MW 70x50 / N38 - magnes neodymowy walcowy
magnes neodymowy walcowy
Numer katalogowy 010496
GTIN/EAN: 5906301811145
Średnica Ø
70 mm [±0,1 mm]
Wysokość
50 mm [±0,1 mm]
Waga
1443.17 g
Kierunek magnesowania
↑ osiowy
Udźwig
168.21 kg / 1650.14 N
Indukcja magnetyczna
507.83 mT / 5078 Gs
Powłoka
[NiCuNi] nikiel
516.60 ZŁ z VAT / szt. + cena za transport
420.00 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?
Dzwoń do nas
+48 22 499 98 98
lub zostaw wiadomość korzystając z
nasz formularz online
przez naszą stronę.
Masę a także kształt elementów magnetycznych sprawdzisz dzięki naszemu
kalkulatorze mocy.
Zamówienia złożone przed 14:00 realizujemy jeszcze dziś!
Specyfikacja - MW 70x50 / N38 - magnes neodymowy walcowy
Specyfikacja / charakterystyka - MW 70x50 / N38 - magnes neodymowy walcowy
| właściwości | wartości |
|---|---|
| Nr kat. | 010496 |
| GTIN/EAN | 5906301811145 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Średnica Ø | 70 mm [±0,1 mm] |
| Wysokość | 50 mm [±0,1 mm] |
| Waga | 1443.17 g |
| Kierunek magnesowania | ↑ osiowy |
| Udźwig ~ ? | 168.21 kg / 1650.14 N |
| Indukcja magnetyczna ~ ? | 507.83 mT / 5078 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [min. - maks.] ? | 12.2-12.6 | kGs |
| remanencja Br [min. - maks.] ? | 1220-1260 | mT |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [min. - maks.] ? | 36-38 | BH max MGOe |
| gęstość energii [min. - maks.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Temperatura Curie TC | 312 - 380 | °C |
| Temperatura Curie TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅cm |
| Siła wyginania | 250 | MPa |
| Wytrzymałość na ściskanie | 1000~1100 | MPa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 10-6 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Analiza inżynierska magnesu neodymowego - raport
Poniższe wartości są bezpośredni efekt kalkulacji matematycznej. Wartości zostały wyliczone na modelach dla materiału Nd2Fe14B. Realne warunki mogą nieznacznie różnić się od wartości teoretycznych. Traktuj te wyliczenia jako pomoc pomocniczą przy projektowaniu systemów.
Tabela 1: Siła prostopadła statyczna (siła vs dystans) - spadek mocy
MW 70x50 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg/lbs/g/N) | Status ryzyka |
|---|---|---|---|
| 0 mm |
5078 Gs
507.8 mT
|
168.21 kg / 370.84 lbs
168210.0 g / 1650.1 N
|
niebezpieczny! |
| 1 mm |
4935 Gs
493.5 mT
|
158.88 kg / 350.26 lbs
158876.4 g / 1558.6 N
|
niebezpieczny! |
| 2 mm |
4790 Gs
479.0 mT
|
149.67 kg / 329.96 lbs
149666.1 g / 1468.2 N
|
niebezpieczny! |
| 3 mm |
4644 Gs
464.4 mT
|
140.71 kg / 310.21 lbs
140708.8 g / 1380.4 N
|
niebezpieczny! |
| 5 mm |
4354 Gs
435.4 mT
|
123.67 kg / 272.64 lbs
123667.4 g / 1213.2 N
|
niebezpieczny! |
| 10 mm |
3652 Gs
365.2 mT
|
87.02 kg / 191.84 lbs
87016.1 g / 853.6 N
|
niebezpieczny! |
| 15 mm |
3017 Gs
301.7 mT
|
