MW 8x20 / N38 - magnes neodymowy walcowy
magnes neodymowy walcowy
Numer katalogowy 010475
GTIN/EAN: 5906301811138
Średnica Ø
8 mm [±0,1 mm]
Wysokość
20 mm [±0,1 mm]
Waga
7.54 g
Kierunek magnesowania
→ diametralny
Udźwig
1.30 kg / 12.71 N
Indukcja magnetyczna
607.01 mT / 6070 Gs
Powłoka
[NiCuNi] nikiel
4.60 ZŁ z VAT / szt. + cena za transport
3.74 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?
Dzwoń do nas
+48 888 99 98 98
lub zostaw wiadomość za pomocą
formularz kontaktowy
w sekcji kontakt.
Moc oraz budowę magnesu neodymowego testujesz u nas w
naszym kalkulatorze magnetycznym.
Zamów do 14:00, a wyślemy dziś!
Specyfikacja techniczna - MW 8x20 / N38 - magnes neodymowy walcowy
Specyfikacja / charakterystyka - MW 8x20 / N38 - magnes neodymowy walcowy
| właściwości | wartości |
|---|---|
| Nr kat. | 010475 |
| GTIN/EAN | 5906301811138 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Średnica Ø | 8 mm [±0,1 mm] |
| Wysokość | 20 mm [±0,1 mm] |
| Waga | 7.54 g |
| Kierunek magnesowania | → diametralny |
| Udźwig ~ ? | 1.30 kg / 12.71 N |
| Indukcja magnetyczna ~ ? | 607.01 mT / 6070 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [min. - maks.] ? | 12.2-12.6 | kGs |
| remanencja Br [min. - maks.] ? | 1220-1260 | mT |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [min. - maks.] ? | 36-38 | BH max MGOe |
| gęstość energii [min. - maks.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Temperatura Curie TC | 312 - 380 | °C |
| Temperatura Curie TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅cm |
| Siła wyginania | 250 | MPa |
| Wytrzymałość na ściskanie | 1000~1100 | MPa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 10-6 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Symulacja inżynierska magnesu neodymowego - parametry techniczne
Niniejsze wartości stanowią bezpośredni efekt symulacji fizycznej. Wartości bazują na modelach dla klasy Nd2Fe14B. Rzeczywiste osiągi mogą nieznacznie różnić się od wartości teoretycznych. Traktuj te wyliczenia jako pomoc pomocniczą przy projektowaniu systemów.
Tabela 1: Siła prostopadła statyczna (udźwig vs odległość) - spadek mocy
MW 8x20 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg/lbs/g/N) | Status ryzyka |
|---|---|---|---|
| 0 mm |
6064 Gs
606.4 mT
|
1.30 kg / 2.87 lbs
1300.0 g / 12.8 N
|
bezpieczny |
| 1 mm |
4587 Gs
458.7 mT
|
0.74 kg / 1.64 lbs
743.7 g / 7.3 N
|
bezpieczny |
| 2 mm |
3327 Gs
332.7 mT
|
0.39 kg / 0.86 lbs
391.4 g / 3.8 N
|
bezpieczny |
| 3 mm |
2388 Gs
238.8 mT
|
0.20 kg / 0.44 lbs
201.6 g / 2.0 N
|
bezpieczny |
| 5 mm |
1281 Gs
128.1 mT
|
0.06 kg / 0.13 lbs
58.0 g / 0.6 N
|
bezpieczny |
| 10 mm |
389 Gs
38.9 mT
|
0.01 kg / 0.01 lbs
5.4 g / 0.1 N
|
bezpieczny |
| 15 mm |
169 Gs
16.9 mT
|
0.00 kg / 0.00 lbs
1.0 g / 0.0 N
|
bezpieczny |
| 20 mm |
90 Gs
9.0 mT
|
0.00 kg / 0.00 lbs
0.3 g / 0.0 N
|
bezpieczny |
| 30 mm |
35 Gs
3.5 mT
|
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
bezpieczny |
| 50 mm |
10 Gs
1.0 mT
|
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
bezpieczny |
Tabela 2: Równoległa siła zsuwania (pion)
MW 8x20 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg/lbs/g/N) |
|---|---|---|
| 0 mm | Stal (~0.2) |
0.26 kg / 0.57 lbs
260.0 g / 2.6 N
|
| 1 mm | Stal (~0.2) |
0.15 kg / 0.33 lbs
148.0 g / 1.5 N
|
| 2 mm | Stal (~0.2) |
0.08 kg / 0.17 lbs
78.0 g / 0.8 N
|
| 3 mm | Stal (~0.2) |
0.04 kg / 0.09 lbs
40.0 g / 0.4 N
