SM 32x500 [2xM8] / N42 - separator magnetyczny
separator magnetyczny
Numer katalogowy 130374
GTIN/EAN: 5906301813224
Średnica Ø
32 mm [±1 mm]
Wysokość
500 mm [±1 mm]
Waga
2670 g
Strumień magnetyczny
~ 8 000 Gauss [±5%]
1488.30 ZŁ z VAT / szt. + cena za transport
1210.00 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?
Skontaktuj się z nami telefonicznie
+48 888 99 98 98
lub zostaw wiadomość przez
formularz zgłoszeniowy
na naszej stronie.
Masę a także wygląd magnesu neodymowego skontrolujesz dzięki naszemu
kalkulatorze magnetycznym.
Zamów do 14:00, a wyślemy dziś!
Szczegółowa specyfikacja SM 32x500 [2xM8] / N42 - separator magnetyczny
Specyfikacja / charakterystyka - SM 32x500 [2xM8] / N42 - separator magnetyczny
| właściwości | wartości |
|---|---|
| Nr kat. | 130374 |
| GTIN/EAN | 5906301813224 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Średnica Ø | 32 mm [±1 mm] |
| Wysokość | 500 mm [±1 mm] |
| Waga | 2670 g |
| Rodzaj materiału | Stal nierdzewna AISI 304 / A2 |
| Strumień magnetyczny | ~ 8 000 Gauss [±5%] |
| Rozmiar/ilość mocowania | 2xM8 |
| Biegunowość | obwodowa - 19 nabiegunników |
| Grubość rury osłonowej | 1 mm |
| Tolerancja wykonania | ±1 mm |
Własności magnetyczne materiału N42
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [min. - maks.] ? | 12.9-13.2 | kGs |
| remanencja Br [min. - maks.] ? | 1290-1320 | mT |
| koercja bHc ? | 10.8-12.0 | kOe |
| koercja bHc ? | 860-955 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [min. - maks.] ? | 40-42 | BH max MGOe |
| gęstość energii [min. - maks.] ? | 318-334 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Temperatura Curie TC | 312 - 380 | °C |
| Temperatura Curie TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅cm |
| Siła wyginania | 250 | MPa |
| Wytrzymałość na ściskanie | 1000~1100 | MPa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 10-6 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Tabela 1: Konstrukcja wałka
SM 32x500 [2xM8] / N42
| Parametr | Wartość | Opis / Jednostka |
|---|---|---|
| Średnica (Ø) | 32 | mm |
| Długość całkowita | 500 | mm (L) |
| Długość aktywna | 464 | mm |
| Liczba sekcji | 20 | modułów |
| Strefa martwa | 36 | mm (2x 18mm starter) |
| Waga (szacowana) | ~3056 | g |
| Pow. aktywna | 466 | cm² (Area) |
| Materiał obudowy | AISI 304 | 1.4301 (Inox) |
| Wykończenie | Ra < 0.8 µm | Polerowane |
| Klasa temp. | 80°C | Standard (N) |
| Spadek siły (przy max °C) | -12.8% | Strata odwracalna (fizyka) |
| Siła (obliczona) | 26.2 | kg (teoret.) |
| Indukcja (pow.) | ~8 000 | Gauss (Max) |
Wykres 2: Profil pola (20 sekcji)
Wykres 3: Wydajność temperaturowa
Skład chemiczny materiału
| żelazo (Fe) | 64% – 68% |
| neodym (Nd) | 29% – 32% |
| bor (B) | 1.1% – 1.2% |
| dysproz (Dy) | 0.5% – 2.0% |
| powłoka (Ni-Cu-Ni) | < 0.05% |
Zrównoważony rozwój
| recyklowalność (EoL) | 100% |
| surowce z recyklingu | ~10% (pre-cons) |
| ślad węglowy | low / zredukowany |
| kod odpadu (EWC) | 16 02 16 |
Zobacz też inne propozycje
Zalety oraz wady magnesów z neodymu Nd2Fe14B.
Plusy
- Ich parametry są stabilne w czasie; po 10 latach użytkowania zmniejszenie udźwigu to znikome ~1%.
- Są stabilne magnetycznie, gdyż wykazują potężną odporność na zewnętrzne czynniki.
- Wykończenie materiałami takimi jak nikiel, srebro lub złoto nadaje im profesjonalny i gładki charakter.
- Oferują najwyższą indukcję magnetyczną bezpośrednio na powierzchni, co przekłada się na skuteczność.
- Wykazują imponującą wytrzymałość termiczną, co pozwala na ich stosowanie w warunkach do 230°C (dotyczy odpowiednich serii).
- Szerokie możliwości w doborze kształtu i wymiaru to ich ogromny plus w konstrukcjach.
- Znajdują powszechne zastosowanie w przemyśle high-tech – od dysków twardych i silników, po precyzyjną diagnostykę.
- Dzięki kompaktowości, zajmują mało miejsca, a jednocześnie gwarantują wysoką skuteczność.
Ograniczenia
- Ze względu na kruchość, trzeba się z nimi obchodzić delikatnie. Gwałtowne złączenie może je zniszczyć, stąd zalecenie stosowania osłon.
