MW 8x20 / N38 - magnes neodymowy walcowy
magnes neodymowy walcowy
Numer katalogowy 010475
GTIN: 5906301811138
Średnica Ø
8 mm [±0,1 mm]
Wysokość
20 mm [±0,1 mm]
Waga
7.54 g
Kierunek magnesowania
→ diametralny
Udźwig
1.30 kg / 12.71 N
Indukcja magnetyczna
607.01 mT / 6070 Gs
Powłoka
[NiCuNi] nikiel
4.60 ZŁ z VAT / szt. + cena za transport
3.74 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?Chcesz skonsultować wybór?
Skontaktuj się z nami telefonicznie
+48 22 499 98 98
ewentualnie daj znać korzystając z
formularz
na naszej stronie.
Parametry oraz wygląd magnesu neodymowego sprawdzisz dzięki naszemu
kalkulatorze siły.
Realizacja tego samego dnia przy zamówieniu do 14:00.
MW 8x20 / N38 - magnes neodymowy walcowy
Specyfikacja / charakterystyka MW 8x20 / N38 - magnes neodymowy walcowy
| właściwości | wartości |
|---|---|
| Nr kat. | 010475 |
| GTIN | 5906301811138 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Średnica Ø | 8 mm [±0,1 mm] |
| Wysokość | 20 mm [±0,1 mm] |
| Waga | 7.54 g |
| Kierunek magnesowania | → diametralny |
| Udźwig ~ ? | 1.30 kg / 12.71 N |
| Indukcja magnetyczna ~ ? | 607.01 mT / 6070 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [Min. - Max.] ? | 12.2-12.6 | kGs |
| remanencja Br [Min. - Max.] ? | 1220-1260 | T |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [Min. - Max.] ? | 36-38 | BH max MGOe |
| gęstość energii [Min. - Max.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Curie Temperatura TC | 312 - 380 | °C |
| Curie Temperatura TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅Cm |
| Siła wyginania | 250 | Mpa |
| Wytrzymałość na ściskanie | 1000~1100 | Mpa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 106 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Symulacja inżynierska magnesu - parametry techniczne
Przedstawione dane stanowią wynik analizy matematycznej. Wyniki bazują na modelach dla materiału NdFeB. Realne parametry mogą nieznacznie odbiegać od wyników symulacji. Prosimy traktować te wyliczenia jako punkt odniesienia dla projektantów.
MW 8x20 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg) | Status ryzyka |
|---|---|---|---|
| 0 mm |
6064 Gs
606.4 mT
|
1.30 kg / 1300.0 g
12.8 N
|
niskie ryzyko |
| 1 mm |
4587 Gs
458.7 mT
|
0.74 kg / 743.7 g
7.3 N
|
niskie ryzyko |
| 2 mm |
3327 Gs
332.7 mT
|
0.39 kg / 391.4 g
3.8 N
|
niskie ryzyko |
| 3 mm |
2388 Gs
238.8 mT
|
0.20 kg / 201.6 g
2.0 N
|
niskie ryzyko |
| 5 mm |
1281 Gs
128.1 mT
|
0.06 kg / 58.0 g
0.6 N
|
niskie ryzyko |
| 10 mm |
389 Gs
38.9 mT
|
0.01 kg / 5.4 g
0.1 N
|
niskie ryzyko |
| 15 mm |
169 Gs
16.9 mT
|
0.00 kg / 1.0 g
0.0 N
|
niskie ryzyko |
| 20 mm |
90 Gs
9.0 mT
|
0.00 kg / 0.3 g
0.0 N
|
niskie ryzyko |
| 30 mm |
35 Gs
3.5 mT
|
0.00 kg / 0.0 g
0.0 N
|
niskie ryzyko |
| 50 mm |
10 Gs
1.0 mT
|
0.00 kg / 0.0 g
0.0 N
|
niskie ryzyko |
MW 8x20 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg) |
|---|---|---|
| 0 mm | Stal (~0.2) |
0.26 kg / 260.0 g
2.6 N
|
| 1 mm | Stal (~0.2) |
0.15 kg / 148.0 g
1.5 N
|
| 2 mm | Stal (~0.2) |
0.08 kg / 78.0 g
0.8 N
|
| 3 mm | Stal (~0.2) |
0.04 kg / 40.0 g
0.4 N
|
| 5 mm | Stal (~0.2) |
0.01 kg / 12.0 g
0.1 N
|
| 10 mm | Stal (~0.2) |
0.00 kg / 2.0 g
0.0 N
|
| 15 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
| 20 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
| 30 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
MW 8x20 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
0.39 kg / 390.0 g
3.8 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
0.26 kg / 260.0 g
2.6 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
0.13 kg / 130.0 g
1.3 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
0.65 kg / 650.0 g
