MP 10x7/3.5x3 / N38 - magnes neodymowy pierścieniowy
magnes neodymowy pierścieniowy
Numer katalogowy 030180
GTIN/EAN: 5906301811978
Średnica
10 mm [±0,1 mm]
Średnica wewnętrzna Ø
7/3.5 mm [±0,1 mm]
Wysokość
3 mm [±0,1 mm]
Waga
1.55 g
Kierunek magnesowania
↑ osiowy
Udźwig
1.88 kg / 18.47 N
Indukcja magnetyczna
318.70 mT / 3187 Gs
Powłoka
[NiCuNi] nikiel
0.824 ZŁ z VAT / szt. + cena za transport
0.670 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?
Skontaktuj się z nami telefonicznie
+48 888 99 98 98
lub zostaw wiadomość za pomocą
formularz zapytania
w sekcji kontakt.
Siłę i wygląd magnesów skontrolujesz w naszym
kalkulatorze siły.
Realizacja tego samego dnia przy zamówieniu do 14:00.
Szczegółowa specyfikacja MP 10x7/3.5x3 / N38 - magnes neodymowy pierścieniowy
Specyfikacja / charakterystyka - MP 10x7/3.5x3 / N38 - magnes neodymowy pierścieniowy
| właściwości | wartości |
|---|---|
| Nr kat. | 030180 |
| GTIN/EAN | 5906301811978 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Średnica | 10 mm [±0,1 mm] |
| Średnica wewnętrzna Ø | 7/3.5 mm [±0,1 mm] |
| Wysokość | 3 mm [±0,1 mm] |
| Waga | 1.55 g |
| Kierunek magnesowania | ↑ osiowy |
| Udźwig ~ ? | 1.88 kg / 18.47 N |
| Indukcja magnetyczna ~ ? | 318.70 mT / 3187 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [min. - maks.] ? | 12.2-12.6 | kGs |
| remanencja Br [min. - maks.] ? | 1220-1260 | mT |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [min. - maks.] ? | 36-38 | BH max MGOe |
| gęstość energii [min. - maks.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Temperatura Curie TC | 312 - 380 | °C |
| Temperatura Curie TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅cm |
| Siła wyginania | 250 | MPa |
| Wytrzymałość na ściskanie | 1000~1100 | MPa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 10-6 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Symulacja fizyczna magnesu - parametry techniczne
Niniejsze informacje są bezpośredni efekt symulacji inżynierskiej. Wyniki bazują na modelach dla materiału Nd2Fe14B. Realne warunki mogą odbiegać od wyników symulacji. Traktuj te dane jako wstępny drogowskaz podczas planowania montażu.
Tabela 1: Siła prostopadła statyczna (udźwig vs dystans) - wykres oddziaływania
MP 10x7/3.5x3 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg)(gram)(Niuton) | Status ryzyka |
|---|---|---|---|
| 0 mm |
2813 Gs
281.3 mT
|
1.88 kg / 1880.0 g
18.4 N
|
słaby uchwyt |
| 1 mm |
2373 Gs
237.3 mT
|
1.34 kg / 1338.1 g
13.1 N
|
słaby uchwyt |
| 2 mm |
1870 Gs
187.0 mT
|
0.83 kg / 830.9 g
8.2 N
|
słaby uchwyt |
| 3 mm |
1416 Gs
141.6 mT
|
0.48 kg / 476.6 g
4.7 N
|
słaby uchwyt |
| 5 mm |
785 Gs
78.5 mT
|
0.15 kg / 146.4 g
1.4 N
|
słaby uchwyt |
| 10 mm |
214 Gs
21.4 mT
|
0.01 kg / 10.9 g
0.1 N
|
słaby uchwyt |
| 15 mm |
81 Gs
8.1 mT
|
0.00 kg / 1.6 g
0.0 N
|
słaby uchwyt |
| 20 mm |
38 Gs
3.8 mT
|
0.00 kg / 0.3 g
0.0 N
|
słaby uchwyt |
| 30 mm |
12 Gs
1.2 mT
|
0.00 kg / 0.0 g
0.0 N
|
słaby uchwyt |
| 50 mm |
3 Gs
0.3 mT
|
0.00 kg / 0.0 g
0.0 N
|
słaby uchwyt |
Tabela 2: Równoległa siła zsuwania (pion)
MP 10x7/3.5x3 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg)(gram)(Niuton) |
|---|---|---|
| 0 mm | Stal (~0.2) |
0.38 kg / 376.0 g
3.7 N
|
| 1 mm | Stal (~0.2) |
0.27 kg / 268.0 g
2.6 N
|
| 2 mm | Stal (~0.2) |
0.17 kg / 166.0 g
1.6 N
|
| 3 mm | Stal (~0.2) |
0.10 kg / 96.0 g
0.9 N
|
| 5 mm | Stal (~0.2) |
0.03 kg / 30.0 g
