magnesy neodymowe

Magnesy z neodymu Nd2Fe14B - nasza propozycja. Zacząłeś szukać mocnych magnesów neodymowych o udźwigu? Wykaz wszystkich dostępnych produktów znajduje się na spisie poniżej sprawdź cennik magnesów

magnes dla poszukiwaczy F 300 GOLD z silnym uchem bocznym i liną

Gdzie kupić bardzo mocny UM magnes do poszukiwań? Uchwyty z magnesów w szczelnej i trwałej obudowie idealnie nadają się do użytkowania w niesprzyjających warunkach pogodowych, w tym w deszczu i podczas śniegu czytaj więcej nt....

magnesy z uchwytem

Uchwyty magnetyczne mogą być stosowane do ułatwienia produkcji, odkrywania dna morza lub do odnajdywania meteorów ze złota. Mocowania to śruba 3x [M10] duży udźwig czytaj więcej info...

Ciesz się wysyłką zamówienia w dniu zakupu jeżeli zlecenie przyjęte jest do godziny 14:00 w dni pracujące.

logo Dhit sp. z o.o.
Produkt dostępny wysyłka jutro

SM 32x275 [2xM8] / N42 - separator magnetyczny

separator magnetyczny

Numer katalogowy 130376

GTIN: 5906301813248

0

Średnica Ø [±0,1 mm]

32 mm

Wysokość [±0,1 mm]

275 mm

Waga

1475 g

824.10 z VAT / szt. + cena za transport

670.00 ZŁ netto + 23% VAT / szt.

upusty ilościowe:

Potrzebujesz więcej?

cena od 1 szt.
670.00 ZŁ
824.10 ZŁ
cena od 5 szt.
636.50 ZŁ
782.90 ZŁ
cena od 10 szt.
603.00 ZŁ
741.69 ZŁ

Chcesz skonsultować wybór?

Dzwoń do nas +48 22 499 98 98 ewentualnie napisz przez formularz zgłoszeniowy na naszej stronie.
Właściwości a także kształt magnesu wyliczysz dzięki naszemu modułowym kalkulatorze.

Zamówienia złożone do godziny 14:00 zostaną wysłane tego samego dnia roboczego.

SM 32x275 [2xM8] / N42 - separator magnetyczny

Specyfikacja/charakterystyka SM 32x275 [2xM8] / N42 - separator magnetyczny
właściwości
wartości
Nr kat.
130376
GTIN
5906301813248
Produkcja/Dystrybucja
Dhit sp. z o.o.
Kraj pochodzenia
Polska / Chiny / Niemcy
Kod celny
85059029
Średnica Ø
32 mm [±0,1 mm]
Wysokość
275 mm [±0,1 mm]
Waga
1475 g [±0,1 mm]
Tolerancja wykonania
± 0.1 mm

Własności magnetyczne materiału N42

właściwości
wartości
jednostki
remanencja Br [Min. - Max.] ?
12.9-13.2
kGs
remanencja Br [Min. - Max.] ?
1290-1320
T
koercja bHc ?
10.8-12.0
kOe
koercja bHc ?
860-955
kA/m
faktyczna wewnętrzna siła iHc
≥ 12
kOe
faktyczna wewnętrzna siła iHc
≥ 955
kA/m
gęstość energii [Min. - Max.] ?
40-42
BH max MGOe
gęstość energii [Min. - Max.] ?
318-334
BH max KJ/m
max. temperatura ?
≤ 80
°C

Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C

właściwości
wartości
jednostki
Twardość Vickersa
≥550
Hv
Gęstość
≥7.4
g/cm3
Curie Temperatura TC
312 - 380
°C
Curie Temperatura TF
593 - 716
°F
Specyficzna oporność
150
μΩ⋅Cm
Siła wyginania
250
Mpa
Wytrzymałość na ściskanie
1000~1100
Mpa
Rozszerzenie termiczne równoległe (∥) do orientacji (M)
(3-4) x 106
°C-1
Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M)
-(1-3) x 10-6
°C-1
Moduł Younga
1.7 x 104
kg/mm²

