MW 7x1.5 / N38 - magnes neodymowy walcowy
magnes neodymowy walcowy
Numer katalogowy 010393
GTIN/EAN: 5906301811091
Średnica Ø
7 mm [±0,1 mm]
Wysokość
1.5 mm [±0,1 mm]
Waga
0.43 g
Kierunek magnesowania
↑ osiowy
Udźwig
0.69 kg / 6.75 N
Indukcja magnetyczna
243.98 mT / 2440 Gs
Powłoka
[NiCuNi] nikiel
0.369 ZŁ z VAT / szt. + cena za transport
0.300 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?
Zadzwoń do nas
+48 22 499 98 98
ewentualnie daj znać poprzez
formularz kontaktowy
w sekcji kontakt.
Siłę a także kształt magnesów neodymowych przetestujesz dzięki naszemu
kalkulatorze magnetycznym.
Wysyłka tego samego dnia dla zamówień do godz. 14:00.
Dane produktu - MW 7x1.5 / N38 - magnes neodymowy walcowy
Specyfikacja / charakterystyka - MW 7x1.5 / N38 - magnes neodymowy walcowy
| właściwości | wartości |
|---|---|
| Nr kat. | 010393 |
| GTIN/EAN | 5906301811091 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Średnica Ø | 7 mm [±0,1 mm] |
| Wysokość | 1.5 mm [±0,1 mm] |
| Waga | 0.43 g |
| Kierunek magnesowania | ↑ osiowy |
| Udźwig ~ ? | 0.69 kg / 6.75 N |
| Indukcja magnetyczna ~ ? | 243.98 mT / 2440 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [min. - maks.] ? | 12.2-12.6 | kGs |
| remanencja Br [min. - maks.] ? | 1220-1260 | mT |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [min. - maks.] ? | 36-38 | BH max MGOe |
| gęstość energii [min. - maks.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Temperatura Curie TC | 312 - 380 | °C |
| Temperatura Curie TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅cm |
| Siła wyginania | 250 | MPa |
| Wytrzymałość na ściskanie | 1000~1100 | MPa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 10-6 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Analiza inżynierska magnesu - raport
Niniejsze wartości są wynik symulacji inżynierskiej. Wyniki bazują na modelach dla materiału Nd2Fe14B. Rzeczywiste warunki mogą nieznacznie się różnić. Prosimy traktować te dane jako punkt odniesienia przy projektowaniu systemów.
Tabela 1: Siła prostopadła statyczna (siła vs odległość) - wykres oddziaływania
MW 7x1.5 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg/lbs/g/N) | Status ryzyka |
|---|---|---|---|
| 0 mm |
2438 Gs
243.8 mT
|
0.69 kg / 1.52 lbs
690.0 g / 6.8 N
|
bezpieczny |
| 1 mm |
1900 Gs
190.0 mT
|
0.42 kg / 0.92 lbs
419.1 g / 4.1 N
|
bezpieczny |
| 2 mm |
1308 Gs
130.8 mT
|
0.20 kg / 0.44 lbs
198.6 g / 1.9 N
|
bezpieczny |
| 3 mm |
859 Gs
85.9 mT
|
0.09 kg / 0.19 lbs
85.7 g / 0.8 N
|
bezpieczny |
| 5 mm |
380 Gs
38.0 mT
|
0.02 kg / 0.04 lbs
16.7 g / 0.2 N
|
bezpieczny |
| 10 mm |
79 Gs
7.9 mT
|
0.00 kg / 0.00 lbs
0.7 g / 0.0 N
|
bezpieczny |
| 15 mm |
27 Gs
2.7 mT
|
0.00 kg / 0.00 lbs
0.1 g / 0.0 N
|
bezpieczny |
| 20 mm |
12 Gs
1.2 mT
|
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
bezpieczny |
| 30 mm |
4 Gs
0.4 mT
|
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
bezpieczny |
| 50 mm |
1 Gs
0.1 mT
|
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
bezpieczny |
Tabela 2: Równoległa siła zsuwania (ściana)
MW 7x1.5 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg/lbs/g/N) |
|---|---|---|
| 0 mm | Stal (~0.2) |
0.14 kg / 0.30 lbs
138.0 g / 1.4 N
|
| 1 mm | Stal (~0.2) |
0.08 kg / 0.19 lbs
84.0 g / 0.8 N
|
| 2 mm | Stal (~0.2) |
0.04 kg / 0.09 lbs
40.0 g / 0.4 N
|
| 3 mm | Stal (~0.2) |
0.02 kg / 0.04 lbs