|
| 5 mm | Stal (~0.2) |
0.01 kg / 0.03 lbs
12.0 g / 0.1 N
|
| 10 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
2.0 g / 0.0 N
|
| 15 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
| 20 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
| 30 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
Tabela 3: Siła na ścianie (ścinanie) - udźwig wertykalny
MW 8x20 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg/lbs/g/N) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
0.39 kg / 0.86 lbs
390.0 g / 3.8 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
0.26 kg / 0.57 lbs
260.0 g / 2.6 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
0.13 kg / 0.29 lbs
130.0 g / 1.3 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
0.65 kg / 1.43 lbs
650.0 g / 6.4 N
|
Tabela 4: Grubość stali (wpływ podłoża) - straty mocy
MW 8x20 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg/lbs/g/N) |
|---|---|---|
| 0.5 mm |
|
0.13 kg / 0.29 lbs
130.0 g / 1.3 N
|
| 1 mm |
|
0.33 kg / 0.72 lbs
325.0 g / 3.2 N
|
| 2 mm |
|
0.65 kg / 1.43 lbs
650.0 g / 6.4 N
|
| 3 mm |
|
0.98 kg / 2.15 lbs
975.0 g / 9.6 N
|
| 5 mm |
|
1.30 kg / 2.87 lbs
1300.0 g / 12.8 N
|
| 10 mm |
|
1.30 kg / 2.87 lbs
1300.0 g / 12.8 N
|
| 11 mm |
|
1.30 kg / 2.87 lbs
1300.0 g / 12.8 N
|
| 12 mm |
|
1.30 kg / 2.87 lbs
1300.0 g / 12.8 N
|
Tabela 5: Stabilność termiczna (stabilność) - próg odporności
MW 8x20 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig (kg/lbs/g/N) | Status |
|---|---|---|---|
| 20 °C | 0.0% |
1.30 kg / 2.87 lbs
1300.0 g / 12.8 N
|
OK |
| 40 °C | -2.2% |
1.27 kg / 2.80 lbs
1271.4 g / 12.5 N
|
OK |
| 60 °C | -4.4% |
1.24 kg / 2.74 lbs
1242.8 g / 12.2 N
|
OK |
| 80 °C | -6.6% |
1.21 kg / 2.68 lbs
1214.2 g / 11.9 N
|
|
| 100 °C | -28.8% |
0.93 kg / 2.04 lbs
925.6 g / 9.1 N
|
Tabela 6: Dwa magnesy (przyciąganie) - zasięg pola
MW 8x20 / N38
| Szczelina (mm) | Przyciąganie (kg/lbs) (N-S) | Siła ścinająca (kg/lbs/g/N) | Odpychanie (kg/lbs) (N-N) |
|---|---|---|---|
| 0 mm |
11.40 kg / 25.12 lbs
6 154 Gs
|
1.71 kg / 3.77 lbs
1709 g / 16.8 N
|
N/A |
| 1 mm |
8.76 kg / 19.31 lbs
10 632 Gs
|
1.31 kg / 2.90 lbs
1314 g / 12.9 N
|
7.88 kg / 17.38 lbs
~0 Gs
|
| 2 mm |
6.52 kg / 14.37 lbs
9 174 Gs
|
0.98 kg / 2.16 lbs
978 g / 9.6 N
|
5.87 kg / 12.94 lbs
~0 Gs
|
| 3 mm |
4.76 kg / 10.49 lbs
7 837 Gs
|
0.71 kg / 1.57 lbs
714 g / 7.0 N
|
4.28 kg / 9.44 lbs
~0 Gs
|
| 5 mm |
2.46 kg / 5.43 lbs
5 637 Gs
|
0.37 kg / 0.81 lbs
369 g / 3.6 N
|
2.22 kg / 4.88 lbs
~0 Gs
|
| 10 mm |
0.51 kg / 1.12 lbs
2 561 Gs
|
0.08 kg / 0.17 lbs
76 g / 0.7 N
|
0.46 kg / 1.01 lbs
~0 Gs
|
| 20 mm |
0.05 kg / 0.10 lbs
778 Gs
|
0.01 kg / 0.02 lbs
7 g / 0.1 N
|
0.04 kg / 0.09 lbs
~0 Gs
|
| 50 mm |
0.00 kg / 0.00 lbs
107 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 60 mm |
0.00 kg / 0.00 lbs
69 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 70 mm |
0.00 kg / 0.00 lbs
48 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 80 mm |
0.00 kg / 0.00 lbs
34 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 90 mm |
0.00 kg / 0.00 lbs
25 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 100 mm |
0.00 kg / 0.00 lbs
19 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
Tabela 7: Strefy ochronne (elektronika) - środki ostrożności
MW 8x20 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 6.5 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 5.0 cm |
