MW 8x20 / N38 - magnes neodymowy walcowy
magnes neodymowy walcowy
Numer katalogowy 010475
GTIN/EAN: 5906301811138
Średnica Ø
8 mm [±0,1 mm]
Wysokość
20 mm [±0,1 mm]
Waga
7.54 g
Kierunek magnesowania
→ diametralny
Udźwig
1.30 kg / 12.71 N
Indukcja magnetyczna
607.01 mT / 6070 Gs
Powłoka
[NiCuNi] nikiel
4.60 ZŁ z VAT / szt. + cena za transport
3.74 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?
Zadzwoń do nas
+48 22 499 98 98
albo napisz za pomocą
formularz kontaktowy
przez naszą stronę.
Udźwig i kształt magnesów neodymowych wyliczysz dzięki naszemu
kalkulatorze siły.
Zamów do 14:00, a wyślemy dziś!
Parametry techniczne - MW 8x20 / N38 - magnes neodymowy walcowy
Specyfikacja / charakterystyka - MW 8x20 / N38 - magnes neodymowy walcowy
| właściwości | wartości |
|---|---|
| Nr kat. | 010475 |
| GTIN/EAN | 5906301811138 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Średnica Ø | 8 mm [±0,1 mm] |
| Wysokość | 20 mm [±0,1 mm] |
| Waga | 7.54 g |
| Kierunek magnesowania | → diametralny |
| Udźwig ~ ? | 1.30 kg / 12.71 N |
| Indukcja magnetyczna ~ ? | 607.01 mT / 6070 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [min. - maks.] ? | 12.2-12.6 | kGs |
| remanencja Br [min. - maks.] ? | 1220-1260 | mT |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [min. - maks.] ? | 36-38 | BH max MGOe |
| gęstość energii [min. - maks.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Temperatura Curie TC | 312 - 380 | °C |
| Temperatura Curie TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅cm |
| Siła wyginania | 250 | MPa |
| Wytrzymałość na ściskanie | 1000~1100 | MPa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 10-6 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Symulacja techniczna magnesu - dane
Niniejsze dane są bezpośredni efekt analizy matematycznej. Wyniki oparte są na algorytmach dla klasy Nd2Fe14B. Rzeczywiste osiągi mogą nieznacznie się różnić. Prosimy traktować te dane jako pomoc pomocniczą podczas planowania montażu.
Tabela 1: Udźwig statyczny prostopadły (siła vs odległość) - charakterystyka
MW 8x20 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg/lbs/g/N) | Status ryzyka |
|---|---|---|---|
| 0 mm |
6064 Gs
606.4 mT
|
1.30 kg / 2.87 lbs
1300.0 g / 12.8 N
|
niskie ryzyko |
| 1 mm |
4587 Gs
458.7 mT
|
0.74 kg / 1.64 lbs
743.7 g / 7.3 N
|
niskie ryzyko |
| 2 mm |
3327 Gs
332.7 mT
|
0.39 kg / 0.86 lbs
391.4 g / 3.8 N
|
niskie ryzyko |
| 3 mm |
2388 Gs
238.8 mT
|
0.20 kg / 0.44 lbs
201.6 g / 2.0 N
|
niskie ryzyko |
| 5 mm |
1281 Gs
128.1 mT
|
0.06 kg / 0.13 lbs
58.0 g / 0.6 N
|
niskie ryzyko |
| 10 mm |
389 Gs
38.9 mT
|
0.01 kg / 0.01 lbs
5.4 g / 0.1 N
|
niskie ryzyko |
| 15 mm |
169 Gs
16.9 mT
|
0.00 kg / 0.00 lbs
1.0 g / 0.0 N
|
niskie ryzyko |
| 20 mm |
90 Gs
9.0 mT
|
0.00 kg / 0.00 lbs
0.3 g / 0.0 N
|
niskie ryzyko |
| 30 mm |
35 Gs
3.5 mT
|
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
niskie ryzyko |
| 50 mm |
10 Gs
1.0 mT
|
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
niskie ryzyko |
Tabela 2: Siła równoległa obsunięcia (ściana)
MW 8x20 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg/lbs/g/N) |
|---|---|---|
| 0 mm | Stal (~0.2) |
0.26 kg / 0.57 lbs
260.0 g / 2.6 N
|
| 1 mm | Stal (~0.2) |
0.15 kg / 0.33 lbs
148.0 g / 1.5 N
|
| 2 mm | Stal (~0.2) |
0.08 kg / 0.17 lbs
78.0 g / 0.8 N