18.0 g / 0.2 N
|
| 5 mm | Stal (~0.2) |
0.00 kg / 0.01 lbs
4.0 g / 0.0 N
|
| 10 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
| 15 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
| 20 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
| 30 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
Tabela 3: Siła na ścianie (poślizg) - udźwig wertykalny
MW 7x1.5 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg/lbs/g/N) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
0.21 kg / 0.46 lbs
207.0 g / 2.0 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
0.14 kg / 0.30 lbs
138.0 g / 1.4 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
0.07 kg / 0.15 lbs
69.0 g / 0.7 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
0.35 kg / 0.76 lbs
345.0 g / 3.4 N
|
Tabela 4: Grubość stali (wpływ podłoża) - straty mocy
MW 7x1.5 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg/lbs/g/N) |
|---|---|---|
| 0.5 mm |
|
0.07 kg / 0.15 lbs
69.0 g / 0.7 N
|
| 1 mm |
|
0.17 kg / 0.38 lbs
172.5 g / 1.7 N
|
| 2 mm |
|
0.35 kg / 0.76 lbs
345.0 g / 3.4 N
|
| 3 mm |
|
0.52 kg / 1.14 lbs
517.5 g / 5.1 N
|
| 5 mm |
|
0.69 kg / 1.52 lbs
690.0 g / 6.8 N
|
| 10 mm |
|
0.69 kg / 1.52 lbs
690.0 g / 6.8 N
|
| 11 mm |
|
0.69 kg / 1.52 lbs
690.0 g / 6.8 N
|
| 12 mm |
|
0.69 kg / 1.52 lbs
690.0 g / 6.8 N
|
Tabela 5: Wytrzymałość temperaturowa (stabilność) - spadek mocy
MW 7x1.5 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig (kg/lbs/g/N) | Status |
|---|---|---|---|
| 20 °C | 0.0% |
0.69 kg / 1.52 lbs
690.0 g / 6.8 N
|
OK |
| 40 °C | -2.2% |
0.67 kg / 1.49 lbs
674.8 g / 6.6 N
|
OK |
| 60 °C | -4.4% |
0.66 kg / 1.45 lbs
659.6 g / 6.5 N
|
|
| 80 °C | -6.6% |
0.64 kg / 1.42 lbs
644.5 g / 6.3 N
|
|
| 100 °C | -28.8% |
0.49 kg / 1.08 lbs
491.3 g / 4.8 N
|
Tabela 6: Interakcja magnes-magnes (przyciąganie) - siły w układzie
MW 7x1.5 / N38
| Szczelina (mm) | Przyciąganie (kg/lbs) (N-S) | Opór ścinania (kg/lbs/g/N) | Odpychanie (kg/lbs) (N-N) |
|---|---|---|---|
| 0 mm |
1.41 kg / 3.11 lbs
4 025 Gs
|
0.21 kg / 0.47 lbs
212 g / 2.1 N
|
N/A |
| 1 mm |
1.15 kg / 2.53 lbs
4 398 Gs
|
0.17 kg / 0.38 lbs
172 g / 1.7 N
|
1.03 kg / 2.28 lbs
~0 Gs
|
| 2 mm |
0.86 kg / 1.89 lbs
3 801 Gs
|
0.13 kg / 0.28 lbs
129 g / 1.3 N
|
0.77 kg / 1.70 lbs
~0 Gs
|
| 3 mm |
0.60 kg / 1.33 lbs
3 185 Gs
|
0.09 kg / 0.20 lbs
90 g / 0.9 N
|
0.54 kg / 1.19 lbs
~0 Gs
|
| 5 mm |
0.27 kg / 0.59 lbs
2 125 Gs
|
0.04 kg / 0.09 lbs
40 g / 0.4 N
|
0.24 kg / 0.53 lbs
~0 Gs
|
| 10 mm |
0.03 kg / 0.08 lbs
759 Gs
|
0.01 kg / 0.01 lbs
5 g / 0.1 N
|
0.03 kg / 0.07 lbs
~0 Gs
|
| 20 mm |
0.00 kg / 0.00 lbs
159 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 50 mm |
0.00 kg / 0.00 lbs
13 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 60 mm |
0.00 kg / 0.00 lbs
8 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 70 mm |
0.00 kg / 0.00 lbs
5 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 80 mm |
0.00 kg / 0.00 lbs
3 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 90 mm |
0.00 kg / 0.00 lbs
2 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 100 mm |
0.00 kg / 0.00 lbs
2 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
Tabela 7: Bezpieczeństwo (BHP) (implanty) - ostrzeżenia
MW 7x1.5 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 3.0 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 2.5 cm |
