SM 25x375 [2xM8] / N42 - separator magnetyczny
separator magnetyczny
Numer katalogowy 130351
GTIN/EAN: 5906301812999
Średnica Ø
25 mm [±1 mm]
Wysokość
375 mm [±1 mm]
Waga
1460 g
Strumień magnetyczny
~ 6 500 Gauss [±5%]
1057.80 ZŁ z VAT / szt. + cena za transport
860.00 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?
Dzwoń do nas
+48 22 499 98 98
alternatywnie zostaw wiadomość korzystając z
formularz zapytania
na stronie kontaktowej.
Moc oraz wygląd magnesu neodymowego sprawdzisz dzięki naszemu
kalkulatorze masy magnetycznej.
Realizacja tego samego dnia przy zamówieniu do 14:00.
Szczegółowa specyfikacja SM 25x375 [2xM8] / N42 - separator magnetyczny
Specyfikacja / charakterystyka - SM 25x375 [2xM8] / N42 - separator magnetyczny
| właściwości | wartości |
|---|---|
| Nr kat. | 130351 |
| GTIN/EAN | 5906301812999 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Średnica Ø | 25 mm [±1 mm] |
| Wysokość | 375 mm [±1 mm] |
| Waga | 1460 g |
| Rodzaj materiału | Stal nierdzewna AISI 304 / A2 |
| Strumień magnetyczny | ~ 6 500 Gauss [±5%] |
| Rozmiar/ilość mocowania | 2xM8 |
| Biegunowość | obwodowa - 14 nabiegunników |
| Grubość rury osłonowej | 1 mm |
| Tolerancja wykonania | ±1 mm |
Własności magnetyczne materiału N42
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [min. - maks.] ? | 12.9-13.2 | kGs |
| remanencja Br [min. - maks.] ? | 1290-1320 | mT |
| koercja bHc ? | 10.8-12.0 | kOe |
| koercja bHc ? | 860-955 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [min. - maks.] ? | 40-42 | BH max MGOe |
| gęstość energii [min. - maks.] ? | 318-334 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Temperatura Curie TC | 312 - 380 | °C |
| Temperatura Curie TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅cm |
| Siła wyginania | 250 | MPa |
| Wytrzymałość na ściskanie | 1000~1100 | MPa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 10-6 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Tabela 1: Konstrukcja wałka
SM 25x375 [2xM8] / N42
| Parametr | Wartość | Opis / Jednostka |
|---|---|---|
| Średnica (Ø) | 25 | mm |
| Długość całkowita | 375 | mm (L) |
| Długość aktywna | 339 | mm |
| Liczba sekcji | 14 | modułów |
| Strefa martwa | 36 | mm (2x 18mm starter) |
| Waga (szacowana) | ~1399 | g |
| Pow. aktywna | 266 | cm² (Area) |
| Materiał obudowy | AISI 304 | 1.4301 (Inox) |
| Wykończenie | Ra < 0.8 µm | Polerowane |
| Klasa temp. | 80°C | Standard (N) |
| Spadek siły (przy max °C) | -12.8% | Strata odwracalna (fizyka) |
| Siła (obliczona) | 10.6 | kg (teoret.) |
| Indukcja (pow.) | ~6 500 | Gauss (Max) |
Wykres 2: Profil pola (14 sekcji)
Wykres 3: Wydajność temperaturowa
Specyfikacja materiałowa
| żelazo (Fe) | 64% – 68% |
| neodym (Nd) | 29% – 32% |
| bor (B) | 1.1% – 1.2% |
| dysproz (Dy) | 0.5% – 2.0% |
| powłoka (Ni-Cu-Ni) | < 0.05% |
Ekologia i recykling (GPSR)
| recyklowalność (EoL) | 100% |
| surowce z recyklingu | ~10% (pre-cons) |
| ślad węglowy | low / zredukowany |
| kod odpadu (EWC) | 16 02 16 |
Zobacz też inne propozycje
Wady oraz zalety neodymowych magnesów Nd2Fe14B.
Zalety
- Są niezwykle trwałe – przez okres blisko 10 lat gubią maksymalnie ~1% swojej pierwotnej siły (pomiary wskazują na taką wartość).
- Zewnętrzne pola magnetyczne nie powodują ich szybkiego rozmagnesowania – posiadają dużą zdolność koercji.
- Pokrycie materiałami takimi jak nikiel, srebro lub złoto nadaje im czysty i lśniący charakter.
- Cechują się bardzo wysoką gęstością pola na powierzchni, co umożliwia silne chwytanie nawet małych elementów.
- Dzięki zaawansowanej technologii radzą sobie w temperaturach sięgających 230°C, zachowując swoje parametry.
- Wszechstronność kształtowania – można je wykonać w dowolnych formach, idealnych do wymagań klienta.
- Stanowią kluczowy element w innowacjach, zasilając układy napędowe, urządzenia medyczne czy elektronikę użytkową.
- Dzięki kompaktowości, nie wymagają dużej przestrzeni, a jednocześnie gwarantują silne pole.