|
| 3 mm | Stal (~0.2) |
0.04 kg / 0.09 lbs
40.0 g / 0.4 N
|
| 5 mm | Stal (~0.2) |
0.01 kg / 0.03 lbs
12.0 g / 0.1 N
|
| 10 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
2.0 g / 0.0 N
|
| 15 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
| 20 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
| 30 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
Tabela 3: Siła na ścianie (ścinanie) - zachowanie na śliskim podłożu
MW 8x20 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg/lbs/g/N) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
0.39 kg / 0.86 lbs
390.0 g / 3.8 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
0.26 kg / 0.57 lbs
260.0 g / 2.6 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
0.13 kg / 0.29 lbs
130.0 g / 1.3 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
0.65 kg / 1.43 lbs
650.0 g / 6.4 N
|
Tabela 4: Efektywność materiałowa (nasycenie) - straty mocy
MW 8x20 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg/lbs/g/N) |
|---|---|---|
| 0.5 mm |
|
0.13 kg / 0.29 lbs
130.0 g / 1.3 N
|
| 1 mm |
|
0.33 kg / 0.72 lbs
325.0 g / 3.2 N
|
| 2 mm |
|
0.65 kg / 1.43 lbs
650.0 g / 6.4 N
|
| 3 mm |
|
0.98 kg / 2.15 lbs
975.0 g / 9.6 N
|
| 5 mm |
|
1.30 kg / 2.87 lbs
1300.0 g / 12.8 N
|
| 10 mm |
|
1.30 kg / 2.87 lbs
1300.0 g / 12.8 N
|
| 11 mm |
|
1.30 kg / 2.87 lbs
1300.0 g / 12.8 N
|
| 12 mm |
|
1.30 kg / 2.87 lbs
1300.0 g / 12.8 N
|
Tabela 5: Wytrzymałość temperaturowa (zachowanie materiału) - limit termiczny
MW 8x20 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig (kg/lbs/g/N) | Status |
|---|---|---|---|
| 20 °C | 0.0% |
1.30 kg / 2.87 lbs
1300.0 g / 12.8 N
|
OK |
| 40 °C | -2.2% |
1.27 kg / 2.80 lbs
1271.4 g / 12.5 N
|
OK |
| 60 °C | -4.4% |
1.24 kg / 2.74 lbs
1242.8 g / 12.2 N
|
OK |
| 80 °C | -6.6% |
1.21 kg / 2.68 lbs
1214.2 g / 11.9 N
|
|
| 100 °C | -28.8% |
0.93 kg / 2.04 lbs
925.6 g / 9.1 N
|
Tabela 6: Interakcja magnes-magnes (przyciąganie) - zasięg pola
MW 8x20 / N38
| Szczelina (mm) | Przyciąganie (kg/lbs) (N-S) | Opór ścinania (kg/lbs/g/N) | Odpychanie (kg/lbs) (N-N) |
|---|---|---|---|
| 0 mm |
11.40 kg / 25.12 lbs
6 154 Gs
|
1.71 kg / 3.77 lbs
1709 g / 16.8 N
|
N/A |
| 1 mm |
8.76 kg / 19.31 lbs
10 632 Gs
|
1.31 kg / 2.90 lbs
1314 g / 12.9 N
|
7.88 kg / 17.38 lbs
~0 Gs
|
| 2 mm |
6.52 kg / 14.37 lbs
9 174 Gs
|
0.98 kg / 2.16 lbs
978 g / 9.6 N
|
5.87 kg / 12.94 lbs
~0 Gs
|
| 3 mm |
4.76 kg / 10.49 lbs
7 837 Gs
|
0.71 kg / 1.57 lbs
714 g / 7.0 N
|
4.28 kg / 9.44 lbs
~0 Gs
|
| 5 mm |
2.46 kg / 5.43 lbs
5 637 Gs
|
0.37 kg / 0.81 lbs
369 g / 3.6 N
|
2.22 kg / 4.88 lbs
~0 Gs
|
| 10 mm |
0.51 kg / 1.12 lbs
2 561 Gs
|
0.08 kg / 0.17 lbs
76 g / 0.7 N
|
0.46 kg / 1.01 lbs
~0 Gs
|
| 20 mm |
0.05 kg / 0.10 lbs
778 Gs
|
0.01 kg / 0.02 lbs
7 g / 0.1 N
|
0.04 kg / 0.09 lbs
~0 Gs
|
| 50 mm |
0.00 kg / 0.00 lbs
107 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 60 mm |
0.00 kg / 0.00 lbs
69 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 70 mm |
0.00 kg / 0.00 lbs
48 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 80 mm |
0.00 kg / 0.00 lbs
34 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 90 mm |
0.00 kg / 0.00 lbs
25 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 100 mm |
0.00 kg / 0.00 lbs
19 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
