MW 7x1.5 / N38 - magnes neodymowy walcowy
magnes neodymowy walcowy
Numer katalogowy 010393
GTIN/EAN: 5906301811091
Średnica Ø
7 mm [±0,1 mm]
Wysokość
1.5 mm [±0,1 mm]
Waga
0.43 g
Kierunek magnesowania
↑ osiowy
Udźwig
0.69 kg / 6.75 N
Indukcja magnetyczna
243.98 mT / 2440 Gs
Powłoka
[NiCuNi] nikiel
0.369 ZŁ z VAT / szt. + cena za transport
0.300 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?Chcesz skonsultować wybór?
Zadzwoń i zapytaj
+48 22 499 98 98
alternatywnie pisz korzystając z
formularz zgłoszeniowy
w sekcji kontakt.
Siłę a także budowę magnesów neodymowych sprawdzisz w naszym
kalkulatorze mocy.
Wysyłka tego samego dnia dla zamówień do godz. 14:00.
MW 7x1.5 / N38 - magnes neodymowy walcowy
Specyfikacja / charakterystyka MW 7x1.5 / N38 - magnes neodymowy walcowy
| właściwości | wartości |
|---|---|
| Nr kat. | 010393 |
| GTIN/EAN | 5906301811091 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Średnica Ø | 7 mm [±0,1 mm] |
| Wysokość | 1.5 mm [±0,1 mm] |
| Waga | 0.43 g |
| Kierunek magnesowania | ↑ osiowy |
| Udźwig ~ ? | 0.69 kg / 6.75 N |
| Indukcja magnetyczna ~ ? | 243.98 mT / 2440 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [min. - maks.] ? | 12.2-12.6 | kGs |
| remanencja Br [min. - maks.] ? | 1220-1260 | mT |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [min. - maks.] ? | 36-38 | BH max MGOe |
| gęstość energii [min. - maks.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Temperatura Curie TC | 312 - 380 | °C |
| Temperatura Curie TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅cm |
| Siła wyginania | 250 | MPa |
| Wytrzymałość na ściskanie | 1000~1100 | MPa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 10-6 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Symulacja techniczna magnesu - raport
Przedstawione wartości są rezultat symulacji inżynierskiej. Wartości bazują na modelach dla materiału Nd2Fe14B. Realne warunki mogą różnić się od wartości teoretycznych. Prosimy traktować te dane jako wstępny drogowskaz podczas planowania montażu.
MW 7x1.5 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg)(gram)(Niuton) | Status ryzyka |
|---|---|---|---|
| 0 mm |
2438 Gs
243.8 mT
|
0.69 kg / 690.0 g
6.8 N
|
bezpieczny |
| 1 mm |
1900 Gs
190.0 mT
|
0.42 kg / 419.1 g
4.1 N
|
bezpieczny |
| 2 mm |
1308 Gs
130.8 mT
|
0.20 kg / 198.6 g
1.9 N
|
bezpieczny |
| 3 mm |
859 Gs
85.9 mT
|
0.09 kg / 85.7 g
0.8 N
|
bezpieczny |
| 5 mm |
380 Gs
38.0 mT
|
0.02 kg / 16.7 g
0.2 N
|
bezpieczny |
| 10 mm |
79 Gs
7.9 mT
|
0.00 kg / 0.7 g
0.0 N
|
bezpieczny |
| 15 mm |
27 Gs
2.7 mT
|
0.00 kg / 0.1 g
0.0 N
|
bezpieczny |
| 20 mm |
12 Gs
1.2 mT
|
0.00 kg / 0.0 g
0.0 N
|
bezpieczny |
| 30 mm |
4 Gs
0.4 mT
|
0.00 kg / 0.0 g
0.0 N
|
bezpieczny |
| 50 mm |
1 Gs
0.1 mT
|
0.00 kg / 0.0 g
0.0 N
|
bezpieczny |
MW 7x1.5 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg)(gram)(Niuton) |
|---|---|---|
| 0 mm | Stal (~0.2) |
0.14 kg / 138.0 g
1.4 N
|
| 1 mm | Stal (~0.2) |
0.08 kg / 84.0 g
0.8 N
|
| 2 mm | Stal (~0.2) |