| Zegarek mechaniczny | 20 Gs (2.0 mT) | 2.0 cm |
| Telefon / Smartfon | 40 Gs (4.0 mT) | 1.5 cm |
| Pilot do auta | 50 Gs (5.0 mT) | 1.5 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 0.5 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 0.5 cm |
Tabela 8: Energia uderzenia (energia kinetyczna) - ostrzeżenie
MW 7x1.5 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
40.43 km/h
(11.23 m/s)
|
0.03 J | |
| 30 mm |
69.97 km/h
(19.44 m/s)
|
0.08 J | |
| 50 mm |
90.34 km/h
(25.09 m/s)
|
0.14 J | |
| 100 mm |
127.75 km/h
(35.49 m/s)
|
0.27 J |
Tabela 9: Trwałość powłoki antykorozyjnej
MW 7x1.5 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
Tabela 10: Dane konstrukcyjne (Pc)
MW 7x1.5 / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 1 075 Mx | 10.8 µWb |
| Współczynnik Pc | 0.31 | Niski (Płaski) |
Tabela 11: Praca w wodzie (Magnet Fishing)
MW 7x1.5 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 0.69 kg | Standard |
| Woda (dno rzeki) |
0.79 kg
(+0.10 kg zysk z wyporności)
|
+14.5% |
1. Ześlizg (ściana)
*Ważne: Na powierzchni pionowej magnes zachowa zaledwie ok. 20-30% siły prostopadłej.
2. Efektywność, a grubość stali
*Cienka blacha (np. obudowa PC 0.5mm) wyraźnie ogranicza udźwig magnesu.
3. Stabilność termiczna
*Dla materiału N38 krytyczny próg to 80°C.
4. Krzywa odmagnesowania i punkt pracy (B-H)
wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 0.31
Niniejsza symulacja obrazuje stabilność magnetyczną wybranego magnesu w konkretnych warunkach geometrycznych. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.
Specyfikacja materiałowa
| żelazo (Fe) | 64% – 68% |
| neodym (Nd) | 29% – 32% |
| bor (B) | 1.1% – 1.2% |
| dysproz (Dy) | 0.5% – 2.0% |
| powłoka (Ni-Cu-Ni) | < 0.05% |
Ekologia i recykling (GPSR)
| recyklowalność (EoL) | 100% |
| surowce z recyklingu | ~10% (pre-cons) |
| ślad węglowy | low / zredukowany |
| kod odpadu (EWC) | 16 02 16 |
Sprawdź inne propozycje
Wady i zalety neodymowych magnesów Nd2Fe14B.
Plusy
- Zachowują swoje właściwości przez lata – zakłada się, że po dekadzie tracą na sile o symboliczny 1%.
- Są niewrażliwe na wpływ innych pól, co czyni je odpornymi na rozmagnesowanie w wymagającym środowisku.
- Wykończenie materiałami takimi jak nikiel, srebro lub złoto nadaje im elegancki i lśniący charakter.
- Indukcja magnetyczna na powierzchni tych magnesów jest bardzo wysoka, co czyni je najsilniejszymi w swojej klasie.
- Są przystosowane do pracy w ekstremalnym cieple – wybrane modele znoszą temperaturę do 230°C (zależnie od proporcji).
- Można je precyzyjnie obrabiać do niestandardowych wymiarów, co ułatwia ich adaptację w przemyśle.
- Spotkasz je wszędzie tam, gdzie liczy się precyzja: w napędach, medycynie oraz systemach IT.
- Mały rozmiar, wielka moc – przy kompaktowej budowie oferują ogromną siłę, co jest kluczowe przy miniaturyzacji.
Minusy
- Ze względu na kruchość, trzeba się z nimi obchodzić delikatnie. Silne uderzenie może je zniszczyć, stąd rekomendacja stosowania osłon.
- Uwaga na temperaturę – dla zwykłych magnesów limit to 80°C. W gorącym środowisku (do 230°C) należy używać modele z oznaczeniem [AH].
- Wilgoć powoduje korozję w kontakcie z wodą. Na zewnątrz zalecamy użycie magnesów hermetycznych (np. w gumie).
- Obróbka jest trudna – wiercenie otworów w samym magnesie jest ryzykowne. Lepiej wybrać gotowe uchwyty magnetyczne (magnes w obudowie).