- Ograniczenia termiczne – dla zwykłych magnesów limit to 80°C. W gorącym środowisku (do 230°C) sprawdzą się tylko modele z oznaczeniem [AH].
- Ryzyko korozji: bez osłony magnes zardzewieje na deszczu. Wybierz wersje w obudowie z tworzywa do zastosowań zewnętrznych.
- Z uwagi na specyfikę materiału, nie zaleca się obróbki mechanicznej magnesu. Prościej użyć magnesu wklejonego w gniazdo z gwintem.
- Produkt niebezpieczny po połknięciu. Bezwzględnie chronić przed dziećmi. Wewnątrz ciała magnesy mogą się połączyć, powodując uszkodzenia jelit.
- Wysoki koszt zakupu w porównaniu do ferrytów to ich minus, szczególnie przy dużych ilościach.
Analiza siły trzymania
Optymalny udźwig magnesu neodymowego – co ma na to wpływ?
- z zastosowaniem blachy ze stali niskowęglowej, pełniącej rolę idealny przewodnik strumienia
- której wymiar poprzeczny sięga przynajmniej 10 mm
- z płaszczyzną oczyszczoną i gładką
- przy całkowitym braku odstępu (brak powłok)
- dla siły przyłożonej pod kątem prostym (na odrywanie, nie zsuwanie)
- w temperaturze pokojowej
Praktyczne aspekty udźwigu – czynniki
- Dystans – obecność jakiejkolwiek warstwy (rdza, brud, szczelina) przerywa obwód magnetyczny, co redukuje moc gwałtownie (nawet o 50% przy 0,5 mm).
- Kąt przyłożenia siły – maksymalny parametr osiągamy tylko przy ciągnięciu pod kątem 90°. Siła potrzebna do przesunięcia magnesu po blasze jest z reguły kilkukrotnie niższa (ok. 1/5 udźwigu).
- Grubość elementu – aby wykorzystać 100% mocy, stal musi być odpowiednio gruba. Blacha "papierowa" limituje udźwig (magnes „przebija” ją na wylot).
- Rodzaj materiału – najlepszym wyborem jest stal o wysokiej przenikalności. Żeliwo mogą przyciągać słabiej.
- Faktura blachy – powierzchnie gładkie gwarantują idealne doleganie, co zwiększa nasycenie pola. Powierzchnie chropowate osłabiają chwyt.
- Wpływ temperatury – wysoka temperatura osłabia siłę przyciągania. Przekroczenie temperatury granicznej może trwale rozmagnesować magnes.
Siłę trzymania testowano na gładkiej blasze o grubości 20 mm, kiedy przyłożono siłę prostopadłą, natomiast przy siłach działających równolegle udźwig jest mniejszy nawet 75%. Co więcej, nawet drobny odstęp pomiędzy powierzchnią magnesu, a blachą zmniejsza nośność.
Instrukcja bezpiecznej obsługi magnesów
Dla uczulonych
Wiedza medyczna potwierdza, że nikiel (typowe wykończenie magnesów) jest silnym alergenem. Jeśli Twoja skóra źle reaguje na metale, wystrzegaj się kontaktu skóry z metalem lub wybierz magnesy powlekane tworzywem.
Kruchość materiału
Uwaga na odpryski. Magnesy mogą pęknąć przy niekontrolowanym uderzeniu, rozrzucając kawałki metalu w powietrze. Ochrona wzroku wymagana.
Implanty medyczne
Zagrożenie życia: Magnesy neodymowe mogą wyłączyć stymulatory i defibrylatory. Nie zbliżaj się, jeśli posiadasz implanty elektroniczne.
Zakaz zabawy
Produkt przeznaczony dla dorosłych. Drobne magnesy mogą zostać aspirrowane, co prowadzi do poważnych obrażeń. Przechowuj poza zasięgiem niepowołanych osób.
Uszkodzenia ciała
Dbaj o palce. Dwa duże magnesy złączą się z ogromną prędkością z siłą wielu ton, miażdżąc wszystko na swojej drodze. Bądź ostrożny!
Potężne pole
Stosuj magnesy odpowiedzialnie. Ich potężna moc może zaskoczyć nawet doświadczonych użytkowników. Planuj ruchy i respektuj ich siły.
Zagrożenie wybuchem pyłu
Zagrożenie pożarowe: Pył neodymowy jest wysoce łatwopalny. Nie poddawaj magnesów obróbce amatorsko, gdyż może to wywołać pożar.
Ryzyko rozmagnesowania
Typowe magnesy neodymowe (klasa N) tracą moc po przekroczeniu temperatury 80°C. Proces ten jest nieodwracalny.
Niszczenie danych
Zagrożenie dla danych: Magnesy neodymowe mogą zdegradować nośniki danych oraz delikatną elektronikę (implanty, aparaty słuchowe, czasomierze).
Trzymaj z dala od elektroniki
Silne pole magnetyczne wpływa negatywnie na działanie magnetometrów w smartfonach i nawigacjach GPS. Trzymaj z dala magnesów do smartfona, aby nie uszkodzić czujników.
