MW 70x50 / N38 - magnes neodymowy walcowy
magnes neodymowy walcowy
Numer katalogowy 010496
GTIN/EAN: 5906301811145
Średnica Ø
70 mm [±0,1 mm]
Wysokość
50 mm [±0,1 mm]
Waga
1443.17 g
Kierunek magnesowania
↑ osiowy
Udźwig
168.21 kg / 1650.14 N
Indukcja magnetyczna
507.83 mT / 5078 Gs
Powłoka
[NiCuNi] nikiel
516.60 ZŁ z VAT / szt. + cena za transport
420.00 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?
Skontaktuj się z nami telefonicznie
+48 22 499 98 98
lub zostaw wiadomość korzystając z
nasz formularz online
przez naszą stronę.
Właściwości oraz budowę magnesu obliczysz u nas w
kalkulatorze magnetycznym.
Realizacja tego samego dnia przy zamówieniu do 14:00.
Karta produktu - MW 70x50 / N38 - magnes neodymowy walcowy
Specyfikacja / charakterystyka - MW 70x50 / N38 - magnes neodymowy walcowy
| właściwości | wartości |
|---|---|
| Nr kat. | 010496 |
| GTIN/EAN | 5906301811145 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Średnica Ø | 70 mm [±0,1 mm] |
| Wysokość | 50 mm [±0,1 mm] |
| Waga | 1443.17 g |
| Kierunek magnesowania | ↑ osiowy |
| Udźwig ~ ? | 168.21 kg / 1650.14 N |
| Indukcja magnetyczna ~ ? | 507.83 mT / 5078 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [min. - maks.] ? | 12.2-12.6 | kGs |
| remanencja Br [min. - maks.] ? | 1220-1260 | mT |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [min. - maks.] ? | 36-38 | BH max MGOe |
| gęstość energii [min. - maks.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Temperatura Curie TC | 312 - 380 | °C |
| Temperatura Curie TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅cm |
| Siła wyginania | 250 | MPa |
| Wytrzymałość na ściskanie | 1000~1100 | MPa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 10-6 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Analiza techniczna magnesu neodymowego - parametry techniczne
Przedstawione wartości stanowią rezultat symulacji inżynierskiej. Wartości bazują na modelach dla materiału Nd2Fe14B. Rzeczywiste warunki mogą nieznacznie odbiegać od wyników symulacji. Prosimy traktować te wyliczenia jako punkt odniesienia przy projektowaniu systemów.
Tabela 1: Siła prostopadła statyczna (udźwig vs dystans) - wykres oddziaływania
MW 70x50 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg/lbs/g/N) | Status ryzyka |
|---|---|---|---|
| 0 mm |
5078 Gs
507.8 mT
|
168.21 kg / 370.84 lbs
168210.0 g / 1650.1 N
|
niebezpieczny! |
| 1 mm |
4935 Gs
493.5 mT
|
158.88 kg / 350.26 lbs
158876.4 g / 1558.6 N
|
niebezpieczny! |
| 2 mm |
4790 Gs
479.0 mT
|
149.67 kg / 329.96 lbs
149666.1 g / 1468.2 N
|
niebezpieczny! |
| 3 mm |
4644 Gs
464.4 mT
|
140.71 kg / 310.21 lbs
140708.8 g / 1380.4 N
|
niebezpieczny! |
| 5 mm |
4354 Gs
435.4 mT
|
123.67 kg / 272.64 lbs
123667.4 g / 1213.2 N
|
niebezpieczny! |
| 10 mm |
3652 Gs
365.2 mT
|
87.02 kg / 191.84 lbs
87016.1 g / 853.6 N
|
niebezpieczny! |
| 15 mm |
3017 Gs