59.37 kg / 130.88 lbs
59366.6 g / 582.4 N
|
niebezpieczny! |
| 20 mm |
2469 Gs
246.9 mT
|
39.78 kg / 87.70 lbs
39781.3 g / 390.3 N
|
niebezpieczny! |
| 30 mm |
1645 Gs
164.5 mT
|
17.66 kg / 38.93 lbs
17659.3 g / 173.2 N
|
niebezpieczny! |
| 50 mm |
773 Gs
77.3 mT
|
3.89 kg / 8.59 lbs
3895.0 g / 38.2 N
|
mocny |
Tabela 2: Równoległa siła obsunięcia (pion)
MW 70x50 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg/lbs/g/N) |
|---|---|---|
| 0 mm | Stal (~0.2) |
33.64 kg / 74.17 lbs
33642.0 g / 330.0 N
|
| 1 mm | Stal (~0.2) |
31.78 kg / 70.05 lbs
31776.0 g / 311.7 N
|
| 2 mm | Stal (~0.2) |
29.93 kg / 65.99 lbs
29934.0 g / 293.7 N
|
| 3 mm | Stal (~0.2) |
28.14 kg / 62.04 lbs
28142.0 g / 276.1 N
|
| 5 mm | Stal (~0.2) |
24.73 kg / 54.53 lbs
24734.0 g / 242.6 N
|
| 10 mm | Stal (~0.2) |
17.40 kg / 38.37 lbs
17404.0 g / 170.7 N
|
| 15 mm | Stal (~0.2) |
11.87 kg / 26.18 lbs
11874.0 g / 116.5 N
|
| 20 mm | Stal (~0.2) |
7.96 kg / 17.54 lbs
7956.0 g / 78.0 N
|
| 30 mm | Stal (~0.2) |
3.53 kg / 7.79 lbs
3532.0 g / 34.6 N
|
| 50 mm | Stal (~0.2) |
0.78 kg / 1.72 lbs
778.0 g / 7.6 N
|
Tabela 3: Siła na ścianie (poślizg) - zachowanie na śliskim podłożu
MW 70x50 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg/lbs/g/N) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
50.46 kg / 111.25 lbs
50463.0 g / 495.0 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
33.64 kg / 74.17 lbs
33642.0 g / 330.0 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
16.82 kg / 37.08 lbs
16821.0 g / 165.0 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
84.11 kg / 185.42 lbs
84105.0 g / 825.1 N
|
Tabela 4: Grubość stali (wpływ podłoża) - straty mocy
MW 70x50 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg/lbs/g/N) |
|---|---|---|
| 0.5 mm |
|
5.61 kg / 12.36 lbs
5607.0 g / 55.0 N
|
| 1 mm |
|
14.02 kg / 30.90 lbs
14017.5 g / 137.5 N
|
| 2 mm |
|
28.03 kg / 61.81 lbs
28035.0 g / 275.0 N
|
| 3 mm |
|
42.05 kg / 92.71 lbs
42052.5 g / 412.5 N
|
| 5 mm |
|
70.09 kg / 154.52 lbs
70087.5 g / 687.6 N
|
| 10 mm |
|
140.18 kg / 309.03 lbs
140175.0 g / 1375.1 N
|
| 11 mm |
|
154.19 kg / 339.94 lbs
154192.5 g / 1512.6 N
|
| 12 mm |
|
168.21 kg / 370.84 lbs
168210.0 g / 1650.1 N
|
Tabela 5: Stabilność termiczna (zachowanie materiału) - limit termiczny
MW 70x50 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig (kg/lbs/g/N) | Status |
|---|---|---|---|
| 20 °C | 0.0% |
168.21 kg / 370.84 lbs
168210.0 g / 1650.1 N
|
OK |
| 40 °C | -2.2% |
164.51 kg / 362.68 lbs
164509.4 g / 1613.8 N
|
OK |
| 60 °C | -4.4% |
160.81 kg / 354.52 lbs
160808.8 g / 1577.5 N
|
OK |
| 80 °C | -6.6% |
157.11 kg / 346.36 lbs
157108.1 g / 1541.2 N
|
|
| 100 °C | -28.8% |
119.77 kg / 264.04 lbs
119765.5 g / 1174.9 N
|
Tabela 6: Interakcja magnes-magnes (przyciąganie) - siły w układzie
MW 70x50 / N38