0.04 kg / 40.0 g
0.4 N
|
| 3 mm | Stal (~0.2) |
0.02 kg / 18.0 g
0.2 N
|
| 5 mm | Stal (~0.2) |
0.00 kg / 4.0 g
0.0 N
|
| 10 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
| 15 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
| 20 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
| 30 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
MW 7x1.5 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
0.21 kg / 207.0 g
2.0 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
0.14 kg / 138.0 g
1.4 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
0.07 kg / 69.0 g
0.7 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
0.35 kg / 345.0 g
3.4 N
|
MW 7x1.5 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg) |
|---|---|---|
| 0.5 mm |
|
0.07 kg / 69.0 g
0.7 N
|
| 1 mm |
|
0.17 kg / 172.5 g
1.7 N
|
| 2 mm |
|
0.35 kg / 345.0 g
3.4 N
|
| 5 mm |
|
0.69 kg / 690.0 g
6.8 N
|
| 10 mm |
|
0.69 kg / 690.0 g
6.8 N
|
MW 7x1.5 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig | Status |
|---|---|---|---|
| 20 °C | 0.0% |
0.69 kg / 690.0 g
6.8 N
|
OK |
| 40 °C | -2.2% |
0.67 kg / 674.8 g
6.6 N
|
OK |
| 60 °C | -4.4% |
0.66 kg / 659.6 g
6.5 N
|
|
| 80 °C | -6.6% |
0.64 kg / 644.5 g
6.3 N
|
|
| 100 °C | -28.8% |
0.49 kg / 491.3 g
4.8 N
|
MW 7x1.5 / N38
| Szczelina (mm) | Przyciąganie (kg) (N-S) | Odpychanie (kg) (N-N) |
|---|---|---|
| 0 mm |
1.41 kg / 1411 g
13.8 N
4 025 Gs
|
N/A |
| 1 mm |
1.15 kg / 1148 g
11.3 N
4 398 Gs
|
1.03 kg / 1033 g
10.1 N
~0 Gs
|
| 2 mm |
0.86 kg / 857 g
8.4 N
3 801 Gs
|
0.77 kg / 771 g
7.6 N
~0 Gs
|
| 3 mm |
0.60 kg / 602 g
5.9 N
3 185 Gs
|
0.54 kg / 542 g
5.3 N
~0 Gs
|
| 5 mm |
0.27 kg / 268 g
2.6 N
2 125 Gs
|
0.24 kg / 241 g
2.4 N
~0 Gs
|
| 10 mm |
0.03 kg / 34 g
0.3 N
759 Gs
|
0.03 kg / 31 g
0.3 N
~0 Gs
|
| 20 mm |
0.00 kg / 1 g
0.0 N
159 Gs
|
0.00 kg / 0 g
0.0 N
~0 Gs
|
| 50 mm |
0.00 kg / 0 g
0.0 N
13 Gs
|
0.00 kg / 0 g
0.0 N
~0 Gs
|
MW 7x1.5 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 3.0 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 2.5 cm |
| Czasomierz | 20 Gs (2.0 mT) | 2.0 cm |
| Telefon / Smartfon | 40 Gs (4.0 mT) | 1.5 cm |
| Kluczyk samochodowy | 50 Gs (5.0 mT) | 1.5 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 0.5 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 0.5 cm |
MW 7x1.5 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
40.43 km/h
(11.23 m/s)
|
0.03 J | |
| 30 mm |
69.97 km/h
(19.44 m/s)
|
0.08 J | |
| 50 mm |
90.34 km/h
(25.09 m/s)
|
0.14 J | |
| 100 mm |
127.75 km/h
(35.49 m/s)
|
0.27 J |
MW 7x1.5 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
MW 7x1.5 / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 1 075 Mx | 10.8 µWb |
| Współczynnik Pc | 0.31 | Niski (Płaski) |
MW 7x1.5 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 0.69 kg | Standard |
| Woda (dno rzeki) |
0.79 kg
(+0.10 kg Zysk z wyporności)
|
+14.5% |
1. Udźwig w pionie
*Pamiętaj: Na pionowej ścianie magnes utrzyma jedynie ~20-30% siły prostopadłej.