301.7 mT
|
59.37 kg / 130.88 lbs
59366.6 g / 582.4 N
|
niebezpieczny! |
| 20 mm |
2469 Gs
246.9 mT
|
39.78 kg / 87.70 lbs
39781.3 g / 390.3 N
|
niebezpieczny! |
| 30 mm |
1645 Gs
164.5 mT
|
17.66 kg / 38.93 lbs
17659.3 g / 173.2 N
|
niebezpieczny! |
| 50 mm |
773 Gs
77.3 mT
|
3.89 kg / 8.59 lbs
3895.0 g / 38.2 N
|
średnie ryzyko |
Tabela 2: Siła równoległa ześlizgu (ściana)
MW 70x50 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg/lbs/g/N) |
|---|---|---|
| 0 mm | Stal (~0.2) |
33.64 kg / 74.17 lbs
33642.0 g / 330.0 N
|
| 1 mm | Stal (~0.2) |
31.78 kg / 70.05 lbs
31776.0 g / 311.7 N
|
| 2 mm | Stal (~0.2) |
29.93 kg / 65.99 lbs
29934.0 g / 293.7 N
|
| 3 mm | Stal (~0.2) |
28.14 kg / 62.04 lbs
28142.0 g / 276.1 N
|
| 5 mm | Stal (~0.2) |
24.73 kg / 54.53 lbs
24734.0 g / 242.6 N
|
| 10 mm | Stal (~0.2) |
17.40 kg / 38.37 lbs
17404.0 g / 170.7 N
|
| 15 mm | Stal (~0.2) |
11.87 kg / 26.18 lbs
11874.0 g / 116.5 N
|
| 20 mm | Stal (~0.2) |
7.96 kg / 17.54 lbs
7956.0 g / 78.0 N
|
| 30 mm | Stal (~0.2) |
3.53 kg / 7.79 lbs
3532.0 g / 34.6 N
|
| 50 mm | Stal (~0.2) |
0.78 kg / 1.72 lbs
778.0 g / 7.6 N
|
Tabela 3: Montaż pionowy (ścinanie) - zachowanie na śliskim podłożu
MW 70x50 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg/lbs/g/N) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
50.46 kg / 111.25 lbs
50463.0 g / 495.0 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
33.64 kg / 74.17 lbs
33642.0 g / 330.0 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
16.82 kg / 37.08 lbs
16821.0 g / 165.0 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
84.11 kg / 185.42 lbs
84105.0 g / 825.1 N
|
Tabela 4: Efektywność materiałowa (wpływ podłoża) - straty mocy
MW 70x50 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg/lbs/g/N) |
|---|---|---|
| 0.5 mm |
|
5.61 kg / 12.36 lbs
5607.0 g / 55.0 N
|
| 1 mm |
|
14.02 kg / 30.90 lbs
14017.5 g / 137.5 N
|
| 2 mm |
|
28.03 kg / 61.81 lbs
28035.0 g / 275.0 N
|
| 3 mm |
|
42.05 kg / 92.71 lbs
42052.5 g / 412.5 N
|
| 5 mm |
|
70.09 kg / 154.52 lbs
70087.5 g / 687.6 N
|
| 10 mm |
|
140.18 kg / 309.03 lbs
140175.0 g / 1375.1 N
|
| 11 mm |
|
154.19 kg / 339.94 lbs
154192.5 g / 1512.6 N
|
| 12 mm |
|
168.21 kg / 370.84 lbs
168210.0 g / 1650.1 N
|
Tabela 5: Stabilność termiczna (zachowanie materiału) - próg odporności
MW 70x50 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig (kg/lbs/g/N) | Status |
|---|---|---|---|
| 20 °C | 0.0% |
168.21 kg / 370.84 lbs
168210.0 g / 1650.1 N
|
OK |
| 40 °C | -2.2% |
164.51 kg / 362.68 lbs
164509.4 g / 1613.8 N
|
OK |
| 60 °C | -4.4% |
160.81 kg / 354.52 lbs
160808.8 g / 1577.5 N
|
OK |
| 80 °C | -6.6% |
157.11 kg / 346.36 lbs
157108.1 g / 1541.2 N
|
|
| 100 °C | -28.8% |
119.77 kg / 264.04 lbs
119765.5 g / 1174.9 N
|
Tabela 6: Dwa magnesy (odpychanie) - siły w układzie
MW 70x50 / N38