Porady zakupowe

Wkład do szuflad magnetycznych, określany jako wałek magnetyczny, wykorzystuje działanie magnesów neodymowych, osadzonych w rurze ze stali nierdzewnej AISI304. Umożliwia separowanie cząstek ferromagnetycznych z materiałów przemysłowych, takich jak granulaty, proszki czy zboża. Mechanizm opiera się na oddziaływaniu biegunów N i S, które skutecznie zatrzymują metaliczne zanieczyszczenia. Grubość wałka i rozstaw magnesów wpływają na wydajność separatora. Tego typu wkłady są powszechnie stosowane w przemyśle spożywczym, recyklingowym i chemicznym, zapewniając wysoką skuteczność.} Dzięki swojej konstrukcji, wkład idealnie pasuje do szuflady magnetycznej, zapewniając wyjątkowo silny efekt magnetyczny nawet w trudnych warunkach przemysłowych.
Ogólnie rzecz biorąc, separatory magnetyczne są używane do segregowania elementów ferromagnetycznych. Gdyby puszki są wykonane z materiałów ferromagnetycznych, separator efektywnie je wysegreguje. Jednakże, jeśli puszki są wykonane z materiałów nieferromagnetycznych, takich jak aluminium, segregator nie wysegreguje ich efektywnie.
Owszem, wałki magnetyczne są wykorzystywane w sektorze żywnościowym w celu eliminacji zanieczyszczeń metalowych, na przykład żelazne odłamki czy pył żelazny. Nasze pręty magnetyczne skonstruowane zostały z wytrzymałej stali przeciw kwasowej, EN 1.4301, nadającej się do styczności z żywnością.
Wałki magnetyczne, inaczej separatorami magnetycznymi, znajdują zastosowanie w produkcji żywności, separacji metali oraz przetwarzaniu odpadów. Pomagają one w eliminacji pyłu żelaznego w trakcie procesu separacji metali z innych materiałów.
Nasze wałki magnetyczne są zbudowane z neodymowego magnesu umieszczonego w cylindrze rury z nierzewnej stali grubość ścianki 1mm.
Oba końce wałka magnetycznego mogą być gwintowanymi otworami M8, co umożliwia szybką instalację w maszynach lub szufladach filtrów magnetycznych. Możliwa jest również wersja "ślepa" przy separatorach ręcznych.
Pod względem cech magnetycznych, wałki różnią się jeśli chodzi o gęstości strumienia indukcji, linii sił magnetycznych oraz obszaru działania magnetycznego. Produkujemy je w materiałach N42 oraz N52.
Generalnie uważa się, że im większa moc magnesu, tym skuteczniej. Natomiast, wartość mocy magnesu jest uzależniona od od wysokości zastosowanego magnesu oraz jakości materiału [N42] czy [N52], jak również zależy to od obszaru aplikacji oraz konkretnych potrzeb. Standardowa temperatura pracy wałka magnetycznego to 80°C.
Jeśli magnes jest cienki, linie sił magnetycznych są bardziej skompresowane. W przeciwnym wypadku, jeśli chodzi o grubszy magnes, linie sił są dłuższe i sięgają dalej.
Do tworzenia obudów separatorów magnetycznych - wałków, zazwyczaj stosuje się stal nierdzewną, szczególnie typy AISI 304, AISI 316 i AISI 316L.
W środowisku słoną wodą, stal typu AISI 316 jest zalecana ze względu na jej wyjątkowym właściwościom przeciwdziałającym korozji.
Wałki magnetyczne charakteryzują się specyficznym układem biegunów oraz możliwością przyciągania cząstek magnetycznych bezpośrednio na ich powierzchni, w odróżnieniu od innych separatorów które mogą wykorzystywać złożone systemy filtracji.
Techniczne oznaczenia i terminy związane z separatorów magnetycznych obejmują między innymi biegunowości, indukcji magnetycznej, skoku magnesów oraz rodzaju użytej stali.
Indukcję magnetyczną wałka pomiar przeprowadza się za pomocą teslametru czy gaussomierza z sondą hallotronową, dążąc do znalezienia najwyższej wartości pola magnetycznego blisko bieguna magnetycznego. Wynik kontrolujemy w tabeli wartości – najniższa to N30. Wszystkie oznaczenia niżej N27 czy N25 wskazują na recykling poniżej normy - nie nadają się.
Korzystanie z neodymowych wałków magnetycznych przynosi wiele zalet, w tym bardzo mocne pole magnetyczne, zdolność do wychwytywania nawet najdrobniejszych cząstek metalu oraz trwałość. Natomiast do wad można zaliczyć potrzebę regularnego czyszczenia, wyższy koszt oraz ewentualne trudności w instalacji.
Dbając o odpowiednią konserwację neodymowych wałków magnetycznych, warto czyszczenie ich regularnie z zanieczyszczeń, unikanie ekstremalnych temperatur do 80°C, oraz chronienie przed wilgocią o ile gwinty nie są szczelne - w naszych są. Wałki posiadają wodoodporność IP67, więc jeśli nie są szczelne, magnesy wewnątrz mogą utlenić się i stracić swoją moc. Pomiary pola magnetycznego należy przeprowadzać co dwa lata. Należy być ostrożnym podczas użytkowania, gdyż istnieje ryzyko policzkowania się. Jeśli rura osłonowa ma grubość tylko 0,5 mm, może dojść do jej zużycia, co z kolei może spowodować problemy z rozszczelnieniem pręta magnetycznego i zanieczyszczeniem produktu. Zakres działania wałka jest równy jego średnicy fi25mm to około 25mm aktywny zasięg dla fi32 to około 40mm.
Wałki magnetyczne to cylindryczne magnesy neodymowe umieszczone w osłonie z kwasoodpornej stali nierdzewnej, służące do separacji ferromagnetycznych zanieczyszczeń z surowców. Znajdują zastosowanie w przemyśle spożywczym, recyklingu oraz przetwórstwie tworzyw sztucznych, gdzie separacja metali jest kluczowa.

