MP 10x7/3.5x3 / N38 - magnes neodymowy pierścieniowy
magnes neodymowy pierścieniowy
Numer katalogowy 030180
GTIN/EAN: 5906301811978
Średnica
10 mm [±0,1 mm]
Średnica wewnętrzna Ø
7/3.5 mm [±0,1 mm]
Wysokość
3 mm [±0,1 mm]
Waga
1.55 g
Kierunek magnesowania
↑ osiowy
Udźwig
1.88 kg / 18.47 N
Indukcja magnetyczna
318.70 mT / 3187 Gs
Powłoka
[NiCuNi] nikiel
0.824 ZŁ z VAT / szt. + cena za transport
0.670 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?
Zadzwoń i zapytaj
+48 22 499 98 98
alternatywnie napisz przez
formularz
na naszej stronie.
Parametry i wygląd magnesów neodymowych zobaczysz dzięki naszemu
kalkulatorze magnetycznym.
Realizacja tego samego dnia przy zamówieniu do 14:00.
Dane techniczne - MP 10x7/3.5x3 / N38 - magnes neodymowy pierścieniowy
Specyfikacja / charakterystyka - MP 10x7/3.5x3 / N38 - magnes neodymowy pierścieniowy
| właściwości | wartości |
|---|---|
| Nr kat. | 030180 |
| GTIN/EAN | 5906301811978 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Średnica | 10 mm [±0,1 mm] |
| Średnica wewnętrzna Ø | 7/3.5 mm [±0,1 mm] |
| Wysokość | 3 mm [±0,1 mm] |
| Waga | 1.55 g |
| Kierunek magnesowania | ↑ osiowy |
| Udźwig ~ ? | 1.88 kg / 18.47 N |
| Indukcja magnetyczna ~ ? | 318.70 mT / 3187 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [min. - maks.] ? | 12.2-12.6 | kGs |
| remanencja Br [min. - maks.] ? | 1220-1260 | mT |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [min. - maks.] ? | 36-38 | BH max MGOe |
| gęstość energii [min. - maks.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Temperatura Curie TC | 312 - 380 | °C |
| Temperatura Curie TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅cm |
| Siła wyginania | 250 | MPa |
| Wytrzymałość na ściskanie | 1000~1100 | MPa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 10-6 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Symulacja techniczna magnesu - raport
Niniejsze wartości stanowią bezpośredni efekt kalkulacji inżynierskiej. Wartości bazują na algorytmach dla klasy Nd2Fe14B. Realne warunki mogą odbiegać od wyników symulacji. Prosimy traktować te wyliczenia jako punkt odniesienia przy projektowaniu systemów.
Tabela 1: Udźwig statyczny prostopadły (udźwig vs odległość) - spadek mocy
MP 10x7/3.5x3 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg/lbs/g/N) | Status ryzyka |
|---|---|---|---|
| 0 mm |
2813 Gs
281.3 mT
|
1.88 kg / 4.14 lbs
1880.0 g / 18.4 N
|
niskie ryzyko |
| 1 mm |
2373 Gs
237.3 mT
|
1.34 kg / 2.95 lbs
1338.1 g / 13.1 N
|
niskie ryzyko |
| 2 mm |
1870 Gs
187.0 mT
|
0.83 kg / 1.83 lbs
830.9 g / 8.2 N
|
niskie ryzyko |
| 3 mm |
1416 Gs
141.6 mT
|
0.48 kg / 1.05 lbs
476.6 g / 4.7 N
|
niskie ryzyko |
| 5 mm |
785 Gs
78.5 mT
|
0.15 kg / 0.32 lbs
146.4 g / 1.4 N
|
niskie ryzyko |
| 10 mm |
214 Gs
21.4 mT
|
0.01 kg / 0.02 lbs
10.9 g / 0.1 N
|
niskie ryzyko |
| 15 mm |
81 Gs
8.1 mT
|
0.00 kg / 0.00 lbs
1.6 g / 0.0 N
|
niskie ryzyko |
| 20 mm |
38 Gs
3.8 mT
|
0.00 kg / 0.00 lbs
0.3 g / 0.0 N
|
niskie ryzyko |
| 30 mm |
12 Gs
1.2 mT
|
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
niskie ryzyko |
| 50 mm |
3 Gs
0.3 mT
|
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
niskie ryzyko |
Tabela 2: Siła równoległa zsuwania (ściana)
MP 10x7/3.5x3 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg/lbs/g/N) |
|---|---|---|
| 0 mm | Stal (~0.2) |
0.38 kg / 0.83 lbs
376.0 g / 3.7 N
|
| 1 mm | Stal (~0.2) |
0.27 kg / 0.59 lbs
268.0 g / 2.6 N