6.4 N
|
MW 8x20 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg) |
|---|---|---|
| 0.5 mm |
|
0.13 kg / 130.0 g
1.3 N
|
| 1 mm |
|
0.33 kg / 325.0 g
3.2 N
|
| 2 mm |
|
0.65 kg / 650.0 g
6.4 N
|
| 5 mm |
|
1.30 kg / 1300.0 g
12.8 N
|
| 10 mm |
|
1.30 kg / 1300.0 g
12.8 N
|
MW 8x20 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig | Status |
|---|---|---|---|
| 20 °C | 0.0% |
1.30 kg / 1300.0 g
12.8 N
|
OK |
| 40 °C | -2.2% |
1.27 kg / 1271.4 g
12.5 N
|
OK |
| 60 °C | -4.4% |
1.24 kg / 1242.8 g
12.2 N
|
OK |
| 80 °C | -6.6% |
1.21 kg / 1214.2 g
11.9 N
|
|
| 100 °C | -28.8% |
0.93 kg / 925.6 g
9.1 N
|
MW 8x20 / N38
| Szczelina (mm) | Przyciąganie (kg) (N-S) | Odpychanie (kg) (N-N) |
|---|---|---|
| 0 mm |
1.31 kg / 1307 g
12.8 N
12 159 Gs
|
N/A |
| 1 mm |
0.74 kg / 744 g
7.3 N
10 632 Gs
|
0.67 kg / 669 g
6.6 N
~0 Gs
|
| 2 mm |
0.39 kg / 391 g
3.8 N
9 174 Gs
|
0.35 kg / 352 g
3.5 N
~0 Gs
|
| 3 mm |
0.20 kg / 202 g
2.0 N
7 837 Gs
|
0.18 kg / 181 g
1.8 N
~0 Gs
|
| 5 mm |
0.06 kg / 58 g
0.6 N
5 637 Gs
|
0.05 kg / 52 g
0.5 N
~0 Gs
|
| 10 mm |
0.01 kg / 5 g
0.1 N
2 561 Gs
|
0.00 kg / 0 g
0.0 N
~0 Gs
|
| 20 mm |
0.00 kg / 0 g
0.0 N
778 Gs
|
0.00 kg / 0 g
0.0 N
~0 Gs
|
| 50 mm |
0.00 kg / 0 g
0.0 N
107 Gs
|
0.00 kg / 0 g
0.0 N
~0 Gs
|
MW 8x20 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 6.5 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 5.0 cm |
| Zegarek mechaniczny | 20 Gs (2.0 mT) | 4.0 cm |
| Telefon / Smartfon | 40 Gs (4.0 mT) | 3.0 cm |
| Kluczyk samochodowy | 50 Gs (5.0 mT) | 3.0 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 1.0 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 1.0 cm |
MW 8x20 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
13.28 km/h
(3.69 m/s)
|
0.05 J | |
| 30 mm |
22.94 km/h
(6.37 m/s)
|
0.15 J | |
| 50 mm |
29.61 km/h
(8.23 m/s)
|
0.26 J | |
| 100 mm |
41.88 km/h
(11.63 m/s)
|
0.51 J |
MW 8x20 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
MW 8x20 / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 3 457 Mx | 34.6 µWb |
| Współczynnik Pc | 1.31 | Wysoki (Stabilny) |
MW 8x20 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 1.30 kg | Standard |
| Woda (dno rzeki) |
1.49 kg
(+0.19 kg Zysk z wyporności)
|
+14.5% |
Inne propozycje
Wady oraz zalety neodymowych magnesów NdFeB.
Należy pamiętać, iż obok wysokiej siły, magnesy te wyróżniają się następującymi plusami:
- Utrzymują swoje właściwości przez lata – szacuje się, że po dekadzie słabną o niezauważalny 1%.
- Wyróżniają się wyjątkową odpornością na demagnetyzację, nawet w silnych polach zewnętrznych.
- Wykończenie materiałami takimi jak nikiel czy złoto nadaje im elegancki i gładki charakter.
- Oferują najwyższą indukcję magnetyczną w punkcie styku, co gwarantuje ogromną siłę.
- Specjalna mieszanka pierwiastków sprawia, że wykazują odporność na wysokie temperatury (zależnie od kształtu, nawet do 230°C).
- Możliwość uzyskania skomplikowanych kształtów sprawia, że są doskonałe do nietypowych zastosowań.
- Znajdują powszechne zastosowanie w nowoczesnej technice – od dysków twardych i silników, po zaawansowaną aparaturę medyczną.
- Idealny stosunek wielkości do siły – są małe, ale bardzo silne, co pozwala na ich montaż w ciasnych przestrzeniach.
Oto ograniczenia i wady, o których musisz wiedzieć:
- Należy uważać na wstrząsy – materiał jest kruchy i może odprysnąć. Ochrona w postaci obudowy jest kluczowa.
- Wrażliwość na ciepło: przekroczenie 80°C może trwale osłabić magnes (zależnie od wymiarów). Rozwiązaniem są nasze magnesy wysokotemperaturowe [AH].
- Brak odporności na wodę skutkuje utlenianiem. Do zadań zewnętrznych rekomendujemy wyłącznie magnesy w pełnej izolacji (plastik/guma).