2. Efektywność, a grubość stali
*Zbyt cienki metal (np. obudowa PC 0.5mm) drastycznie ogranicza udźwig magnesu.
3. Stabilność termiczna
*Dla materiału N38 granica bezpieczeństwa to 80°C.
4. Krzywa odmagnesowania i punkt pracy (B-H)
wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 0.31
Niniejsza symulacja obrazuje stabilność magnetyczną wybranego magnesu w konkretnych warunkach geometrycznych. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.
Analiza pierwiastkowa
| żelazo (Fe) | 64% – 68% |
| neodym (Nd) | 29% – 32% |
| bor (B) | 1.1% – 1.2% |
| dysproz (Dy) | 0.5% – 2.0% |
| powłoka (Ni-Cu-Ni) | < 0.05% |
Zrównoważony rozwój
| recyklowalność (EoL) | 100% |
| surowce z recyklingu | ~10% (pre-cons) |
| ślad węglowy | low / zredukowany |
| kod odpadu (EWC) | 16 02 16 |
Inne oferty
Zalety i wady neodymowych magnesów Nd2Fe14B.
Korzyści
- Utrzymują swoje właściwości przez lata – zakłada się, że po dekadzie tracą na sile o symboliczny 1%.
- Charakteryzują się ogromną odpornością na demagnetyzację, nawet w silnych polach zewnętrznych.
- Dzięki warstwie ochronnej (nikiel, złoto, Ag) zyskują nowoczesny, błyszczący wygląd.
- Oferują maksymalną indukcję magnetyczną bezpośrednio na powierzchni, co gwarantuje ogromną siłę.
- Są przystosowane do pracy w ekstremalnym cieple – wybrane modele znoszą temperaturę do 230°C (zależnie od proporcji).
- Dają się łatwo formować do specyficznych wymiarów, co pozwala na ich adaptację w przemyśle.
- Znajdują powszechne zastosowanie w nowoczesnej technice – od napędów HDD i silników, po zaawansowaną diagnostykę.
- Mały rozmiar, wielka moc – przy niewielkich gabarytach oferują ogromną siłę, co jest kluczowe przy miniaturyzacji.
Słabe strony
- Pamiętaj o ich kruchości – bez zabezpieczenia mogą pękać przy upadku na twarde podłoże.
- Wysoka temperatura to wróg neodymów – powyżej 80°C tracą właściwości. Do zadań specjalnych polecamy serię [AH], działającą stabilnie aż do 230°C.
- Nie lubią wody – szybko rdzewieją. Jeśli planujesz montaż na dworze, jedynym słusznym wyborem są magnesy w plastikowej osłonie.
- Trudności montażowe: zamiast próbować robić otwory kruchy magnes, skorzystaj z uchwytów w stalowej obudowie, które posiadają gotowe mocowania.
- Dbaj o bezpieczeństwo – połknięcie magnesów przez dziecko to stan krytyczny. Ponadto, ich obecność w ciele uniemożliwia diagnostykę obrazową.
- Za jakość trzeba płacić – magnesy neodymowe są droższe od ceramicznych, co wpływa na ekonomię rozwiązania.
Analiza siły trzymania
Siła oderwania magnesu w optymalnych warunkach – od czego zależy?