|
| 2 mm | Stal (~0.2) |
0.17 kg / 0.37 lbs
166.0 g / 1.6 N
|
| 3 mm | Stal (~0.2) |
0.10 kg / 0.21 lbs
96.0 g / 0.9 N
|
| 5 mm | Stal (~0.2) |
0.03 kg / 0.07 lbs
30.0 g / 0.3 N
|
| 10 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
2.0 g / 0.0 N
|
| 15 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
| 20 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
| 30 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
Tabela 3: Montaż pionowy (ścinanie) - zachowanie na śliskim podłożu
MP 10x7/3.5x3 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg/lbs/g/N) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
0.56 kg / 1.24 lbs
564.0 g / 5.5 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
0.38 kg / 0.83 lbs
376.0 g / 3.7 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
0.19 kg / 0.41 lbs
188.0 g / 1.8 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
0.94 kg / 2.07 lbs
940.0 g / 9.2 N
|
Tabela 4: Grubość stali (wpływ podłoża) - dobór blachy
MP 10x7/3.5x3 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg/lbs/g/N) |
|---|---|---|
| 0.5 mm |
|
0.19 kg / 0.41 lbs
188.0 g / 1.8 N
|
| 1 mm |
|
0.47 kg / 1.04 lbs
470.0 g / 4.6 N
|
| 2 mm |
|
0.94 kg / 2.07 lbs
940.0 g / 9.2 N
|
| 3 mm |
|
1.41 kg / 3.11 lbs
1410.0 g / 13.8 N
|
| 5 mm |
|
1.88 kg / 4.14 lbs
1880.0 g / 18.4 N
|
| 10 mm |
|
1.88 kg / 4.14 lbs
1880.0 g / 18.4 N
|
| 11 mm |
|
1.88 kg / 4.14 lbs
1880.0 g / 18.4 N
|
| 12 mm |
|
1.88 kg / 4.14 lbs
1880.0 g / 18.4 N
|
Tabela 5: Praca w cieple (zachowanie materiału) - spadek mocy
MP 10x7/3.5x3 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig (kg/lbs/g/N) | Status |
|---|---|---|---|
| 20 °C | 0.0% |
1.88 kg / 4.14 lbs
1880.0 g / 18.4 N
|
OK |
| 40 °C | -2.2% |
1.84 kg / 4.05 lbs
1838.6 g / 18.0 N
|
OK |
| 60 °C | -4.4% |
1.80 kg / 3.96 lbs
1797.3 g / 17.6 N
|
|
| 80 °C | -6.6% |
1.76 kg / 3.87 lbs
1755.9 g / 17.2 N
|
|
| 100 °C | -28.8% |
1.34 kg / 2.95 lbs
1338.6 g / 13.1 N
|
Tabela 6: Interakcja magnes-magnes (odpychanie) - zasięg pola
MP 10x7/3.5x3 / N38
| Szczelina (mm) | Przyciąganie (kg/lbs) (N-S) | Opór ścinania (kg/lbs/g/N) | Odpychanie (kg/lbs) (N-N) |
|---|---|---|---|
| 0 mm |
2.86 kg / 6.30 lbs
4 419 Gs
|
0.43 kg / 0.95 lbs
429 g / 4.2 N
|
N/A |
| 1 mm |
2.46 kg / 5.43 lbs
5 224 Gs
|
0.37 kg / 0.81 lbs
370 g / 3.6 N
|
2.22 kg / 4.89 lbs
~0 Gs
|
| 2 mm |
2.03 kg / 4.49 lbs
4 747 Gs
|
0.31 kg / 0.67 lbs
305 g / 3.0 N
|
1.83 kg / 4.04 lbs
~0 Gs
|
| 3 mm |
1.62 kg / 3.58 lbs
4 242 Gs
|
0.24 kg / 0.54 lbs
244 g / 2.4 N
|
1.46 kg / 3.22 lbs
~0 Gs
|
| 5 mm |
0.96 kg / 2.12 lbs
3 266 Gs
|
0.14 kg / 0.32 lbs
144 g / 1.4 N
|
0.87 kg / 1.91 lbs
~0 Gs
|
| 10 mm |
0.22 kg / 0.49 lbs
1 570 Gs
|
0.03 kg / 0.07 lbs
33 g / 0.3 N
|
0.20 kg / 0.44 lbs
~0 Gs
|
| 20 mm |
0.02 kg / 0.04 lbs
429 Gs
|
0.00 kg / 0.01 lbs
2 g / 0.0 N
|
0.01 kg / 0.03 lbs
~0 Gs
|
| 50 mm |
0.00 kg / 0.00 lbs
41 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 60 mm |
0.00 kg / 0.00 lbs
25 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 70 mm |
0.00 kg / 0.00 lbs
16 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 80 mm |
0.00 kg / 0.00 lbs
11 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 90 mm |
0.00 kg / 0.00 lbs
8 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 100 mm |
0.00 kg / 0.00 lbs
6 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
Tabela 7: Strefy ochronne (elektronika) - środki ostrożności