| Zegarek mechaniczny | 20 Gs (2.0 mT) | 4.0 cm |
| Telefon / Smartfon | 40 Gs (4.0 mT) | 3.0 cm |
| Pilot do auta | 50 Gs (5.0 mT) | 3.0 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 1.0 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 1.0 cm |
Tabela 8: Dynamika (energia kinetyczna) - ostrzeżenie
MW 8x20 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
13.28 km/h
(3.69 m/s)
|
0.05 J | |
| 30 mm |
22.94 km/h
(6.37 m/s)
|
0.15 J | |
| 50 mm |
29.61 km/h
(8.23 m/s)
|
0.26 J | |
| 100 mm |
41.88 km/h
(11.63 m/s)
|
0.51 J |
Tabela 9: Specyfikacja ochrony powierzchni
MW 8x20 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
Tabela 10: Dane konstrukcyjne (Pc)
MW 8x20 / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 3 457 Mx | 34.6 µWb |
| Współczynnik Pc | 1.31 | Wysoki (Stabilny) |
Tabela 11: Fizyka poszukiwań podwodnych
MW 8x20 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 1.30 kg | Standard |
| Woda (dno rzeki) |
1.49 kg
(+0.19 kg zysk z wyporności)
|
+14.5% |
1. Siła zsuwająca
*Ważne: Na powierzchni pionowej magnes zachowa tylko ułamek nominalnego udźwigu.
2. Grubość podłoża
*Zbyt cienki metal (np. blacha karoseryjna) wyraźnie redukuje siłę trzymania.
3. Praca w cieple
*Dla materiału N38 krytyczny próg to 80°C.
4. Krzywa odmagnesowania i punkt pracy (B-H)
wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 1.31
Powyższy wykres prezentuje charakterystykę magnetyczną materiału w drugim kwadrancie pętli histerezy. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.
Analiza pierwiastkowa
| żelazo (Fe) | 64% – 68% |
| neodym (Nd) | 29% – 32% |
| bor (B) | 1.1% – 1.2% |
| dysproz (Dy) | 0.5% – 2.0% |
| powłoka (Ni-Cu-Ni) | < 0.05% |
Dane środowiskowe
| recyklowalność (EoL) | 100% |
| surowce z recyklingu | ~10% (pre-cons) |
| ślad węglowy | low / zredukowany |
| kod odpadu (EWC) | 16 02 16 |
Inne propozycje
UMP 75x25 [M10x3] GW F200 PLATINIUM / N52 - uchwyty magnetyczne do poszukiwań
Wady oraz zalety magnesów neodymowych Nd2Fe14B.
Korzyści
- Długowieczność to ich atut – nawet po 10 lat utrata siły magnetycznej wynosi zaledwie ~1% (wg testów).
- Charakteryzują się ogromną odpornością na demagnetyzację, nawet w silnych polach zewnętrznych.
- Są nie tylko silne, ale i ładne – dzięki powłokom ich powierzchnia jest błyszcząca i prezentuje się elegancko.
- Cechują się bardzo wysoką gęstością pola na powierzchni, co umożliwia silne chwytanie z dużą mocą.
- Mogą pracować w ekstremalnym cieple – wybrane modele znoszą temperaturę do 230°C (zależnie od wymiarów).
- Możliwość uzyskania skomplikowanych kształtów sprawia, że są idealne do indywidualnych zastosowań.
- Stanowią kluczowy element w technologiach przyszłości, zasilając silniki, sprzęt szpitalny czy komputery.
- Doskonała relacja wielkości do siły – są małe, ale niezwykle mocne, co pozwala na ich montaż w precyzyjnych mechanizmach.
Słabe strony
- Ze względu na brak elastyczności, trzeba się z nimi obchodzić delikatnie. Silne uderzenie może je zniszczyć, stąd zalecenie stosowania osłon.
- Gorąco to wróg neodymów – powyżej 80°C tracą właściwości. Do zadań specjalnych polecamy serię [AH], działającą stabilnie aż do 230°C.
- Brak odporności na wodę skutkuje utlenianiem. Do zadań zewnętrznych rekomendujemy wyłącznie magnesy w pełnej izolacji (plastik/guma).
- Trudności montażowe: zamiast próbować gwintować kruchy magnes, wybierz uchwytów w stalowej obudowie, które posiadają gwinty.