| Szczelina (mm) | Przyciąganie (kg/lbs) (N-S) | Siła zsuwania (kg/lbs/g/N) | Odpychanie (kg/lbs) (N-N) |
|---|---|---|---|
| 0 mm |
611.75 kg / 1348.67 lbs
5 850 Gs
|
91.76 kg / 202.30 lbs
91762 g / 900.2 N
|
N/A |
| 1 mm |
594.86 kg / 1311.43 lbs
10 014 Gs
|
89.23 kg / 196.72 lbs
89229 g / 875.3 N
|
535.37 kg / 1180.29 lbs
~0 Gs
|
| 2 mm |
577.80 kg / 1273.84 lbs
9 870 Gs
|
86.67 kg / 191.08 lbs
86670 g / 850.2 N
|
520.02 kg / 1146.45 lbs
~0 Gs
|
| 3 mm |
560.95 kg / 1236.68 lbs
9 725 Gs
|
84.14 kg / 185.50 lbs
84142 g / 825.4 N
|
504.85 kg / 1113.01 lbs
~0 Gs
|
| 5 mm |
527.90 kg / 1163.81 lbs
9 434 Gs
|
79.18 kg / 174.57 lbs
79184 g / 776.8 N
|
475.11 kg / 1047.43 lbs
~0 Gs
|
| 10 mm |
449.75 kg / 991.54 lbs
8 708 Gs
|
67.46 kg / 148.73 lbs
67463 g / 661.8 N
|
404.78 kg / 892.38 lbs
~0 Gs
|
| 20 mm |
316.46 kg / 697.68 lbs
7 304 Gs
|
47.47 kg / 104.65 lbs
47469 g / 465.7 N
|
284.81 kg / 627.91 lbs
~0 Gs
|
| 50 mm |
96.30 kg / 212.30 lbs
4 029 Gs
|
14.44 kg / 31.85 lbs
14445 g / 141.7 N
|
86.67 kg / 191.07 lbs
~0 Gs
|
| 60 mm |
64.22 kg / 141.59 lbs
3 291 Gs
|
9.63 kg / 21.24 lbs
9634 g / 94.5 N
|
57.80 kg / 127.43 lbs
~0 Gs
|
| 70 mm |
43.17 kg / 95.18 lbs
2 698 Gs
|
6.48 kg / 14.28 lbs
6476 g / 63.5 N
|
38.86 kg / 85.66 lbs
~0 Gs
|
| 80 mm |
29.36 kg / 64.73 lbs
2 225 Gs
|
4.40 kg / 9.71 lbs
4404 g / 43.2 N
|
26.43 kg / 58.26 lbs
~0 Gs
|
| 90 mm |
20.25 kg / 44.63 lbs
1 847 Gs
|
3.04 kg / 6.69 lbs
3037 g / 29.8 N
|
18.22 kg / 40.17 lbs
~0 Gs
|
| 100 mm |
14.17 kg / 31.23 lbs
1 545 Gs
|
2.12 kg / 4.68 lbs
2125 g / 20.8 N
|
12.75 kg / 28.11 lbs
~0 Gs
|
Tabela 7: Strefy ochronne (elektronika) - środki ostrożności
MW 70x50 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 40.0 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 31.5 cm |
| Zegarek mechaniczny | 20 Gs (2.0 mT) | 24.5 cm |
| Telefon / Smartfon | 40 Gs (4.0 mT) | 19.0 cm |
| Kluczyk samochodowy | 50 Gs (5.0 mT) | 17.5 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 7.5 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 6.0 cm |
Tabela 8: Dynamika (energia kinetyczna) - ostrzeżenie
MW 70x50 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
13.97 km/h
(3.88 m/s)
|
10.87 J | |
| 30 mm |
20.06 km/h
(5.57 m/s)
|
22.40 J | |
| 50 mm |
24.70 km/h
(6.86 m/s)
|
33.96 J | |
| 100 mm |
34.46 km/h
(9.57 m/s)
|
66.12 J |
Tabela 9: Trwałość powłoki antykorozyjnej
MW 70x50 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
Tabela 10: Dane elektryczne (Strumień)
MW 70x50 / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 197 145 Mx | 1971.5 µWb |
| Współczynnik Pc | 0.74 | Wysoki (Stabilny) |
Tabela 11: Praca w wodzie (Magnet Fishing)
MW 70x50 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 168.21 kg | Standard |
| Woda (dno rzeki) |
192.60 kg
(+24.39 kg zysk z wyporności)
|
+14.5% |
1. Ześlizg (ściana)
*Ważne: Na pionowej ścianie magnes utrzyma tylko ok. 20-30% siły oderwania.