| Szczelina (mm) | Przyciąganie (kg/lbs) (N-S) | Opór ścinania (kg/lbs/g/N) | Odpychanie (kg/lbs) (N-N) |
|---|---|---|---|
| 0 mm |
611.75 kg / 1348.67 lbs
5 850 Gs
|
91.76 kg / 202.30 lbs
91762 g / 900.2 N
|
N/A |
| 1 mm |
594.86 kg / 1311.43 lbs
10 014 Gs
|
89.23 kg / 196.72 lbs
89229 g / 875.3 N
|
535.37 kg / 1180.29 lbs
~0 Gs
|
| 2 mm |
577.80 kg / 1273.84 lbs
9 870 Gs
|
86.67 kg / 191.08 lbs
86670 g / 850.2 N
|
520.02 kg / 1146.45 lbs
~0 Gs
|
| 3 mm |
560.95 kg / 1236.68 lbs
9 725 Gs
|
84.14 kg / 185.50 lbs
84142 g / 825.4 N
|
504.85 kg / 1113.01 lbs
~0 Gs
|
| 5 mm |
527.90 kg / 1163.81 lbs
9 434 Gs
|
79.18 kg / 174.57 lbs
79184 g / 776.8 N
|
475.11 kg / 1047.43 lbs
~0 Gs
|
| 10 mm |
449.75 kg / 991.54 lbs
8 708 Gs
|
67.46 kg / 148.73 lbs
67463 g / 661.8 N
|
404.78 kg / 892.38 lbs
~0 Gs
|
| 20 mm |
316.46 kg / 697.68 lbs
7 304 Gs
|
47.47 kg / 104.65 lbs
47469 g / 465.7 N
|
284.81 kg / 627.91 lbs
~0 Gs
|
| 50 mm |
96.30 kg / 212.30 lbs
4 029 Gs
|
14.44 kg / 31.85 lbs
14445 g / 141.7 N
|
86.67 kg / 191.07 lbs
~0 Gs
|
| 60 mm |
64.22 kg / 141.59 lbs
3 291 Gs
|
9.63 kg / 21.24 lbs
9634 g / 94.5 N
|
57.80 kg / 127.43 lbs
~0 Gs
|
| 70 mm |
43.17 kg / 95.18 lbs
2 698 Gs
|
6.48 kg / 14.28 lbs
6476 g / 63.5 N
|
38.86 kg / 85.66 lbs
~0 Gs
|
| 80 mm |
29.36 kg / 64.73 lbs
2 225 Gs
|
4.40 kg / 9.71 lbs
4404 g / 43.2 N
|
26.43 kg / 58.26 lbs
~0 Gs
|
| 90 mm |
20.25 kg / 44.63 lbs
1 847 Gs
|
3.04 kg / 6.69 lbs
3037 g / 29.8 N
|
18.22 kg / 40.17 lbs
~0 Gs
|
| 100 mm |
14.17 kg / 31.23 lbs
1 545 Gs
|
2.12 kg / 4.68 lbs
2125 g / 20.8 N
|
12.75 kg / 28.11 lbs
~0 Gs
|
Tabela 7: Zagrożenia (elektronika) - ostrzeżenia
MW 70x50 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 40.0 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 31.5 cm |
| Zegarek mechaniczny | 20 Gs (2.0 mT) | 24.5 cm |
| Telefon / Smartfon | 40 Gs (4.0 mT) | 19.0 cm |
| Kluczyk samochodowy | 50 Gs (5.0 mT) | 17.5 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 7.5 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 6.0 cm |
Tabela 8: Zderzenia (energia kinetyczna) - ostrzeżenie
MW 70x50 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
13.97 km/h
(3.88 m/s)
|
10.87 J | |
| 30 mm |
20.06 km/h
(5.57 m/s)
|
22.40 J | |
| 50 mm |
24.70 km/h
(6.86 m/s)
|
33.96 J | |
| 100 mm |
34.46 km/h
(9.57 m/s)
|
66.12 J |
Tabela 9: Parametry powłoki (trwałość)
MW 70x50 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
Tabela 10: Dane konstrukcyjne (Strumień)
MW 70x50 / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 197 145 Mx | 1971.5 µWb |
| Współczynnik Pc | 0.74 | Wysoki (Stabilny) |
Tabela 11: Hydrostatyka i wyporność
MW 70x50 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 168.21 kg | Standard |
| Woda (dno rzeki) |
192.60 kg
(+24.39 kg zysk z wyporności)
|
+14.5% |
1. Udźwig w pionie
*Pamiętaj: Na powierzchni pionowej magnes zachowa jedynie ułamek siły prostopadłej.