MP 10x7/3.5x3 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 4.5 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 3.5 cm |
| Zegarek mechaniczny | 20 Gs (2.0 mT) | 3.0 cm |
| Telefon / Smartfon | 40 Gs (4.0 mT) | 2.0 cm |
| Immobilizer | 50 Gs (5.0 mT) | 2.0 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 1.0 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 1.0 cm |
Tabela 8: Zderzenia (ryzyko pęknięcia) - skutki zderzenia
MP 10x7/3.5x3 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
35.25 km/h
(9.79 m/s)
|
0.07 J | |
| 30 mm |
60.84 km/h
(16.90 m/s)
|
0.22 J | |
| 50 mm |
78.54 km/h
(21.82 m/s)
|
0.37 J | |
| 100 mm |
111.07 km/h
(30.85 m/s)
|
0.74 J |
Tabela 9: Specyfikacja ochrony powierzchni
MP 10x7/3.5x3 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
Tabela 10: Dane konstrukcyjne (Flux)
MP 10x7/3.5x3 / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 1 899 Mx | 19.0 µWb |
| Współczynnik Pc | 0.37 | Niski (Płaski) |
Tabela 11: Praca w wodzie (Magnet Fishing)
MP 10x7/3.5x3 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 1.88 kg | Standard |
| Woda (dno rzeki) |
2.15 kg
(+0.27 kg zysk z wyporności)
|
+14.5% |
1. Siła zsuwająca
*Uwaga: Na powierzchni pionowej magnes utrzyma tylko ok. 20-30% siły prostopadłej.
2. Nasycenie magnetyczne
*Zbyt cienki metal (np. obudowa PC 0.5mm) znacząco ogranicza siłę trzymania.
3. Wytrzymałość temperaturowa
*Dla materiału N38 granica bezpieczeństwa to 80°C.
4. Krzywa odmagnesowania i punkt pracy (B-H)
wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 0.37
Powyższy wykres prezentuje charakterystykę magnetyczną materiału w drugim kwadrancie pętli histerezy. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.
Specyfikacja materiałowa
| żelazo (Fe) | 64% – 68% |
| neodym (Nd) | 29% – 32% |
| bor (B) | 1.1% – 1.2% |
| dysproz (Dy) | 0.5% – 2.0% |
| powłoka (Ni-Cu-Ni) | < 0.05% |
Dane środowiskowe
| recyklowalność (EoL) | 100% |
| surowce z recyklingu | ~10% (pre-cons) |
| ślad węglowy | low / zredukowany |
| kod odpadu (EWC) | 16 02 16 |
Zobacz też inne produkty
Wady i zalety magnesów z neodymu Nd2Fe14B.
Korzyści
- Są niezwykle trwałe – przez okres ok. 10 lat gubią maksymalnie ~1% swojej pierwotnej siły (pomiary wskazują na taką wartość).
- Są niewrażliwe na zewnętrzne zakłócenia, co czyni je odpornymi na rozmagnesowanie w trudnych warunkach.
- Dzięki powłoce (NiCuNi, złoto, Ag) zyskują estetyczny, błyszczący wygląd.
- Indukcja magnetyczna na powierzchni tych magnesów jest bardzo wysoka, co czyni je najsilniejszymi w swojej klasie.
- Są przystosowane do pracy w gorącym otoczeniu – wybrane modele znoszą temperaturę do 230°C (zależnie od wymiarów).
- Elastyczność kształtowania – można je produkować w rozmaitych formach, idealnych do wymagań klienta.
- Stanowią kluczowy element w technologiach przyszłości, zasilając układy napędowe, urządzenia medyczne czy elektronikę użytkową.
- Mały rozmiar, wielka moc – przy niewielkich gabarytach oferują ogromną siłę, co jest kluczowe przy budowie małych urządzeń.
Ograniczenia
- Ze względu na kruchość, trzeba się z nimi obchodzić delikatnie. Gwałtowne złączenie może je zniszczyć, stąd rekomendacja stosowania osłon.
- Klasyczne neodymy tracą moc powyżej 80°C. Jeśli wymagasz pracy w wyższych temperaturach, wybierz serię [AH] (odporną do 230°C).
- Ryzyko korozji: bez osłony magnes ulegnie utlenieniu na deszczu. Wybierz wersje powlekane tworzywem do zastosowań zewnętrznych.