- Drobne magnesy to ryzyko – połknięcie wymaga interwencji chirurga. Mogą też być problemem przy diagnostyce MRI.
- Cena – są droższe niż magnesy ferrytowe, co przy produkcji masowej może być istotnym kosztem.
Parametry udźwigu
Optymalny udźwig magnesu neodymowego – od czego zależy?
- przy zastosowaniu blachy ze stali niskowęglowej, zapewniającej maksymalne skupienie pola
- posiadającej grubość minimum 10 mm aby uniknąć nasycenia
- charakteryzującej się gładkością
- przy bezpośrednim styku (bez farby)
- dla siły przyłożonej pod kątem prostym (na odrywanie, nie zsuwanie)
- przy temperaturze pokojowej
Wpływ czynników na nośność magnesu w praktyce
- Dystans – występowanie ciała obcego (rdza, brud, szczelina) przerywa obwód magnetyczny, co obniża udźwig lawinowo (nawet o 50% przy 0,5 mm).
- Sposób obciążenia – deklarowany udźwig dotyczy ciągnięcia w pionie. Przy ześlizgiwaniu, magnes trzyma znacznie mniejszą moc (zazwyczaj ok. 20-30% siły nominalnej).
- Grubość ścianki – im cieńsza blacha, tym słabsze trzymanie. Część pola magnetycznego przenika na wylot, zamiast zamienić się w udźwig.
- Typ metalu – różne stopy przyciąga się identycznie. Dodatki stopowe pogarszają efekt przyciągania.
- Faktura blachy – szlifowane elementy gwarantują idealne doleganie, co poprawia nasycenie pola. Nierówny metal osłabiają chwyt.
- Wpływ temperatury – gorące środowisko zmniejsza siłę przyciągania. Zbyt wysoka temperatura może trwale rozmagnesować magnes.
Udźwig wyznaczano z wykorzystaniem gładkiej blachy o optymalnej grubości (min. 20 mm), przy siłach działających pionowo, natomiast przy siłach działających równolegle siła trzymania jest mniejsza nawet 75%. Dodatkowo, nawet drobny odstęp pomiędzy powierzchnią magnesu, a blachą zmniejsza nośność.
Środki ostrożności podczas pracy z magnesami neodymowymi
Uwaga: zadławienie
Produkt przeznaczony dla dorosłych. Drobne magnesy mogą zostać połknięte, co prowadzi do perforacji jelit. Trzymaj z dala od dzieci i zwierząt.
Trwała utrata siły
Uważaj na temperaturę. Ekspozycja magnesu powyżej 80 stopni Celsjusza zniszczy jego strukturę magnetyczną i udźwig.
Implanty kardiologiczne
Ostrzeżenie dla sercowców: Silne pole magnetyczne zakłóca urządzenia medyczne. Zachowaj co najmniej 30 cm odstępu lub poproś inną osobę pracę z magnesów.
Trzymaj z dala od elektroniki
Moduły GPS i smartfony są wyjątkowo podatne na pole magnetyczne. Bliskie sąsiedztwo z silnym magnesem może zniszczyć czujniki w Twoim telefonie.
Zagrożenie zapłonem
Zagrożenie pożarowe: Pył neodymowy jest skrajnie łatwopalny. Nie poddawaj magnesów obróbce amatorsko, gdyż może to wywołać pożar.
Unikaj kontaktu w przypadku alergii
Ostrzeżenie dla alergików: warstwa ochronna Ni-Cu-Ni ma w składzie nikiel. W przypadku wystąpienia reakcji alergicznej, należy bezzwłocznie zakończyć pracę z magnesami i zabezpieczyć dłonie.
Ochrona dłoni
Chroń dłonie. Dwa duże magnesy zderzą z ogromną prędkością z siłą wielu ton, miażdżąc wszystko na swojej drodze. Bądź ostrożny!
Ostrożność wymagana
Stosuj magnesy odpowiedzialnie. Ich gigantyczny udźwig może zszokować nawet doświadczonych użytkowników. Planuj ruchy i nie lekceważ ich siły.
Nośniki danych
Zagrożenie dla danych: Magnesy neodymowe mogą zdegradować karty bankomatowe oraz urządzenia precyzyjne (rozruszniki serca, aparaty słuchowe, zegarki mechaniczne).
Rozprysk materiału
Mimo metalicznego wyglądu, neodym jest kruchy i nieodporny na uderzenia. Nie rzucaj, gdyż magnes może się pokruszyć na ostre, niebezpieczne kawałki.