2. Efektywność, a grubość stali
*Zbyt cienki metal (np. obudowa PC 0.5mm) drastycznie ogranicza udźwig magnesu.
3. Wytrzymałość temperaturowa
*Dla standardowych magnesów granica bezpieczeństwa to 80°C.
4. Krzywa odmagnesowania i punkt pracy (B-H)
wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 0.74
Niniejsza symulacja obrazuje stabilność magnetyczną wybranego magnesu w konkretnych warunkach geometrycznych. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.
Analiza pierwiastkowa
| żelazo (Fe) | 64% – 68% |
| neodym (Nd) | 29% – 32% |
| bor (B) | 1.1% – 1.2% |
| dysproz (Dy) | 0.5% – 2.0% |
| powłoka (Ni-Cu-Ni) | < 0.05% |
Dane środowiskowe
| recyklowalność (EoL) | 100% |
| surowce z recyklingu | ~10% (pre-cons) |
| ślad węglowy | low / zredukowany |
| kod odpadu (EWC) | 16 02 16 |
Zobacz też inne propozycje
Wady oraz zalety magnesów neodymowych Nd2Fe14B.
Mocne strony
- Ich parametry są stabilne w czasie; po 10 latach eksploatacji redukcja udźwigu to marginalne ~1%.
- Trudno je rozmagnesować, gdyż wykazują wysoką odporność na zewnętrzne czynniki.
- Są nie tylko silne, ale i ładne – poprzez niklowanie lub złocenie ich powierzchnia jest błyszcząca i wygląda estetycznie.
- Oferują najwyższą indukcję magnetyczną w punkcie styku, co przekłada się na skuteczność.
- Są przystosowane do pracy w ekstremalnym cieple – wybrane modele znoszą temperaturę do 230°C (zależnie od proporcji).
- Szerokie możliwości w projektowaniu kształtu i wymiaru to ich wielka zaleta w inżynierii.
- Występują wszędzie tam, gdzie liczy się precyzja: w napędach, rezonansach oraz przemyśle komputerowym.
- Moc w skali mikro – ich mała masa nie przeszkadza w generowaniu dużej siły przyciągania.
Minusy
- Ze względu na kruchość, wymagają ostrożności. Gwałtowne złączenie może je zniszczyć, stąd zalecenie stosowania osłon.
- Wrażliwość na ciepło: przekroczenie 80°C może trwale osłabić magnes (zależnie od wymiarów). Rozwiązaniem są nasze magnesy wysokotemperaturowe [AH].
- Ryzyko korozji: bez osłony magnes ulegnie utlenieniu na deszczu. Rozważ wersje powlekane tworzywem do zastosowań zewnętrznych.
- Magnesy ciężko się obrabia – do montażu śrubowego służą specjalne uchwyty magnetyczne z wbudowanym gwintem.
- Ryzyko połknięcia – drobne magnesy są niebezpieczne dla najmłodszych. Połknięcie kilku sztuk grozi poważnymi obrażeniami. Dodatkowo mogą zakłócać badania (np. rezonans).
- Nie należą do tanich – ich cena jest wyższa niż ferrytów, co należy uwzględnić przy planowaniu kosztów.
Charakterystyka udźwigu
Udźwig maksymalny dla magnesu neodymowego – od czego zależy?