- Nie należy ich nawiercać – do montażu śrubowego służą specjalne uchwyty magnetyczne z wbudowanym gwintem.
- Ryzyko połknięcia – drobne magnesy są groźne dla dzieci. Połknięcie kilku sztuk grozi operacją. Dodatkowo mogą zakłócać badania (np. rezonans).
- Za jakość trzeba płacić – magnesy neodymowe są droższe od ceramicznych, co wpływa na ekonomię rozwiązania.
Wytrzymałość magnetyczna na maksimum – co ma na to wpływ?
Parametr siły jest wartością teoretyczną maksymalną przeprowadzonego w specyficznych, idealnych warunkach:
- na podłożu wykonanej ze stali miękkiej, efektywnie zamykającej strumień magnetyczny
- o przekroju wynoszącej minimum 10 mm
- z powierzchnią wolną od rys
- w warunkach braku dystansu (metal do metalu)
- przy prostopadłym kierunku działania siły (kąt 90 stopni)
- w stabilnej temperaturze pokojowej
Co wpływa na udźwig w praktyce
Trzeba mieć na uwadze, że trzymanie magnesu będzie inne zależnie od następujących czynników, zaczynając od najistotniejszych:
- Szczelina powietrzna (pomiędzy magnesem a metalem), gdyż nawet mikroskopijna odległość (np. 0,5 mm) skutkuje redukcję siły nawet o 50% (dotyczy to także farby, rdzy czy brudu).
- Kierunek siły – pamiętaj, że magnes ma największą siłę prostopadle. Przy zsuwaniu w dół, udźwig spada znacząco, często do poziomu 20-30% wartości nominalnej.
- Grubość metalu – im cieńsza blacha, tym słabsze trzymanie. Część pola magnetycznego przenika na wylot, zamiast zamienić się w udźwig.
- Typ metalu – różne stopy przyciąga się identycznie. Dodatki stopowe pogarszają interakcję z magnesem.
- Stan powierzchni – szlifowane elementy zapewniają maksymalny styk, co zwiększa siłę. Nierówny metal osłabiają chwyt.
- Temperatura – podgrzanie magnesu skutkuje osłabieniem indukcji. Należy pamiętać o maksymalną temperaturę pracy dla danego modelu.
* Siłę trzymania sprawdzano na powierzchni blachy o grubości 20 mm, kiedy działała siła prostopadła, z kolei przy działaniu siły na zsuwanie siła trzymania jest mniejsza nawet pięciokrotnie. Ponadto, nawet minimalna przerwa między powierzchnią magnesu, a blachą obniża udźwig.
Bezpieczna praca z magnesami neodymowymi
Siła neodymu
Używaj magnesy odpowiedzialnie. Ich potężna moc może zaskoczyć nawet profesjonalistów. Zachowaj czujność i nie lekceważ ich siły.
Smartfony i tablety
Silne pole magnetyczne wpływa negatywnie na działanie magnetometrów w smartfonach i nawigacjach GPS. Zachowaj odstęp magnesów od telefonu, aby nie uszkodzić czujników.
Ryzyko złamań
Bloki magnetyczne mogą zdruzgotać palce w ułamku sekundy. Pod żadnym pozorem wkładaj dłoni pomiędzy dwa silne magnesy.
Chronić przed dziećmi
Koniecznie chroń magnesy przed dostępem dzieci. Ryzyko zadławienia jest wysokie, a skutki połączenia się magnesów wewnątrz organizmu są dramatyczne.
Kruchy spiek
Uwaga na odpryski. Magnesy mogą eksplodować przy niekontrolowanym uderzeniu, rozrzucając kawałki metalu w powietrze. Noś okulary.
Nośniki danych
Potężne pole magnetyczne może zniszczyć zapis na kartach kredytowych, dyskach twardych i innych nośnikach magnetycznych. Zachowaj odstęp min. 10 cm.
Reakcje alergiczne
Badania wskazują, że powłoka niklowa (standardowe zabezpieczenie magnesów) jest silnym alergenem. Jeśli jesteś alergikiem, unikaj kontaktu skóry z metalem lub wybierz wersje w obudowie plastikowej.
Niebezpieczeństwo dla rozruszników
Pacjenci z kardiowerterem muszą zachować duży odstęp od magnesów. Pole magnetyczne może zatrzymać działanie urządzenia ratującego życie.
Utrata mocy w cieple
Nie przegrzewaj. Magnesy neodymowe są wrażliwe na ciepło. Jeśli wymagasz odporności powyżej 80°C, wybierz magnesy odporne na ciepło (H, SH, UH).
Samozapłon
Pył generowany podczas obróbki magnesów jest wybuchowy. Unikaj wiercenia w magnesach bez odpowiedniego chłodzenia i wiedzy.
Ostrzeżenie!
Szczegółowe omówienie o ryzyku w artykule: BHP magnesów z neodymu.