0.3 N
|
| 10 mm | Stal (~0.2) |
0.00 kg / 2.0 g
0.0 N
|
| 15 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
| 20 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
| 30 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
Tabela 3: Montaż pionowy (poślizg) - udźwig wertykalny
MP 10x7/3.5x3 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
0.56 kg / 564.0 g
5.5 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
0.38 kg / 376.0 g
3.7 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
0.19 kg / 188.0 g
1.8 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
0.94 kg / 940.0 g
9.2 N
|
Tabela 4: Efektywność materiałowa (wpływ podłoża) - straty mocy
MP 10x7/3.5x3 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg) |
|---|---|---|
| 0.5 mm |
|
0.19 kg / 188.0 g
1.8 N
|
| 1 mm |
|
0.47 kg / 470.0 g
4.6 N
|
| 2 mm |
|
0.94 kg / 940.0 g
9.2 N
|
| 5 mm |
|
1.88 kg / 1880.0 g
18.4 N
|
| 10 mm |
|
1.88 kg / 1880.0 g
18.4 N
|
Tabela 5: Praca w cieple (zachowanie materiału) - limit termiczny
MP 10x7/3.5x3 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig | Status |
|---|---|---|---|
| 20 °C | 0.0% |
1.88 kg / 1880.0 g
18.4 N
|
OK |
| 40 °C | -2.2% |
1.84 kg / 1838.6 g
18.0 N
|
OK |
| 60 °C | -4.4% |
1.80 kg / 1797.3 g
17.6 N
|
|
| 80 °C | -6.6% |
1.76 kg / 1755.9 g
17.2 N
|
|
| 100 °C | -28.8% |
1.34 kg / 1338.6 g
13.1 N
|
Tabela 6: Dwa magnesy (przyciąganie) - siły w układzie
MP 10x7/3.5x3 / N38
| Szczelina (mm) | Przyciąganie (kg) (N-S) | Odpychanie (kg) (N-N) |
|---|---|---|
| 0 mm |
2.86 kg / 2858 g
28.0 N
4 419 Gs
|
N/A |
| 1 mm |
2.46 kg / 2464 g
24.2 N
5 224 Gs
|
2.22 kg / 2217 g
21.8 N
~0 Gs
|
| 2 mm |
2.03 kg / 2034 g
20.0 N
4 747 Gs
|
1.83 kg / 1831 g
18.0 N
~0 Gs
|
| 3 mm |
1.62 kg / 1624 g
15.9 N
4 242 Gs
|
1.46 kg / 1462 g
14.3 N
~0 Gs
|
| 5 mm |
0.96 kg / 963 g
9.4 N
3 266 Gs
|
0.87 kg / 867 g
8.5 N
~0 Gs
|
| 10 mm |
0.22 kg / 223 g
2.2 N
1 570 Gs
|
0.20 kg / 200 g
2.0 N
~0 Gs
|
| 20 mm |
0.02 kg / 17 g
0.2 N
429 Gs
|
0.01 kg / 15 g
0.1 N
~0 Gs
|
| 50 mm |
0.00 kg / 0 g
0.0 N
41 Gs
|
0.00 kg / 0 g
0.0 N
~0 Gs
|
Tabela 7: Strefy ochronne (implanty) - ostrzeżenia
MP 10x7/3.5x3 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 4.5 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 3.5 cm |
| Czasomierz | 20 Gs (2.0 mT) | 3.0 cm |
| Urządzenie mobilne | 40 Gs (4.0 mT) | 2.0 cm |
| Kluczyk samochodowy | 50 Gs (5.0 mT) | 2.0 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 1.0 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 1.0 cm |
Tabela 8: Dynamika (energia kinetyczna) - ostrzeżenie
MP 10x7/3.5x3 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
35.25 km/h
(9.79 m/s)
|
0.07 J | |
| 30 mm |
60.84 km/h
(16.90 m/s)
|
0.22 J | |
| 50 mm |
78.54 km/h
(21.82 m/s)
|
0.37 J | |
| 100 mm |
111.07 km/h
(30.85 m/s)
|
0.74 J |
Tabela 9: Parametry powłoki (trwałość)
MP 10x7/3.5x3 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
Tabela 10: Dane elektryczne (Pc)
MP 10x7/3.5x3 / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 1 899 Mx | 19.0 µWb |
| Współczynnik Pc | 0.37 | Niski (Płaski) |
Tabela 11: Fizyka poszukiwań podwodnych
MP 10x7/3.5x3 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 1.88 kg | Standard |
| Woda (dno rzeki) |
2.15 kg
(+0.27 kg Zysk z wyporności)
|
+14.5% |
1. Siła zsuwająca
*Ważne: Na powierzchni pionowej magnes utrzyma zaledwie ok. 20-30% nominalnego udźwigu.