2. Wpływ grubości blachy
*Cienka blacha (np. blacha karoseryjna) znacząco osłabia udźwig magnesu.
3. Spadek mocy w temperaturze
*Dla standardowych magnesów maksymalna temperatura to 80°C.
4. Krzywa odmagnesowania i punkt pracy (B-H)
wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 0.74
Niniejsza symulacja obrazuje stabilność magnetyczną wybranego magnesu w konkretnych warunkach geometrycznych. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.
Analiza pierwiastkowa
| żelazo (Fe) | 64% – 68% |
| neodym (Nd) | 29% – 32% |
| bor (B) | 1.1% – 1.2% |
| dysproz (Dy) | 0.5% – 2.0% |
| powłoka (Ni-Cu-Ni) | < 0.05% |
Dane środowiskowe
| recyklowalność (EoL) | 100% |
| surowce z recyklingu | ~10% (pre-cons) |
| ślad węglowy | low / zredukowany |
| kod odpadu (EWC) | 16 02 16 |
Zobacz też inne produkty
Zalety oraz wady neodymowych magnesów Nd2Fe14B.
Plusy
- Są niezwykle trwałe – przez okres blisko 10 lat tracą maksymalnie ~1% swojej pierwotnej siły (pomiary wskazują na taką wartość).
- Zewnętrzne pola magnetyczne nie powodują ich szybkiego rozmagnesowania – posiadają wysoki współczynnik koercji.
- Pokrycie materiałami takimi jak nikiel czy złoto nadaje im czysty i lśniący charakter.
- Generują skoncentrowane pole magnetyczne na swojej powierzchni, co jest ich kluczową cechą.
- Wykazują imponującą wytrzymałość termiczną, co umożliwia ich stosowanie w warunkach do 230°C (dotyczy odpowiednich serii).
- Szerokie możliwości w projektowaniu kształtu i wymiaru to ich ogromny plus w inżynierii.
- Znajdują szerokie zastosowanie w nowoczesnej technice – od napędów HDD i silników, po zaawansowaną diagnostykę.
- Potęga w małej formie – ich niewielka objętość nie przeszkadza w generowaniu dużej siły przyciągania.
Słabe strony
- Delikatność mechaniczna to ich słaba strona. Łatwo ulegają uszkodzeniu przy zderzeniu, dlatego zalecamy obudowy lub uchwyty.
- Gorąco to wróg neodymów – powyżej 80°C tracą właściwości. Do zadań specjalnych polecamy wersje odporne [AH], działającą stabilnie aż do 230°C.
- Ryzyko korozji: bez osłony magnes zardzewieje na deszczu. Wybierz wersje powlekane tworzywem do zastosowań zewnętrznych.
- Magnesy ciężko się obrabia – do montażu śrubowego służą specjalne uchwyty magnetyczne z wbudowanym gwintem.
- Zachowaj ostrożność – połknięcie magnesów przez dziecko to zagrożenie życia. Ponadto, ich obecność w ciele komplikuje diagnostykę obrazową.
- Za jakość trzeba płacić – magnesy neodymowe są droższe od ceramicznych, co wpływa na budżet projektu.
Analiza siły trzymania
Maksymalny udźwig magnesu – od czego zależy?