Tabela 7: Strefy ochronne (elektronika) - środki ostrożności
MW 8x20 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 6.5 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 5.0 cm |
| Zegarek mechaniczny | 20 Gs (2.0 mT) | 4.0 cm |
| Telefon / Smartfon | 40 Gs (4.0 mT) | 3.0 cm |
| Immobilizer | 50 Gs (5.0 mT) | 3.0 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 1.0 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 1.0 cm |
Tabela 8: Energia uderzenia (ryzyko pęknięcia) - ostrzeżenie
MW 8x20 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
13.28 km/h
(3.69 m/s)
|
0.05 J | |
| 30 mm |
22.94 km/h
(6.37 m/s)
|
0.15 J | |
| 50 mm |
29.61 km/h
(8.23 m/s)
|
0.26 J | |
| 100 mm |
41.88 km/h
(11.63 m/s)
|
0.51 J |
Tabela 9: Parametry powłoki (trwałość)
MW 8x20 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
Tabela 10: Dane elektryczne (Strumień)
MW 8x20 / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 3 457 Mx | 34.6 µWb |
| Współczynnik Pc | 1.31 | Wysoki (Stabilny) |
Tabela 11: Praca w wodzie (Magnet Fishing)
MW 8x20 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 1.30 kg | Standard |
| Woda (dno rzeki) |
1.49 kg
(+0.19 kg zysk z wyporności)
|
+14.5% |
1. Udźwig w pionie
*Pamiętaj: Na pionowej ścianie magnes utrzyma jedynie ułamek nominalnego udźwigu.
2. Efektywność, a grubość stali
*Cienka blacha (np. blacha karoseryjna) wyraźnie redukuje siłę trzymania.
3. Wytrzymałość temperaturowa
*Dla materiału N38 maksymalna temperatura to 80°C.
4. Krzywa odmagnesowania i punkt pracy (B-H)
wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 1.31
Powyższy wykres prezentuje charakterystykę magnetyczną materiału w drugim kwadrancie pętli histerezy. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.
Specyfikacja materiałowa
| żelazo (Fe) | 64% – 68% |
| neodym (Nd) | 29% – 32% |
| bor (B) | 1.1% – 1.2% |
| dysproz (Dy) | 0.5% – 2.0% |
| powłoka (Ni-Cu-Ni) | < 0.05% |
Zrównoważony rozwój
| recyklowalność (EoL) | 100% |
| surowce z recyklingu | ~10% (pre-cons) |
| ślad węglowy | low / zredukowany |
| kod odpadu (EWC) | 16 02 16 |
Inne oferty
Wady i zalety magnesów neodymowych Nd2Fe14B.
Plusy
- Długowieczność to ich atut – nawet po 10 lat spadek mocy wynosi zaledwie ~1% (wg testów).
- Trudno je rozmagnesować, gdyż wykazują wysoką odporność na pola rozmagnesowujące.
- Dzięki powłoce (NiCuNi, złoto, Ag) mają nowoczesny, błyszczący wygląd.
- Indukcja magnetyczna na powierzchni tych magnesów jest imponująca, co czyni je najwydajniejszymi w swojej klasie.
- Dzięki zaawansowanej technologii radzą sobie w temperaturach sięgających 230°C, zachowując swoje właściwości.
- Duża swoboda w projektowaniu kształtu i wymiaru to ich wielka zaleta w konstrukcjach.
- Występują wszędzie tam, gdzie liczy się precyzja: w napędach, medycynie oraz przemyśle komputerowym.
- Dzięki kompaktowości, nie wymagają dużej przestrzeni, a jednocześnie gwarantują wysoką skuteczność.
Minusy
- Uwaga na uszkodzenia mechaniczne – bez odpowiedniej obudowy mogą pękać przy upadku na twarde podłoże.
- Ograniczenia termiczne – dla zwykłych magnesów limit to 80°C. W trudnych warunkach (do 230°C) sprawdzą się tylko modele z oznaczeniem [AH].
- Podatność na wilgoć skutkuje utlenianiem. Do zadań zewnętrznych rekomendujemy wyłącznie magnesy zabezpieczone antykorozyjnie (plastik/guma).