- Drobne magnesy to ryzyko – połknięcie wymaga interwencji chirurga. Mogą też być problemem przy diagnostyce MRI.
- Za jakość trzeba płacić – magnesy neodymowe są droższe od ceramicznych, co wpływa na ekonomię rozwiązania.
Charakterystyka udźwigu
Siła oderwania magnesu w optymalnych warunkach – od czego zależy?
- na podłożu wykonanej ze stali miękkiej, optymalnie przewodzącej strumień magnetyczny
- posiadającej grubość min. 10 mm dla pełnego zamknięcia strumienia
- o szlifowanej powierzchni styku
- w warunkach braku dystansu (metal do metalu)
- dla siły przyłożonej pod kątem prostym (na odrywanie, nie zsuwanie)
- w temp. ok. 20°C
Udźwig w warunkach rzeczywistych – czynniki
- Odstęp (między magnesem a metalem), gdyż nawet niewielka przerwa (np. 0,5 mm) powoduje zmniejszenie siły nawet o 50% (dotyczy to także lakieru, rdzy czy zanieczyszczeń).
- Kąt odrywania – należy wiedzieć, że magnes najmocniej trzyma prostopadle. Przy działaniu sił bocznych, udźwig spada znacząco, często do poziomu 20-30% wartości nominalnej.
- Grubość metalu – im cieńsza blacha, tym słabsze trzymanie. Strumień magnetyczny przechodzi przez materiał, zamiast generować siłę.
- Skład chemiczny podłoża – stal miękka daje najlepsze rezultaty. Większa zawartość węgla redukują właściwości magnetyczne i udźwig.
- Gładkość – pełny kontakt jest możliwy tylko na gładkiej stali. Chropowata faktura tworzą poduszki powietrzne, osłabiając magnes.
- Otoczenie termiczne – wzrost temperatury powoduje tymczasowy spadek siły. Należy pamiętać o maksymalną temperaturę pracy dla danego modelu.
Udźwig określano z wykorzystaniem wypolerowanej blachy o właściwej grubości (min. 20 mm), przy prostopadłym działaniu siły odrywającej, natomiast przy działaniu siły na zsuwanie nośność jest mniejsza nawet pięciokrotnie. Co więcej, nawet drobny odstęp między powierzchnią magnesu, a blachą zmniejsza nośność.
Ostrzeżenia
Nie dawać dzieciom
Koniecznie chroń magnesy przed dostępem dzieci. Niebezpieczeństwo połknięcia jest bardzo duże, a konsekwencje połączenia się magnesów wewnątrz organizmu są dramatyczne.
Zagrożenie dla nawigacji
Silne pole magnetyczne zakłóca działanie kompasów w telefonach i urządzeniach lokalizacyjnych. Trzymaj z dala magnesów do smartfona, aby uniknąć awarii czujników.
Obróbka mechaniczna
Ryzyko wybuchu: Pył neodymowy jest wysoce łatwopalny. Nie poddawaj magnesów obróbce w warunkach domowych, gdyż może to wywołać pożar.
Ryzyko zmiażdżenia
Chroń dłonie. Dwa duże magnesy zderzą z ogromną prędkością z siłą wielu ton, miażdżąc wszystko na swojej drodze. Zachowaj ekstremalną uwagę!
Wpływ na zdrowie
Dla posiadaczy implantów: Promieniowanie magnetyczne zakłóca elektronikę medyczną. Utrzymuj co najmniej 30 cm odstępu lub poproś inną osobę pracę z magnesów.
Alergia na nikiel
Niektóre osoby posiada alergię kontaktową na pierwiastek nikiel, którym zabezpieczane są magnesy neodymowe. Dłuższy kontakt może wywołać wysypkę. Zalecamy stosowanie rękawiczek ochronnych.
Trwała utrata siły
Kontroluj ciepło. Podgrzanie magnesu powyżej 80 stopni Celsjusza zdegraduje jego domenę magnetyczną i udźwig.
Moc przyciągania
Używaj magnesy świadomie. Ich gigantyczny udźwig może zszokować nawet doświadczonych użytkowników. Bądź skupiony i nie lekceważ ich siły.
Ochrona urządzeń
Ochrona danych: Magnesy neodymowe mogą uszkodzić nośniki danych oraz delikatną elektronikę (rozruszniki serca, aparaty słuchowe, zegarki mechaniczne).
Ryzyko pęknięcia
Magnesy neodymowe to spiek proszkowy, co oznacza, że są łamliwe jak szkło. Upadek dwóch magnesów wywoła ich rozpryśnięcie na ostre odłamki.