2. Grubość podłoża
*Cienka blacha (np. blacha karoseryjna) wyraźnie ogranicza udźwig magnesu.
3. Praca w cieple
*Dla standardowych magnesów maksymalna temperatura to 80°C.
4. Krzywa odmagnesowania i punkt pracy (B-H)
wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 0.37
Niniejsza symulacja obrazuje stabilność magnetyczną wybranego magnesu w konkretnych warunkach geometrycznych. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.
Specyfikacja materiałowa
| żelazo (Fe) | 64% – 68% |
| neodym (Nd) | 29% – 32% |
| bor (B) | 1.1% – 1.2% |
| dysproz (Dy) | 0.5% – 2.0% |
| powłoka (Ni-Cu-Ni) | < 0.05% |
Ekologia i recykling (GPSR)
| recyklowalność (EoL) | 100% |
| surowce z recyklingu | ~10% (pre-cons) |
| ślad węglowy | low / zredukowany |
| kod odpadu (EWC) | 16 02 16 |
Sprawdź inne produkty
UMP 75x25 [M10x3] GW F200 GOLD Lina / N42 - uchwyty magnetyczne do poszukiwań
Wady i zalety magnesów neodymowych Nd2Fe14B.
Mocne strony
- Cechują się stabilnością – przez okres ok. 10 lat gubią nie więcej niż ~1% swojej mocy (pomiary wskazują na taką wartość).
- Inne źródła magnetyzmu nie wpływają na ich szybkiego rozmagnesowania – posiadają wysoki współczynnik koercji.
- Łączą moc z estetyką – dzięki powłokom ich powierzchnia jest refleksyjna i wygląda estetycznie.
- Cechują się bardzo wysoką gęstością pola na powierzchni, co umożliwia mocne przyciąganie z dużą mocą.
- Mogą pracować w ekstremalnym cieple – wybrane modele znoszą temperaturę do 230°C (zależnie od wymiarów).
- Szerokie możliwości w projektowaniu kształtu i wymiaru to ich ogromny plus w inżynierii.
- Znajdują szerokie zastosowanie w nowoczesnej technice – od dysków twardych i silników, po precyzyjną diagnostykę.
- Mały rozmiar, wielka moc – przy kompaktowej budowie oferują potężny udźwig, co jest kluczowe przy budowie małych urządzeń.
Minusy
- Są wrażliwe na uderzenia – materiał jest kruchy i grozi pęknięciem. Ochrona w postaci obudowy jest kluczowa.
- Wrażliwość na ciepło: przekroczenie 80°C może trwale osłabić magnes (zależnie od bryły). Rozwiązaniem są nasze magnesy wysokotemperaturowe [AH].
- Ryzyko korozji: bez osłony magnes ulegnie utlenieniu na deszczu. Rozważ wersje powlekane tworzywem do zastosowań zewnętrznych.
- Trudności montażowe: zamiast próbować robić otwory kruchy magnes, wybierz uchwytów w stalowej obudowie, które posiadają gotowe mocowania.
- Ryzyko połknięcia – drobne magnesy są niebezpieczne dla najmłodszych. Połknięcie kilku sztuk grozi operacją. Dodatkowo mogą utrudniać badania (np. rezonans).