- Magnesy ciężko się obrabia – do montażu śrubowego służą specjalne uchwyty magnetyczne z wbudowanym gwintem.
- Dbaj o bezpieczeństwo – połknięcie magnesów przez dziecko to stan krytyczny. Ponadto, ich obecność w ciele komplikuje diagnostykę obrazową.
- Nie należą do tanich – ich cena jest wyższa niż ferrytów, co należy uwzględnić przy planowaniu kosztów.
Parametry udźwigu
Siła oderwania magnesu w optymalnych warunkach – co ma na to wpływ?
- z użyciem podłoża ze stali o wysokiej przenikalności, pełniącej rolę idealny przewodnik strumienia
- której grubość wynosi ok. 10 mm
- z płaszczyzną idealnie równą
- w warunkach bezszczelinowych (metal do metalu)
- dla siły działającej pod kątem prostym (w osi magnesu)
- w neutralnych warunkach termicznych
Udźwig w warunkach rzeczywistych – czynniki
- Przerwa między powierzchniami – nawet ułamek milimetra dystansu (spowodowany np. okleiną lub brudem) zmniejsza efektywność magnesu, często o połowę przy zaledwie 0,5 mm.
- Kąt odrywania – pamiętaj, że magnes najmocniej trzyma prostopadle. Przy działaniu sił bocznych, udźwig spada znacząco, często do poziomu 20-30% wartości nominalnej.
- Masywność podłoża – za chuda płyta nie zamyka strumienia, przez co część mocy marnuje się na drugą stronę.
- Skład materiału – różne stopy reaguje tak samo. Dodatki stopowe osłabiają efekt przyciągania.
- Wykończenie powierzchni – idealny styk uzyskamy tylko na gładkiej stali. Chropowata faktura zmniejszają realną powierzchnię styku, redukując siłę.
- Temperatura – podgrzanie magnesu skutkuje osłabieniem indukcji. Warto sprawdzić maksymalną temperaturę pracy dla danego modelu.
Pomiar udźwigu wykonywano na blachach o gładkiej powierzchni o optymalnej grubości, przy prostopadłym działaniu siły, z kolei przy działaniu siły na zsuwanie nośność jest mniejsza nawet pięć razy. Ponadto, nawet drobny odstęp pomiędzy powierzchnią magnesu, a blachą redukuje udźwig.
BHP przy magnesach
Łamliwość magnesów
Magnesy neodymowe to materiał ceramiczny, co oznacza, że są łamliwe jak szkło. Zderzenie dwóch magnesów spowoduje ich rozkruszenie na drobne kawałki.
Nie zbliżaj do komputera
Ekstremalne pole magnetyczne może zniszczyć zapis na kartach płatniczych, nośnikach HDD i innych pamięciach. Utrzymuj odległość min. 10 cm.
Potężne pole
Używaj magnesy świadomie. Ich ogromna siła może zszokować nawet profesjonalistów. Planuj ruchy i respektuj ich siły.
Ochrona dłoni
Zagrożenie fizyczne: Moc ściskania jest tak duża, że może wywołać rany, zgniecenia, a nawet otwarte złamania. Stosuj solidne rękawice ochronne.
Niebezpieczeństwo dla rozruszników
Osoby z kardiowerterem muszą utrzymać duży odstęp od magnesów. Silny magnes może rozregulować działanie implantu.
Zagrożenie wybuchem pyłu
Pył generowany podczas cięcia magnesów jest samozapalny. Nie wierć w magnesach bez odpowiedniego chłodzenia i wiedzy.
Nadwrażliwość na metale
Powszechnie wiadomo, że powłoka niklowa (standardowe zabezpieczenie magnesów) jest częstą przyczyną uczuleń. Jeśli Twoja skóra źle reaguje na metale, wystrzegaj się bezpośredniego dotyku lub zakup wersje w obudowie plastikowej.
Ryzyko połknięcia
Bezwzględnie zabezpiecz magnesy przed dostępem dzieci. Ryzyko zadławienia jest bardzo duże, a konsekwencje zwarcia magnesów wewnątrz organizmu są dramatyczne.
Uszkodzenia czujników
Ważna informacja: magnesy neodymowe generują pole, które zakłócają systemy nawigacji. Utrzymuj odpowiednią odległość od komórki, tabletu i urządzeń GPS.
Limity termiczne
Uważaj na temperaturę. Podgrzanie magnesu powyżej 80 stopni Celsjusza zniszczy jego strukturę magnetyczną i udźwig.
