy neodymowe mają wokół siebie niezwykle silne pole magnetyczne, które zakłóca pracę rozrusznika serca. Nawet gdy pole magnetyczne nie zadziała na urządzenie, może natomiast zniszczyć elementy lub dezaktywować całe urządzenie.

  Magnesów nie można traktować jako zabawek. Dlatego nie zaleca się, aby dostały się w ręce najmłodszych.

Magnesy neodymowe nie są zabawkami. Nie pozwól, by dzieci mogły się nimi bawić. Mogą być one poważnym zagrożeniem prowadzącym do zadławienia. Jeśli połknie się dużo magnesów, mogą się one do siebie przyczepić poprzez ściany jelit, powodując poważne obrażenia, a nawet śmierć.

Koniecznie trzymaj magnesy neodymowe z dala od GPSa oraz telefonu.

Magnesy neodymowe są źródłem silnego pola magnetycznego, które jest przyczyną zaburzeń w magnetometrach i kompasach używanych w nawigacji oraz wewnętrzne kompasy urządzeń takich jak telefony oraz nawigacja GPS.

Pod żadnym pozorem nie zbliżaj magnesów neodymowych do dysku twardego komputera, telewizora oraz portfela.

Silne pole magnetyczne, które jest emitowane przez magnesy neodymowe może stać się powodem zniszczenia nośników magnetycznych takich jak np. dyskietki, karty kredytowe, magnetyczne karty identyfikacyjne, taśmy kasetowe, taśmy wideo bądź inne urządzenia. W dodatku mogą zniszczyć także telewizory, magnetowidy, monitory komputerowe oraz wyświetlacze CRT. Unikaj umieszczania magnesów neodymowych w pobliżu urządzeń elektronicznych.

W sytuacji magnesów neodymowych nader szybko o ich ukruszenie.

Neodymowe magnesy są kruche oraz będą się kruszyć, jeśli pozwolimy im uderzyć ze sobą, nawet z odległości kilku centymetrów. Są one pokryte błyszczącym niklowaniem podobnie jak stal, lecz nie są one tak twarde. W sytuacji zderzenia się dwóch magnesów może dojść do sytuacji rozrzutu kawałeczków w różnych kierunkach. W takiej sytuacji koniecznie chroń swoje oczy.

Pyły i proszek z magnesów neodymowych są łatwopalne.

Unikaj wiercenia bądź obróbki mechanicznej magnesów neodymowych. Po pokruszeniu na proszek lub na pyłek, materiał ten staje się wysoce łatwopalny.

Unikaj kontaktu z magnesami neodymowymi w przypadku alergii na nikiel.

Badania wyraźnie przedstawiają mały odsetek osób, które cierpią na alergię na metale takie jak nikiel. Reakcja alergiczna często objawia się zaczerwienieniem i wysypką skórną. Jeśli cierpisz na alergię na nikiel, spróbuj ubrać rękawiczki bądź unikać bezpośredniego kontaktu z niklowanymi neodymowymi magnesami.

Zachowaj ostrożność!

Żeby pokazać dlaczego magnesy neodymowe są aż tak niebezpieczne, przeczytaj artykuł - Jak bardzo niebezpieczne są bardzo silne magnesy neodymowe?

logo Dhit sp. z o.o.

e-mail: bok@dhit.pl

tel: +48 888 99 98 98