Ograniczenia
- Ze względu na kruchość, wymagają ostrożności. Gwałtowne złączenie może je zniszczyć, stąd rekomendacja stosowania osłon.
- Wrażliwość na ciepło: przekroczenie 80°C może trwale osłabić magnes (zależnie od wymiarów). Rozwiązaniem są nasze magnesy wysokotemperaturowe [AH].
- Podatność na wilgoć skutkuje utlenianiem. Do zadań zewnętrznych rekomendujemy wyłącznie magnesy zabezpieczone antykorozyjnie (plastik/guma).
- Nie należy ich nawiercać – do montażu śrubowego przeznaczone są specjalne uchwyty magnetyczne z wbudowanym gwintem.
- Drobne magnesy to ryzyko – połknięcie wymaga interwencji chirurga. Mogą też być problemem przy diagnostyce MRI.
- Wysoki koszt zakupu w porównaniu do ferrytów to ich minus, szczególnie przy dużych ilościach.
Charakterystyka udźwigu
Udźwig maksymalny dla magnesu neodymowego – od czego zależy?
- z zastosowaniem podłoża ze stali o wysokiej przenikalności, pełniącej rolę idealny przewodnik strumienia
- o grubości wynoszącej minimum 10 mm
- z powierzchnią wolną od rys
- bez żadnej warstwy izolującej pomiędzy magnesem a stalą
- podczas ciągnięcia w kierunku pionowym do powierzchni mocowania
- przy temperaturze ok. 20 stopni Celsjusza
Co wpływa na udźwig w praktyce
- Dystans – obecność jakiejkolwiek warstwy (rdza, brud, szczelina) przerywa obwód magnetyczny, co redukuje moc lawinowo (nawet o 50% przy 0,5 mm).
- Kierunek siły – należy wiedzieć, że magnes najmocniej trzyma prostopadle. Przy zsuwaniu w dół, siła trzymania spada znacząco, często do poziomu 20-30% wartości maksymalnej.
- Masywność podłoża – zbyt cienka blacha nie przyjmuje całego pola, przez co część strumienia jest tracona na drugą stronę.
- Rodzaj stali – stal miękka przyciąga najlepiej. Domieszki stopowe zmniejszają przenikalność magnetyczną i udźwig.
- Stan powierzchni – szlifowane elementy zapewniają maksymalny styk, co zwiększa nasycenie pola. Nierówny metal zmniejszają efektywność.
- Wpływ temperatury – gorące środowisko zmniejsza siłę przyciągania. Przekroczenie temperatury granicznej może trwale uszkodzić magnes.
Siłę trzymania testowano na gładkiej blasze o grubości 20 mm, kiedy działała siła prostopadła, z kolei przy siłach działających równolegle nośność jest mniejsza nawet pięć razy. Ponadto, nawet minimalna przerwa między magnesem, a blachą obniża nośność.
BHP przy magnesach
Utrata mocy w cieple
Standardowe magnesy neodymowe (typ N) tracą właściwości po osiągnięciu temperatury 80°C. Uszkodzenie jest permanentne.
Niklowa powłoka a alergia
Niektóre osoby ma alergię kontaktową na nikiel, którym powlekane są standardowo magnesy neodymowe. Dłuższy kontakt może skutkować zaczerwienienie skóry. Sugerujemy noszenie rękawiczek ochronnych.
Tylko dla dorosłych
Zawsze zabezpiecz magnesy przed dostępem dzieci. Ryzyko zadławienia jest wysokie, a konsekwencje zwarcia magnesów wewnątrz organizmu są tragiczne.
Siła zgniatająca
Silne magnesy mogą zmiażdżyć palce błyskawicznie. Nigdy umieszczaj dłoni pomiędzy dwa silne magnesy.
Ostrzeżenie dla sercowców
Uwaga zdrowotna: Magnesy neodymowe mogą dezaktywować stymulatory i defibrylatory. Nie zbliżaj się, jeśli posiadasz urządzenia wspomagające.
Rozprysk materiału
Mimo niklowej powłoki, neodym jest kruchy i nieodporny na uderzenia. Nie uderzaj, gdyż magnes może się pokruszyć na drobiny.
Ryzyko pożaru
Wiercenie i cięcie magnesów neodymowych grozi pożarem. Pył neodymowy reaguje gwałtownie z tlenem i jest trudny do gaszenia.
Siła neodymu
Przed przystąpieniem do pracy, przeczytaj instrukcję. Niekontrolowane przyciągnięcie może zniszczyć magnes lub uszkodzić palce. Bądź przewidujący.
Ochrona urządzeń
Nie zbliżaj magnesów do dokumentów, komputera czy ekranu. Pole magnetyczne może zniszczyć te urządzenia oraz skasować dane z kart.
Interferencja magnetyczna
Moduły GPS i smartfony są wyjątkowo wrażliwe na wpływ magnesów. Bliskie sąsiedztwo z silnym magnesem może trwale uszkodzić czujniki w Twoim telefonie.
