MW 8x20 / N38 - magnes neodymowy walcowy
magnes neodymowy walcowy
Numer katalogowy 010475
GTIN/EAN: 5906301811138
Średnica Ø
8 mm [±0,1 mm]
Wysokość
20 mm [±0,1 mm]
Waga
7.54 g
Kierunek magnesowania
→ diametralny
Udźwig
1.30 kg / 12.71 N
Indukcja magnetyczna
607.01 mT / 6070 Gs
Powłoka
[NiCuNi] nikiel
4.60 ZŁ z VAT / szt. + cena za transport
3.74 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?Chcesz lepszą cenę?
Zadzwoń już teraz
+48 888 99 98 98
alternatywnie napisz za pomocą
formularz kontaktowy
przez naszą stronę.
Udźwig i formę magnesów neodymowych sprawdzisz u nas w
kalkulatorze magnetycznym.
Zamów do 14:00, a wyślemy dziś!
MW 8x20 / N38 - magnes neodymowy walcowy
Specyfikacja / charakterystyka MW 8x20 / N38 - magnes neodymowy walcowy
| właściwości | wartości |
|---|---|
| Nr kat. | 010475 |
| GTIN/EAN | 5906301811138 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Średnica Ø | 8 mm [±0,1 mm] |
| Wysokość | 20 mm [±0,1 mm] |
| Waga | 7.54 g |
| Kierunek magnesowania | → diametralny |
| Udźwig ~ ? | 1.30 kg / 12.71 N |
| Indukcja magnetyczna ~ ? | 607.01 mT / 6070 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [min. - maks.] ? | 12.2-12.6 | kGs |
| remanencja Br [min. - maks.] ? | 1220-1260 | mT |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [min. - maks.] ? | 36-38 | BH max MGOe |
| gęstość energii [min. - maks.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Temperatura Curie TC | 312 - 380 | °C |
| Temperatura Curie TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅cm |
| Siła wyginania | 250 | MPa |
| Wytrzymałość na ściskanie | 1000~1100 | MPa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 10-6 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Analiza fizyczna magnesu neodymowego - parametry techniczne
Przedstawione informacje stanowią wynik analizy fizycznej. Wyniki zostały wyliczone na algorytmach dla materiału Nd2Fe14B. Rzeczywiste warunki mogą się różnić. Traktuj te dane jako punkt odniesienia podczas planowania montażu.
MW 8x20 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg)(gram)(Niuton) | Status ryzyka |
|---|---|---|---|
| 0 mm |
6064 Gs
606.4 mT
|
1.30 kg / 1300.0 g
12.8 N
|
słaby uchwyt |
| 1 mm |
4587 Gs
458.7 mT
|
0.74 kg / 743.7 g
7.3 N
|
słaby uchwyt |
| 2 mm |
3327 Gs
332.7 mT
|
0.39 kg / 391.4 g
3.8 N
|
słaby uchwyt |
| 3 mm |
2388 Gs
238.8 mT
|
0.20 kg / 201.6 g
2.0 N
|
słaby uchwyt |
| 5 mm |
1281 Gs
128.1 mT
|
0.06 kg / 58.0 g
0.6 N
|
słaby uchwyt |
| 10 mm |
389 Gs
38.9 mT
|
0.01 kg / 5.4 g
0.1 N
|
słaby uchwyt |
| 15 mm |
169 Gs
16.9 mT
|
0.00 kg / 1.0 g
0.0 N
|
słaby uchwyt |
| 20 mm |
90 Gs
9.0 mT
|
0.00 kg / 0.3 g
0.0 N
|
słaby uchwyt |
| 30 mm |
35 Gs
3.5 mT
|
0.00 kg / 0.0 g
0.0 N
|
słaby uchwyt |
| 50 mm |
10 Gs
1.0 mT
|
0.00 kg / 0.0 g
0.0 N
|
słaby uchwyt |
MW 8x20 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg)(gram)(Niuton) |
|---|---|---|
| 0 mm | Stal (~0.2) |
0.26 kg / 260.0 g
2.6 N
|
| 1 mm | Stal (~0.2) |
0.15 kg / 148.0 g
1.5 N
|
| 2 mm | Stal (~0.2) |