Zalety i wady magnesów z neodymu NdFeB.

Oprócz imponującej siły, magnesy typu NdFeB cechują się następujące zalety:

  • Nie tracą magnetyzmu, nawet po około dziesięciu lat – zmniejszenie udźwigu wynosi tylko ~1% (wg testów),
  • Nie tracą swoje właściwości magnetyczne nawet przy obecności innych magnesów,
  • Innymi słowy, dzięki połyskującej osłonie z niklu, element zyskuje wygląd profesjonalny,
  • Dzięki strukturze magnetycznej, magnesy dysponują wysoką indukcją magnetyczną przy powierzchni kontaktu,
  • Wykonane z odpowiednio dobranych składników, magnesy te wykazują imponującą odporność na wysoką temperaturę, co umożliwia im działanie (zależnie od ich kształtu) w temperaturach aż do 230°C i wyżej...
  • Dzięki uniwersalności w projektowaniu oraz zdolności personalizacji do nietypowych wymagań,
  • Fundamentalne znaczenie w nowoczesnych technologiach – są powszechnie wykorzystywane w urządzeniach pamięci masowej, elementach napędu, sprzęcie medycznym, i nowoczesnych systemach.
  • Stosunkowo niewielkie rozmiary przy dużej sile przyciągania – magnesy neodymowe oferują silne pole magnetyczne w niewielkich wymiarach, co czyni je użytecznymi w małych systemach