- Trudności montażowe: zamiast próbować robić otwory kruchy magnes, wybierz uchwytów w stalowej obudowie, które posiadają gotowe mocowania.
- Ryzyko połknięcia – drobne magnesy są niebezpieczne dla najmłodszych. Połknięcie kilku sztuk grozi poważnymi obrażeniami. Dodatkowo mogą zakłócać badania (np. rezonans).
- Nie należą do tanich – ich cena jest wyższa niż ferrytów, co należy uwzględnić przy kalkulacji produkcji.
Parametry udźwigu
Udźwig maksymalny dla magnesu neodymowego – co ma na to wpływ?
- przy kontakcie z zwory ze specjalnej stali pomiarowej, gwarantującej pełne nasycenie magnetyczne
- posiadającej masywność minimum 10 mm aby uniknąć nasycenia
- charakteryzującej się gładkością
- przy zerowej szczelinie (brak zanieczyszczeń)
- przy prostopadłym wektorze siły (kąt 90 stopni)
- w stabilnej temperaturze pokojowej
Udźwig w praktyce – czynniki wpływu
- Szczelina powietrzna (pomiędzy magnesem a metalem), gdyż nawet bardzo mała przerwa (np. 0,5 mm) skutkuje drastyczny spadek siły nawet o 50% (dotyczy to także farby, rdzy czy zanieczyszczeń).
- Kierunek siły – należy wiedzieć, że magnes ma największą siłę prostopadle. Przy zsuwaniu w dół, udźwig spada drastycznie, często do poziomu 20-30% wartości nominalnej.
- Grubość ścianki – cienki materiał nie pozwala na pełne wykorzystanie magnesu. Część pola magnetycznego przenika na wylot, zamiast zamienić się w udźwig.
- Skład materiału – różne stopy przyciąga się identycznie. Dodatki stopowe pogarszają efekt przyciągania.
- Jakość powierzchni – im równiejsza blacha, tym lepsze przyleganie i wyższy udźwig. Nierówności działają jak mikroszczeliny.
- Czynnik termiczny – gorące środowisko osłabia siłę przyciągania. Przekroczenie temperatury granicznej może trwale uszkodzić magnes.
Pomiar udźwigu przeprowadzano na gładkiej blaszce o odpowiedniej grubości, przy siłach prostopadłych, jednak przy działaniu siły na zsuwanie udźwig jest mniejszy nawet 5 razy. Co więcej, nawet minimalna przerwa pomiędzy magnesem, a blachą zmniejsza siłę trzymania.
Środki ostrożności podczas pracy przy magnesach z neodymem
Dla uczulonych
Pewna grupa użytkowników wykazuje nadwrażliwość na pierwiastek nikiel, którym powlekane są standardowo magnesy neodymowe. Długotrwała ekspozycja może skutkować wysypkę. Sugerujemy noszenie rękawiczek ochronnych.
Pole magnetyczne a elektronika
Nie zbliżaj magnesów do portfela, komputera czy telewizora. Magnes może nieodwracalnie zepsuć te urządzenia oraz skasować dane z kart.
Siła zgniatająca
Ryzyko obrażeń: Siła przyciągania jest tak duża, że może spowodować rany, zmiażdżenia, a nawet otwarte złamania. Używaj grubych rękawic.
Limity termiczne
Kontroluj ciepło. Ekspozycja magnesu na wysoką temperaturę zdegraduje jego domenę magnetyczną i siłę przyciągania.
Ryzyko pęknięcia
Mimo metalicznego wyglądu, neodym jest delikatny i nie znosi udarów. Nie uderzaj, gdyż magnes może się rozpaść na ostre, niebezpieczne kawałki.
Kompas i GPS
Ważna informacja: magnesy neodymowe wytwarzają pole, które dezorientują elektronikę precyzyjną. Zachowaj odpowiednią odległość od komórki, tabletu i nawigacji.
Uwaga medyczna
Zagrożenie życia: Magnesy neodymowe mogą dezaktywować stymulatory i defibrylatory. Nie zbliżaj się, jeśli posiadasz implanty elektroniczne.
Bezpieczna praca
Bądź ostrożny. Magnesy neodymowe działają z daleka i łączą się z impetem, często gwałtowniej niż zdążysz zareagować.
Obróbka mechaniczna
Proszek generowany podczas szlifowania magnesów jest samozapalny. Nie wierć w magnesach bez odpowiedniego chłodzenia i wiedzy.
Produkt nie dla dzieci
Magnesy neodymowe to nie zabawki. Przypadkowe zjedzenie dwóch lub więcej magnesów może skutkować ich złączeniem się w jelitach, co stwarza bezpośrednie zagrożenie życia i wymaga pilnej interwencji chirurgicznej.