0.08 kg / 78.0 g
0.8 N
|
| 3 mm | Stal (~0.2) |
0.04 kg / 40.0 g
0.4 N
|
| 5 mm | Stal (~0.2) |
0.01 kg / 12.0 g
0.1 N
|
| 10 mm | Stal (~0.2) |
0.00 kg / 2.0 g
0.0 N
|
| 15 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
| 20 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
| 30 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
MW 8x20 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
0.39 kg / 390.0 g
3.8 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
0.26 kg / 260.0 g
2.6 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
0.13 kg / 130.0 g
1.3 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
0.65 kg / 650.0 g
6.4 N
|
MW 8x20 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg) |
|---|---|---|
| 0.5 mm |
|
0.13 kg / 130.0 g
1.3 N
|
| 1 mm |
|
0.33 kg / 325.0 g
3.2 N
|
| 2 mm |
|
0.65 kg / 650.0 g
6.4 N
|
| 5 mm |
|
1.30 kg / 1300.0 g
12.8 N
|
| 10 mm |
|
1.30 kg / 1300.0 g
12.8 N
|
MW 8x20 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig | Status |
|---|---|---|---|
| 20 °C | 0.0% |
1.30 kg / 1300.0 g
12.8 N
|
OK |
| 40 °C | -2.2% |
1.27 kg / 1271.4 g
12.5 N
|
OK |
| 60 °C | -4.4% |
1.24 kg / 1242.8 g
12.2 N
|
OK |
| 80 °C | -6.6% |
1.21 kg / 1214.2 g
11.9 N
|
|
| 100 °C | -28.8% |
0.93 kg / 925.6 g
9.1 N
|
MW 8x20 / N38
| Szczelina (mm) | Przyciąganie (kg) (N-S) | Odpychanie (kg) (N-N) |
|---|---|---|
| 0 mm |
11.40 kg / 11396 g
111.8 N
6 154 Gs
|
N/A |
| 1 mm |
8.76 kg / 8758 g
85.9 N
10 632 Gs
|
7.88 kg / 7882 g
77.3 N
~0 Gs
|
| 2 mm |
6.52 kg / 6520 g
64.0 N
9 174 Gs
|
5.87 kg / 5868 g
57.6 N
~0 Gs
|
| 3 mm |
4.76 kg / 4758 g
46.7 N
7 837 Gs
|
4.28 kg / 4282 g
42.0 N
~0 Gs
|
| 5 mm |
2.46 kg / 2461 g
24.1 N
5 637 Gs
|
2.22 kg / 2215 g
21.7 N
~0 Gs
|
| 10 mm |
0.51 kg / 508 g
5.0 N
2 561 Gs
|
0.46 kg / 457 g
4.5 N
~0 Gs
|
| 20 mm |
0.05 kg / 47 g
0.5 N
778 Gs
|
0.04 kg / 42 g
0.4 N
~0 Gs
|
| 50 mm |
0.00 kg / 1 g
0.0 N
107 Gs
|
0.00 kg / 0 g
0.0 N
~0 Gs
|
MW 8x20 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 6.5 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 5.0 cm |
| Czasomierz | 20 Gs (2.0 mT) | 4.0 cm |
| Telefon / Smartfon | 40 Gs (4.0 mT) | 3.0 cm |
| Pilot do auta | 50 Gs (5.0 mT) | 3.0 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 1.0 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 1.0 cm |
MW 8x20 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
13.28 km/h
(3.69 m/s)
|
0.05 J | |
| 30 mm |
22.94 km/h
(6.37 m/s)
|
0.15 J | |
| 50 mm |
29.61 km/h
(8.23 m/s)
|
0.26 J | |
| 100 mm |
41.88 km/h
(11.63 m/s)
|
0.51 J |
MW 8x20 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
MW 8x20 / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 3 457 Mx | 34.6 µWb |
| Współczynnik Pc | 1.31 | Wysoki (Stabilny) |
MW 8x20 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 1.30 kg | Standard |
| Woda (dno rzeki) |
1.49 kg
(+0.19 kg Zysk z wyporności)
|
+14.5% |
1. Montaż na ścianie (ześlizg)
*Ważne: Na powierzchni pionowej magnes utrzyma zaledwie ~20-30% siły oderwania.