Problemowe aspekty magnesów neodymowych oraz sposoby ich zastosowania

  • Ulegają na silne uderzenia, co może prowadzić do pęknięcia. Radzimy zabezpieczanie magnesów za pomocą uchwytu metalowego, które zabezpieczą je przed uszkodzeniami i podnoszą ich wytrzymałość,
  • Niestabilność magnesów neodymowych w wysokich temperaturach jest zauważalna, zwłaszcza gdy osiągną 80°C, gdzie ich siła maleje (zależy to głównie od ich kształtu, a także wymiarów). Dla tych, którzy potrzebują większej odporności, polecamy magnesy [AH] przeznaczone do pracy w temperaturach do 230°C,
  • Magnesy narażone na wilgotne środowisko mogą rdzewieć. Dlatego w trakcie użytkowania na zewnątrz, sugerujemy stosowanie magnesów wodoodpornych wykonanych z gumy, tworzywa sztucznego lub innego materiału odpornego na wilgocią,
  • Ze względu na ograniczenia w realizacji nakrętek i złożonych kształtów w magnesach, proponujemy zastosowanie pokrywy - mechanizmu magnetycznego.
  • Potencjalne zagrożenie dla zdrowia – drobne odłamki magnesów są ryzykowne, jeśli zostaną połknięte, co nabiera znaczenia w kontekście ochrony zdrowia dzieci. Warto też zauważyć, że niewielkie części tych magnesów są w stanie utrudnić diagnozę medycznej po przedostaniu się do ciała.
  • Przy dużych zamówieniach koszt magnesów neodymowych jest nieopłacalny ekonomicznie,

Maksymalna siła przyciągania magnesuco się na to składa?

Podana nośność magnesu stanowi najwyższą nośność, ustalona w warunkach optymalnych, a mianowicie:

  • z miękką stalą, używaną jako element skupiający pole magnetyczne
  • o grubości minimum 10 mm
  • o gładkiej powierzchni
  • przy zerowej szczelinie
  • w warunkach pionowego przyłożenia siły
  • w temperaturze pokojowej

Praktyczne aspekty udźwigu – czynniki

Praktyczny udźwig jest determinowany od czynników, według priorytetu:

  • Szczelina pomiędzy magnesem a blachą, ponieważ nawet bardzo mała odległość (np. 0,5 mm) powoduje spadek udźwigu nawet o 50%.
  • Kierunek działania siły, ponieważ największy udźwig osiągamy przy prostopadłym przyłożeniu. Siła potrzebna do przesunięcia magnesu po blachach jest zazwyczaj kilkukrotnie mniejsza.
  • Grubość blachy, gdyż zbyt cienka płyta sprawia, że część strumienia magnetycznego nie jest wykorzystana i pozostaje bezużytecznie w powietrzu.
  • Materiał blachy, ponieważ większa zawartość węgla obniża nośność, a wyższa zawartość żelaza ją podnosi. Najlepszym wyborem jest stal o wysokiej przenikalności magnetycznej i dużym nasyceniu pola.
  • Powierzchnia blachy, ponieważ im bardziej gładka i polerowana, tym lepsze przyleganie i w konsekwencji większe nasycenie polem magnetycznym.
  • Temperatura pracy, gdyż wszystkie magnesy stałe mają ujemny współczynnik temperaturowy. Oznacza to, że w wysokich temperaturach są słabsze, a w ujemnych nieco silniejsze.

* Pomiar udźwigu realizowano na blachach o gładkiej powierzchni o odpowiedniej grubości, przy prostopadłym działaniu siły, natomiast przy siłach działających równolegle nośność jest mniejsza nawet pięciokrotnie. Co więcej, nawet niewielka szczelina między powierzchnią magnesu, a blachą redukuje siłę trzymania.

Środki ostrożności

 Utrzymuj magnesy neodymowe z dala od dzieci.

Magnesy neodymowe nie są zabawkami. Nie możesz pozwolić, by stały się zabawką dla dzieci. W przypadku niewielkich magnesów może dojść do ich połknięcia oraz następnie zadławienia. W takim przypadku niezbędna jest operacja w celu ich wyciągnięcia. W najgorszym wypadku może dojść do zgonu.

