SM 32x225 [2xM8] / N42 - separator magnetyczny
separator magnetyczny
Numer katalogowy 130375
GTIN/EAN: 5906301813231
Średnica Ø
32 mm [±1 mm]
Wysokość
225 mm [±1 mm]
Waga
1245 g
Strumień magnetyczny
~ 8 000 Gauss [±5%]
750.30 ZŁ z VAT / szt. + cena za transport
610.00 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?
Dzwoń do nas
+48 888 99 98 98
lub daj znać przez
formularz
na stronie kontakt.
Udźwig a także wygląd magnesu skontrolujesz dzięki naszemu
kalkulatorze mocy.
Wysyłka tego samego dnia dla zamówień do godz. 14:00.
Karta produktu - SM 32x225 [2xM8] / N42 - separator magnetyczny
Specyfikacja / charakterystyka - SM 32x225 [2xM8] / N42 - separator magnetyczny
| właściwości | wartości |
|---|---|
| Nr kat. | 130375 |
| GTIN/EAN | 5906301813231 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Średnica Ø | 32 mm [±1 mm] |
| Wysokość | 225 mm [±1 mm] |
| Waga | 1245 g |
| Rodzaj materiału | Stal nierdzewna AISI 304 / A2 |
| Strumień magnetyczny | ~ 8 000 Gauss [±5%] |
| Rozmiar/ilość mocowania | 2xM8 |
| Biegunowość | obwodowa - 8 nabiegunników |
| Grubość rury osłonowej | 1 mm |
| Tolerancja wykonania | ±1 mm |
Własności magnetyczne materiału N42
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [min. - maks.] ? | 12.9-13.2 | kGs |
| remanencja Br [min. - maks.] ? | 1290-1320 | mT |
| koercja bHc ? | 10.8-12.0 | kOe |
| koercja bHc ? | 860-955 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [min. - maks.] ? | 40-42 | BH max MGOe |
| gęstość energii [min. - maks.] ? | 318-334 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Temperatura Curie TC | 312 - 380 | °C |
| Temperatura Curie TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅cm |
| Siła wyginania | 250 | MPa |
| Wytrzymałość na ściskanie | 1000~1100 | MPa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 10-6 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Tabela 1: Konstrukcja wałka
SM 32x225 [2xM8] / N42
| Parametr | Wartość | Opis / Jednostka |
|---|---|---|
| Średnica (Ø) | 32 | mm |
| Długość całkowita | 225 | mm (L) |
| Długość aktywna | 189 | mm |
| Liczba sekcji | 8 | modułów |
| Strefa martwa | 36 | mm (2x 18mm starter) |
| Waga (szacowana) | ~1375 | g |
| Pow. aktywna | 190 | cm² (Area) |
| Materiał obudowy | AISI 304 | 1.4301 (Inox) |
| Wykończenie | Ra < 0.8 µm | Polerowane |
| Klasa temp. | 80°C | Standard (N) |
| Spadek siły (przy max °C) | -12.8% | Strata odwracalna (fizyka) |
| Siła (obliczona) | 26.2 | kg (teoret.) |
| Indukcja (pow.) | ~8 000 | Gauss (Max) |
Wykres 2: Profil pola (8 sekcji)
Wykres 3: Wydajność temperaturowa
Specyfikacja materiałowa
| żelazo (Fe) | 64% – 68% |
| neodym (Nd) | 29% – 32% |
| bor (B) | 1.1% – 1.2% |
| dysproz (Dy) | 0.5% – 2.0% |
| powłoka (Ni-Cu-Ni) | < 0.05% |
Ekologia i recykling (GPSR)
| recyklowalność (EoL) | 100% |
| surowce z recyklingu | ~10% (pre-cons) |
| ślad węglowy | low / zredukowany |
| kod odpadu (EWC) | 16 02 16 |
Inne produkty
Wady i zalety neodymowych magnesów Nd2Fe14B.
Zalety
- Zachowują swoje właściwości przez lata – szacuje się, że po dekadzie tracą na sile o symboliczny 1%.
- Charakteryzują się ogromną odpornością na rozmagnesowanie, nawet w silnych polach zewnętrznych.
- Dzięki powłoce (NiCuNi, Au, Ag) mają nowoczesny, błyszczący wygląd.
- Wytwarzają niezwykle silne pole magnetyczne na swojej powierzchni, co jest ich znakiem rozpoznawczym.
- Dzięki zaawansowanej technologii radzą sobie w temperaturach sięgających 230°C, zachowując swoje parametry.
- Można je precyzyjnie obrabiać do niestandardowych wymiarów, co pozwala na ich adaptację w przemyśle.
- Spotkasz je wszędzie tam, gdzie liczy się precyzja: w napędach, rezonansach oraz systemach IT.
- Moc w skali mikro – ich mała masa nie przeszkadza w generowaniu dużej siły przyciągania.
Słabe strony
- Delikatność mechaniczna to ich mankament. Łatwo ulegają uszkodzeniu przy zderzeniu, dlatego zalecamy osłony lub uchwyty.