- z wykorzystaniem płyty ze miękkiej stali, pełniącej rolę idealny przewodnik strumienia
- o grubości przynajmniej 10 mm
- charakteryzującej się gładkością
- przy bezpośrednim styku (brak powłok)
- przy pionowym przyłożeniu siły odrywającej (kąt 90 stopni)
- w neutralnych warunkach termicznych
Udźwig w praktyce – czynniki wpływu
- Dystans – obecność ciała obcego (farba, brud, powietrze) działa jak izolator, co redukuje moc lawinowo (nawet o 50% przy 0,5 mm).
- Sposób obciążenia – deklarowany udźwig dotyczy odrywania w pionie. Przy próbie przesunięcia, magnes trzyma znacznie mniejszą moc (często ok. 20-30% siły maksymalnej).
- Grubość metalu – im cieńsza blacha, tym słabsze trzymanie. Część pola magnetycznego przenika na wylot, zamiast generować siłę.
- Skład materiału – różne stopy reaguje tak samo. Dodatki stopowe pogarszają interakcję z magnesem.
- Jakość powierzchni – im równiejsza powierzchnia, tym lepsze przyleganie i wyższy udźwig. Nierówności tworzą dystans powietrzny.
- Ciepło – magnesy neodymowe posiadają wrażliwość na temperaturę. W wyższych temperaturach tracą moc, a na mrozie mogą być silniejsze (do pewnej granicy).
Siłę trzymania testowano na gładkiej blasze o grubości 20 mm, kiedy przyłożono siłę prostopadłą, natomiast przy siłach działających równolegle nośność jest mniejsza nawet pięć razy. Co więcej, nawet niewielka szczelina pomiędzy powierzchnią magnesu, a blachą zmniejsza udźwig.
BHP przy magnesach
Kruchość materiału
Magnesy neodymowe to materiał ceramiczny, co oznacza, że są łamliwe jak szkło. Gwałtowne złączenie dwóch magnesów spowoduje ich rozpryśnięcie na drobne kawałki.
Elektronika precyzyjna
Moduły GPS i smartfony są niezwykle wrażliwe na wpływ magnesów. Bezpośredni kontakt z silnym magnesem może rozalibrować czujniki w Twoim telefonie.
Niebezpieczeństwo dla rozruszników
Pacjenci z stymulatorem serca muszą utrzymać bezwzględny dystans od magnesów. Silny magnes może rozregulować pracę urządzenia ratującego życie.
Nadwrażliwość na metale
Powszechnie wiadomo, że powłoka niklowa (standardowe zabezpieczenie magnesów) jest częstą przyczyną uczuleń. Jeśli jesteś alergikiem, unikaj trzymania magnesów gołą dłonią lub wybierz magnesy powlekane tworzywem.
Zagrożenie dla najmłodszych
Produkt przeznaczony dla dorosłych. Drobne magnesy mogą zostać aspirrowane, co prowadzi do poważnych obrażeń. Trzymaj poza zasięgiem dzieci i zwierząt.
Maksymalna temperatura
Unikaj gorąca. Magnesy neodymowe są nieodporne na ciepło. Jeśli potrzebujesz odporności powyżej 80°C, zapytaj nas o specjalne serie wysokotemperaturowe (H, SH, UH).
Świadome użytkowanie
Używaj magnesy świadomie. Ich ogromna siła może zaskoczyć nawet profesjonalistów. Planuj ruchy i nie lekceważ ich siły.
Zakaz obróbki
Obróbka mechaniczna magnesów neodymowych stwarza ryzyko zapłonu. Proszek magnetyczny utlenia się błyskawicznie z tlenem i jest niebezpieczny.
Urządzenia elektroniczne
Potężne oddziaływanie może skasować dane na kartach płatniczych, nośnikach HDD i innych pamięciach. Utrzymuj odległość min. 10 cm.
Urazy ciała
Duże magnesy mogą połamać palce w ułamku sekundy. Pod żadnym pozorem wkładaj dłoni między dwa przyciągające się elementy.