Powłoka magnesu wykonana jest z niklu, a co za tym idzie należy uważać na alergię.

Badania wykazują nieduży odsetek osób mających alergię na poszczególne metale, w tym nikiel. Reakcja alergiczna często objawia się zaczerwienieniem i wysypką skórną. W przypadku pojawiania się alergii na nikiel, możesz spróbować założyć rękawiczki lub po prostu stronić od kontaktu z niklowanymi neodymowymi magnesami.

W przypadku magnesów neodymowych nader szybko o ich ukruszenie.

Neodymowe magnesy są kruche i będą się łamać, jeśli pozwolimy im uderzyć ze sobą, nawet z odległości kilku centymetrów. Są one pokryte błyszczącym niklowaniem podobnie jak stal, jednak nie są one tak twarde. W momencie zderzenia się magnesów popękane, małe ostre metalowe części z dużą prędkością są w stanie wystrzelić w różnych kierunkach. Zaleca się ochronę oczu.

Neodymowe magnesy mogą ulegać rozmagnesowaniu w wysokich temperaturach.

Mimo iż magnesy udowodniły, że zachowują swoją skuteczność nawet do 80°C bądź 175°F, temperatura ta może zmieniać się w zależności od rodzaju materiału, kształtu oraz wykorzystania danego magnesu.

Pyły tz. proszek z magnesów neodymowych są łatwopalne

Nie próbuj wiercić w magnesach neodymowych. Obróbka mechaniczna także nie jest wskazana. Po rozkruszeniu w drobny mak bądź na pyłek, owy materiał jest bardzo łatwopalny.

Neodymowe magnesy mogą przyciągać się do siebie nawzajem, zaciskać skórę oraz sprawiać poważne obrażenia.

Neodymowe magnesy będą skaczą i trzaskać razem o siebie w promieniu od kilku do około 10 cm od siebie. W przypadku położenia palca na drodze magnesu neodymowego, w takiej sytuacji może dojść do ścięcia albo nawet złamania.

Magnesy nie powinny znajdować się w pobliżu osób z rozrusznikiem serca.

Magnesy neodymowe wytwarzają wokół siebie bardzo silne pole magnetyczne, które zakłóca pracę symulatora serca. Dzieje się tak, gdyż wiele z tych urządzeń posiada funkcję, która deaktywuje urządzenie w polu magnetycznym.

Zdecydowanie nie należy trzymać magnesy neodymowe z dala od GPSa i smartfona.

Silne pole magnetyczne jakie generują magnesy neodymowe zaburza kompasy, magnetometry, które używane są w nawigacji, a także we wnętrzu każdego telefonu i nawigacji GPS.

Zestawiając magnesy neodymowe do ferrytowych (znajdziesz je w głośnikach) są one 10-krotnie mocniejsze, a ich moc może Cię zszokować.

Na naszej witrynie odszukasz informacje na temat tego, jak użytkować magnesy neodymowe. To pozwoli Tobie uniknąć uszkodzeń ciała i magnesów.

Nie przykładaj magnesów neodymowych do dysku twardego komputera, telewizora i portfela.

Pole magnetyczne generowane przez neodymowe magnesy trwale niszczy nośniki magnetyczne takie jak: dyskietki, taśmy video, dyski HDD, karty kredytowe, magnetyczne karty identyfikacyjne, taśmy kasetowe magnetofonowe audio bądź różne inne urządzenia. Magnesy mogą też uszkadzać videa, telewizory, monitory komputerowe CRT. Nie zapominaj o tym, aby neodymowe magnesy nie znalazły się w pobliżu tych urządzeń elektronicznych.

Ostrożnie!

Abyś miał świadomość dlaczego magnesy neodymowe są aż tak niebezpieczne, przeczytaj artykuł pt. Jak bardzo niebezpieczne są bardzo silne magnesy neodymowe?

logo Dhit sp. z o.o.

e-mail: bok@dhit.pl

tel: +48 888 99 98 98