- Uwaga na temperaturę – dla zwykłych magnesów limit to 80°C. W gorącym środowisku (do 230°C) sprawdzą się tylko modele z oznaczeniem [AH].
- Brak odporności na wodę skutkuje utlenianiem. Do zadań zewnętrznych rekomendujemy wyłącznie magnesy w pełnej izolacji (plastik/guma).
- Obróbka jest trudna – wykonanie gwintu w samym magnesie jest ryzykowne. Zalecamy gotowe uchwyty magnetyczne (magnes w obudowie).
- Drobne magnesy to ryzyko – połknięcie wymaga interwencji chirurga. Mogą też być problemem przy diagnostyce MRI.
- Wysoki koszt zakupu w porównaniu do tańszych zamienników to ich minus, szczególnie przy dużych ilościach.
Charakterystyka udźwigu
Udźwig maksymalny dla magnesu neodymowego – co się na to składa?
- przy użyciu blachy ze stali niskowęglowej, gwarantującej maksymalne skupienie pola
- której grubość sięga przynajmniej 10 mm
- charakteryzującej się brakiem chropowatości
- w warunkach bezszczelinowych (powierzchnia do powierzchni)
- dla siły przyłożonej pod kątem prostym (na odrywanie, nie zsuwanie)
- w temperaturze pokojowej
Praktyczny udźwig: czynniki wpływające
- Przerwa między powierzchniami – nawet ułamek milimetra odległości (spowodowany np. lakierem lub nierównością) drastycznie redukuje efektywność magnesu, często o połowę przy zaledwie 0,5 mm.
- Kierunek siły – należy wiedzieć, że magnes ma największą siłę prostopadle. Przy działaniu sił bocznych, siła trzymania spada drastycznie, często do poziomu 20-30% wartości maksymalnej.
- Grubość ścianki – im cieńsza blacha, tym słabsze trzymanie. Część pola magnetycznego przenika na wylot, zamiast generować siłę.
- Typ metalu – nie każda stal przyciąga się identycznie. Wysoka zawartość węgla pogarszają interakcję z magnesem.
- Stan powierzchni – powierzchnie gładkie gwarantują idealne doleganie, co zwiększa siłę. Nierówny metal osłabiają chwyt.
- Czynnik termiczny – gorące środowisko zmniejsza pole magnetyczne. Zbyt wysoka temperatura może trwale rozmagnesować magnes.
Pomiar udźwigu przeprowadzano na blachach o gładkiej powierzchni o odpowiedniej grubości, przy prostopadłym działaniu siły, z kolei przy próbie przesunięcia magnesu udźwig jest mniejszy nawet pięciokrotnie. Dodatkowo, nawet minimalna przerwa pomiędzy magnesem, a blachą redukuje nośność.
Instrukcja bezpiecznej obsługi magnesów
Implanty kardiologiczne
Ostrzeżenie dla sercowców: Silne pole magnetyczne wpływa na elektronikę medyczną. Zachowaj co najmniej 30 cm odstępu lub poproś inną osobę obsługę magnesów.
Podatność na pękanie
Magnesy neodymowe to materiał ceramiczny, co oznacza, że są podatne na pęknięcia. Upadek dwóch magnesów spowoduje ich pęknięcie na drobne kawałki.
Bezpieczna praca
Stosuj magnesy z rozwagą. Ich gigantyczny udźwig może zszokować nawet profesjonalistów. Planuj ruchy i respektuj ich siły.
Uszkodzenia ciała
Dbaj o palce. Dwa duże magnesy zderzą błyskawicznie z siłą wielu ton, niszcząc wszystko na swojej drodze. Zachowaj ekstremalną uwagę!
Urządzenia elektroniczne
Ochrona danych: Magnesy neodymowe mogą uszkodzić nośniki danych oraz delikatną elektronikę (implanty, aparaty słuchowe, czasomierze).
Wpływ na smartfony
Uwaga: magnesy neodymowe generują pole, które dezorientują elektronikę precyzyjną. Zachowaj odpowiednią odległość od komórki, tabletu i urządzeń GPS.
Obróbka mechaniczna
Obróbka mechaniczna magnesów neodymowych grozi pożarem. Proszek magnetyczny utlenia się błyskawicznie z tlenem i jest trudny do gaszenia.
Przegrzanie magnesu
Standardowe magnesy neodymowe (klasa N) ulegają rozmagnesowaniu po przekroczeniu temperatury 80°C. Uszkodzenie jest permanentne.
Unikaj kontaktu w przypadku alergii
Ostrzeżenie dla alergików: powłoka Ni-Cu-Ni ma w składzie nikiel. W przypadku wystąpienia reakcji alergicznej, należy bezzwłocznie zakończyć pracę z magnesami i zabezpieczyć dłonie.
To nie jest zabawka
Bezwzględnie chroń magnesy przed dostępem dzieci. Ryzyko zadławienia jest wysokie, a skutki połączenia się magnesów wewnątrz organizmu są tragiczne.