- z użyciem blachy ze miękkiej stali, działającej jako element zamykający obwód
- o grubości nie mniejszej niż 10 mm
- o wypolerowanej powierzchni styku
- bez żadnej szczeliny pomiędzy magnesem a stalą
- podczas odrywania w kierunku pionowym do powierzchni mocowania
- w neutralnych warunkach termicznych
Udźwig magnesu w użyciu – kluczowe czynniki
- Odstęp (pomiędzy magnesem a blachą), bowiem nawet niewielka przerwa (np. 0,5 mm) może spowodować redukcję siły nawet o 50% (dotyczy to także lakieru, rdzy czy zanieczyszczeń).
- Kierunek siły – należy wiedzieć, że magnes najmocniej trzyma prostopadle. Przy zsuwaniu w dół, udźwig spada drastycznie, często do poziomu 20-30% wartości nominalnej.
- Grubość podłoża – dla pełnej efektywności, stal musi być wystarczająco masywna. Cienka blacha limituje siłę przyciągania (magnes „przebija” ją na wylot).
- Skład materiału – różne stopy przyciąga się identycznie. Dodatki stopowe pogarszają efekt przyciągania.
- Gładkość – pełny kontakt uzyskamy tylko na gładkiej stali. Chropowata faktura tworzą poduszki powietrzne, redukując siłę.
- Temperatura pracy – magnesy neodymowe posiadają ujemny współczynnik temperaturowy. Gdy jest gorąco są słabsze, a w niskich mogą być silniejsze (do pewnej granicy).
Siłę trzymania testowano na gładkiej blasze o grubości 20 mm, kiedy działała siła prostopadła, jednak przy siłach działających równolegle udźwig jest mniejszy nawet 75%. Dodatkowo, nawet drobny odstęp między powierzchnią magnesu, a blachą zmniejsza nośność.
Przegrzanie magnesu
Nie przegrzewaj. Magnesy neodymowe są wrażliwe na temperaturę. Jeśli potrzebujesz odporności powyżej 80°C, zapytaj nas o specjalne serie wysokotemperaturowe (H, SH, UH).
Wpływ na smartfony
Moduły GPS i smartfony są niezwykle wrażliwe na pole magnetyczne. Bliskie sąsiedztwo z silnym magnesem może trwale uszkodzić czujniki w Twoim telefonie.
Kruchość materiału
Mimo metalicznego wyglądu, neodym jest delikatny i nieodporny na uderzenia. Unikaj uderzeń, gdyż magnes może się pokruszyć na ostre, niebezpieczne kawałki.
Niebezpieczeństwo przytrzaśnięcia
Ryzyko obrażeń: Moc ściskania jest tak duża, że może spowodować rany, zmiażdżenia, a nawet złamania kości. Używaj grubych rękawic.
Zagrożenie zapłonem
Wiercenie i cięcie magnesów neodymowych stwarza ryzyko zapłonu. Pył neodymowy reaguje gwałtownie z tlenem i jest trudny do gaszenia.
Niklowa powłoka a alergia
Badania wskazują, że nikiel (standardowe zabezpieczenie magnesów) jest silnym alergenem. Jeśli Twoja skóra źle reaguje na metale, wystrzegaj się kontaktu skóry z metalem lub zakup wersje w obudowie plastikowej.
Nie zbliżaj do komputera
Ochrona danych: Magnesy neodymowe mogą uszkodzić nośniki danych oraz urządzenia precyzyjne (rozruszniki serca, protezy słuchu, czasomierze).
Zakaz zabawy
Zawsze chroń magnesy przed dostępem dzieci. Niebezpieczeństwo połknięcia jest bardzo duże, a konsekwencje połączenia się magnesów wewnątrz organizmu są dramatyczne.
Niebezpieczeństwo dla rozruszników
Osoby z kardiowerterem muszą utrzymać duży odstęp od magnesów. Silny magnes może zakłócić działanie implantu.
Świadome użytkowanie
Stosuj magnesy świadomie. Ich ogromna siła może zszokować nawet doświadczonych użytkowników. Planuj ruchy i respektuj ich siły.