2. Grubość podłoża
*Zbyt cienki metal (np. blacha karoseryjna) wyraźnie osłabia udźwig magnesu.
3. Praca w cieple
*Dla materiału N38 maksymalna temperatura to 80°C.
4. Krzywa odmagnesowania i punkt pracy (B-H)
wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 1.31
Powyższy wykres prezentuje charakterystykę magnetyczną materiału w drugim kwadrancie pętli histerezy. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.
Specyfikacja materiałowa
| żelazo (Fe) | 64% – 68% |
| neodym (Nd) | 29% – 32% |
| bor (B) | 1.1% – 1.2% |
| dysproz (Dy) | 0.5% – 2.0% |
| powłoka (Ni-Cu-Ni) | < 0.05% |
Zrównoważony rozwój
| recyklowalność (EoL) | 100% |
| surowce z recyklingu | ~10% (pre-cons) |
| ślad węglowy | low / zredukowany |
| kod odpadu (EWC) | 16 02 16 |
Inne oferty
Zalety oraz wady magnesów neodymowych Nd2Fe14B.
Mocne strony
- Są niezwykle trwałe – przez okres ok. 10 lat tracą maksymalnie ~1% swojej pierwotnej siły (wg danych).
- Są niewrażliwe na wpływ innych pól, co czyni je odpornymi na rozmagnesowanie w wymagającym środowisku.
- Powłoka ochronna (np. niklowa) zapewnia im metaliczny połysk, co ma znaczenie estetyczne.
- Wytwarzają skoncentrowane pole magnetyczne przy biegunach, co jest ich znakiem rozpoznawczym.
- Odpowiedni skład sprawia, że są odporne na wysokie temperatury (zależnie od kształtu, nawet do 230°C).
- Szerokie możliwości w doborze kształtu i wymiaru to ich ogromny plus w inżynierii.
- Spotkasz je wszędzie tam, gdzie liczy się precyzja: w automatyce, medycynie oraz przemyśle komputerowym.
- Doskonała relacja wielkości do siły – są małe, ale niezwykle mocne, co pozwala na ich montaż w precyzyjnych mechanizmach.
Wady
- Ze względu na brak elastyczności, wymagają ostrożności. Silne uderzenie może je zniszczyć, stąd zalecenie stosowania osłon.
- Wrażliwość na ciepło: przekroczenie 80°C może trwale osłabić magnes (zależnie od bryły). Rozwiązaniem są nasze magnesy wysokotemperaturowe [AH].
- Podatność na wilgoć skutkuje utlenianiem. Do zadań zewnętrznych sugerujemy wyłącznie magnesy zabezpieczone antykorozyjnie (plastik/guma).
- Trudności montażowe: zamiast próbować robić otwory kruchy magnes, wybierz uchwytów w stalowej obudowie, które posiadają gwinty.
- Ryzyko połknięcia – drobne magnesy są groźne dla dzieci. Połknięcie kilku sztuk grozi poważnymi obrażeniami. Dodatkowo mogą zakłócać badania (np. rezonans).
- Nie należą do tanich – ich cena jest wyższa niż ferrytów, co należy uwzględnić przy planowaniu kosztów.
Analiza siły trzymania
Maksymalny udźwig magnesu – co się na to składa?