- Cena – są droższe niż magnesy ferrytowe, co przy wielkich nakładach może być barierą.
Parametry udźwigu
Najlepsza nośność magnesu w idealnych parametrach – co się na to składa?
- na płycie wykonanej ze stali miękkiej, optymalnie przewodzącej pole magnetyczne
- o grubości wynoszącej minimum 10 mm
- o szlifowanej powierzchni kontaktu
- w warunkach bezszczelinowych (metal do metalu)
- przy osiowym przyłożeniu siły odrywającej (kąt 90 stopni)
- w warunkach ok. 20°C
Praktyczny udźwig: czynniki wpływające
- Szczelina między magnesem a stalą – każdy milimetr odległości (spowodowany np. lakierem lub nierównością) drastycznie redukuje efektywność magnesu, często o połowę przy zaledwie 0,5 mm.
- Kierunek działania siły – największą siłę osiągamy tylko przy prostopadłym odrywaniu. Siła ścinająca magnesu po powierzchni jest zazwyczaj wielokrotnie niższa (ok. 1/5 udźwigu).
- Grubość stali – za chuda płyta nie zamyka strumienia, przez co część mocy marnuje się na drugą stronę.
- Typ metalu – różne stopy przyciąga się identycznie. Wysoka zawartość węgla osłabiają interakcję z magnesem.
- Faktura blachy – powierzchnie gładkie gwarantują idealne doleganie, co poprawia nasycenie pola. Powierzchnie chropowate osłabiają chwyt.
- Temperatura – podgrzanie magnesu powoduje tymczasowy spadek indukcji. Warto sprawdzić limit termiczny dla danego modelu.
Siłę trzymania testowano na gładkiej blasze o grubości 20 mm, kiedy działała siła prostopadła, natomiast przy działaniu siły na zsuwanie siła trzymania jest mniejsza nawet 75%. Co więcej, nawet niewielka szczelina między magnesem, a blachą zmniejsza siłę trzymania.
Ostrzeżenia
Ryzyko rozmagnesowania
Typowe magnesy neodymowe (klasa N) ulegają rozmagnesowaniu po osiągnięciu temperatury 80°C. Uszkodzenie jest permanentne.
Moc przyciągania
Przed przystąpieniem do pracy, przeczytaj instrukcję. Niekontrolowane przyciągnięcie może zniszczyć magnes lub zranić dłoń. Bądź przewidujący.
Ryzyko pęknięcia
Magnesy neodymowe to materiał ceramiczny, co oznacza, że są podatne na pęknięcia. Gwałtowne złączenie dwóch magnesów spowoduje ich rozkruszenie na drobne kawałki.
Poważne obrażenia
Chroń dłonie. Dwa duże magnesy zderzą błyskawicznie z siłą wielu ton, miażdżąc wszystko na swojej drodze. Zachowaj ekstremalną uwagę!
Niebezpieczeństwo dla rozruszników
Ostrzeżenie medyczne: Magnesy neodymowe mogą dezaktywować stymulatory i defibrylatory. Nie zbliżaj się, jeśli masz wszczepione implanty elektroniczne.
Pył jest łatwopalny
Szlifowanie magnesów neodymowych stwarza ryzyko zapłonu. Proszek magnetyczny utlenia się błyskawicznie z tlenem i jest trudny do gaszenia.
Bezpieczny dystans
Unikaj zbliżania magnesów do dokumentów, komputera czy telewizora. Magnes może trwale uszkodzić te urządzenia oraz skasować dane z kart.
Zakaz zabawy
Silne magnesy nie służą do zabawy. Przypadkowe zjedzenie kilku magnesów może doprowadzić do ich przyciągnięciem przez ścianki jelit, co stanowi bezpośrednie zagrożenie życia i wymaga natychmiastowej operacji.
Reakcje alergiczne
Niektóre osoby ma nadwrażliwość na pierwiastek nikiel, którym zabezpieczane są nasze produkty. Dłuższy kontakt może wywołać silną reakcję alergiczną. Zalecamy noszenie rękawiczek ochronnych.
Zakłócenia GPS i telefonów
Pamiętaj: magnesy neodymowe wytwarzają pole, które mylą systemy nawigacji. Utrzymuj odpowiednią odległość od telefonu, tabletu i urządzeń GPS.