- przy użyciu zwory ze specjalnej stali pomiarowej, gwarantującej maksymalne skupienie pola
- posiadającej grubość min. 10 mm dla pełnego zamknięcia strumienia
- charakteryzującej się gładkością
- przy zerowej szczelinie (brak farby)
- dla siły przyłożonej pod kątem prostym (na odrywanie, nie zsuwanie)
- przy temperaturze otoczenia ok. 20 stopni Celsjusza
Udźwig magnesu w użyciu – kluczowe czynniki
- Dystans (pomiędzy magnesem a metalem), bowiem nawet niewielka przerwa (np. 0,5 mm) powoduje redukcję siły nawet o 50% (dotyczy to także lakieru, rdzy czy brudu).
- Kąt przyłożenia siły – największą siłę uzyskujemy tylko przy prostopadłym odrywaniu. Siła potrzebna do przesunięcia magnesu po blasze jest zazwyczaj wielokrotnie mniejsza (ok. 1/5 udźwigu).
- Grubość ścianki – im cieńsza blacha, tym słabsze trzymanie. Strumień magnetyczny przenika na wylot, zamiast zamienić się w udźwig.
- Materiał blachy – stal miękka przyciąga najlepiej. Większa zawartość węgla zmniejszają właściwości magnetyczne i udźwig.
- Gładkość – idealny styk uzyskamy tylko na gładkiej stali. Wszelkie rysy i nierówności tworzą poduszki powietrzne, osłabiając magnes.
- Temperatura pracy – magnesy neodymowe posiadają ujemny współczynnik temperaturowy. W wyższych temperaturach są słabsze, a w niskich mogą być silniejsze (do pewnej granicy).
Pomiar udźwigu wykonywano na blachach o gładkiej powierzchni o odpowiedniej grubości, przy siłach prostopadłych, natomiast przy działaniu siły na zsuwanie nośność jest mniejsza nawet 75%. Co więcej, nawet minimalna przerwa pomiędzy powierzchnią magnesu, a blachą redukuje siłę trzymania.
BHP przy magnesach
Obróbka mechaniczna
Zagrożenie pożarowe: Pył neodymowy jest skrajnie łatwopalny. Nie poddawaj magnesów obróbce w warunkach domowych, gdyż grozi to zapłonem.
Bezpieczny dystans
Unikaj zbliżania magnesów do dokumentów, komputera czy telewizora. Magnes może trwale uszkodzić te urządzenia oraz skasować dane z kart.
Ryzyko połknięcia
Artykuł tylko dla osób pełnoletnich. Drobne magnesy mogą zostać aspirrowane, co prowadzi do perforacji jelit. Trzymaj z dala od dzieci i zwierząt.
Kruchość materiału
Mimo niklowej powłoki, neodym jest kruchy i nie znosi udarów. Nie uderzaj, gdyż magnes może się pokruszyć na drobiny.
Ryzyko rozmagnesowania
Monitoruj warunki termiczne. Ekspozycja magnesu powyżej 80 stopni Celsjusza trwale osłabi jego strukturę magnetyczną i udźwig.
Zasady obsługi
Zanim zaczniesz, przeczytaj instrukcję. Gwałtowne złączenie może zniszczyć magnes lub zranić dłoń. Myśl o krok do przodu.
Poważne obrażenia
Bloki magnetyczne mogą zmiażdżyć palce błyskawicznie. Nigdy umieszczaj dłoni między dwa przyciągające się elementy.
Rozruszniki serca
Osoby z rozrusznikiem serca muszą zachować bezpieczną odległość od magnesów. Silny magnes może rozregulować działanie implantu.
Ostrzeżenie dla alergików
Informacja alergiczna: powłoka Ni-Cu-Ni zawiera nikiel. W przypadku pojawienia się świądu lub podrażnienia, należy natychmiast przerwać pracę z magnesami i zabezpieczyć dłonie.
Interferencja magnetyczna
Ważna informacja: magnesy neodymowe generują pole, które dezorientują systemy nawigacji. Zachowaj odpowiednią odległość od telefonu, tabletu i urządzeń GPS.