- na bloku wykonanej ze stali miękkiej, doskonale skupiającej pole magnetyczne
- posiadającej grubość minimum 10 mm dla pełnego zamknięcia strumienia
- charakteryzującej się równą strukturą
- bez najmniejszej warstwy izolującej pomiędzy magnesem a stalą
- przy pionowym przyłożeniu siły odrywającej (kąt 90 stopni)
- przy temperaturze otoczenia ok. 20 stopni Celsjusza
Wpływ czynników na nośność magnesu w praktyce
- Przerwa między powierzchniami – nawet ułamek milimetra odległości (spowodowany np. okleiną lub brudem) znacząco osłabia efektywność magnesu, często o połowę przy zaledwie 0,5 mm.
- Kąt przyłożenia siły – największą siłę osiągamy tylko przy prostopadłym odrywaniu. Siła potrzebna do przesunięcia magnesu po powierzchni jest zazwyczaj kilkukrotnie mniejsza (ok. 1/5 udźwigu).
- Masywność podłoża – zbyt cienka stal nie zamyka strumienia, przez co część strumienia marnuje się w powietrzu.
- Skład chemiczny podłoża – stal miękka daje najlepsze rezultaty. Stale stopowe obniżają właściwości magnetyczne i udźwig.
- Struktura powierzchni – im równiejsza blacha, tym lepsze przyleganie i wyższy udźwig. Nierówności tworzą dystans powietrzny.
- Warunki termiczne – spieki NdFeB posiadają ujemny współczynnik temperaturowy. W wyższych temperaturach są słabsze, a na mrozie zyskują na sile (do pewnej granicy).
Siłę trzymania testowano na powierzchni blachy o grubości 20 mm, kiedy działała siła prostopadła, natomiast przy siłach działających równolegle siła trzymania jest mniejsza nawet 75%. Dodatkowo, nawet niewielka szczelina pomiędzy powierzchnią magnesu, a blachą redukuje siłę trzymania.
Nośniki danych
Nie przykładaj magnesów do dokumentów, laptopa czy ekranu. Magnes może zniszczyć te urządzenia oraz wymazać paski magnetyczne z kart.
To nie jest zabawka
Magnesy neodymowe nie są przeznaczone dla dzieci. Przypadkowe zjedzenie dwóch lub więcej magnesów może doprowadzić do ich przyciągnięciem przez ścianki jelit, co stwarza śmiertelne niebezpieczeństwo i wymaga natychmiastowej operacji.
Rozruszniki serca
Osoby z stymulatorem serca muszą utrzymać bezwzględny dystans od magnesów. Silny magnes może zatrzymać działanie urządzenia ratującego życie.
Trwała utrata siły
Typowe magnesy neodymowe (typ N) tracą właściwości po osiągnięciu temperatury 80°C. Uszkodzenie jest permanentne.
Uwaga na odpryski
Spieki NdFeB to spiek proszkowy, co oznacza, że są podatne na pęknięcia. Upadek dwóch magnesów wywoła ich rozpryśnięcie na ostre odłamki.
Niebezpieczeństwo przytrzaśnięcia
Uważaj na palce. Dwa duże magnesy zderzą z ogromną prędkością z siłą wielu ton, niszcząc wszystko na swojej drodze. Zachowaj ekstremalną uwagę!
Dla uczulonych
Niektóre osoby wykazuje uczulenie na pierwiastek nikiel, którym pokryta jest większość nasze produkty. Częste dotykanie może powodować silną reakcję alergiczną. Rekomendujemy noszenie rękawiczek ochronnych.
Łatwopalność
Zagrożenie pożarowe: Pył neodymowy jest wysoce łatwopalny. Nie modyfikuj mechanicznie magnesów w warunkach domowych, gdyż grozi to zapłonem.
Bezpieczna praca
Przed użyciem, zapoznaj się z zasadami. Gwałtowne złączenie może połamać magnes lub zranić dłoń. Myśl o krok do przodu.
Smartfony i tablety
Silne pole magnetyczne destabilizuje funkcjonowanie kompasów w telefonach i urządzeniach lokalizacyjnych. Nie zbliżaj magnesów do smartfona, aby uniknąć awarii czujników.
