MW 5x1 / N38 - magnes neodymowy walcowy
magnes neodymowy walcowy
Numer katalogowy 010082
GTIN/EAN: 5906301810810
Średnica Ø
5 mm [±0,1 mm]
Wysokość
1 mm [±0,1 mm]
Waga
0.15 g
Kierunek magnesowania
↑ osiowy
Udźwig
0.32 kg / 3.12 N
Indukcja magnetyczna
229.95 mT / 2300 Gs
Powłoka
[NiCuNi] nikiel
0.1845 ZŁ z VAT / szt. + cena za transport
0.1500 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?
Zadzwoń do nas
+48 888 99 98 98
alternatywnie daj znać korzystając z
formularz zapytania
na stronie kontaktowej.
Moc i budowę magnesów neodymowych skontrolujesz u nas w
naszym kalkulatorze magnetycznym.
Zamówienia złożone do godziny 14:00 zostaną wysłane tego samego dnia roboczego.
Szczegółowa specyfikacja MW 5x1 / N38 - magnes neodymowy walcowy
Specyfikacja / charakterystyka - MW 5x1 / N38 - magnes neodymowy walcowy
| właściwości | wartości |
|---|---|
| Nr kat. | 010082 |
| GTIN/EAN | 5906301810810 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Średnica Ø | 5 mm [±0,1 mm] |
| Wysokość | 1 mm [±0,1 mm] |
| Waga | 0.15 g |
| Kierunek magnesowania | ↑ osiowy |
| Udźwig ~ ? | 0.32 kg / 3.12 N |
| Indukcja magnetyczna ~ ? | 229.95 mT / 2300 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [min. - maks.] ? | 12.2-12.6 | kGs |
| remanencja Br [min. - maks.] ? | 1220-1260 | mT |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [min. - maks.] ? | 36-38 | BH max MGOe |
| gęstość energii [min. - maks.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Temperatura Curie TC | 312 - 380 | °C |
| Temperatura Curie TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅cm |
| Siła wyginania | 250 | MPa |
| Wytrzymałość na ściskanie | 1000~1100 | MPa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 10-6 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Analiza inżynierska magnesu neodymowego - parametry techniczne
Przedstawione dane stanowią wynik symulacji fizycznej. Wartości bazują na algorytmach dla materiału Nd2Fe14B. Rzeczywiste warunki mogą różnić się od wartości teoretycznych. Prosimy traktować te dane jako punkt odniesienia przy projektowaniu systemów.
Tabela 1: Siła prostopadła statyczna (udźwig vs dystans) - spadek mocy
MW 5x1 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg/lbs/g/N) | Status ryzyka |
|---|---|---|---|
| 0 mm |
2298 Gs
229.8 mT
|
0.32 kg / 0.71 lbs
320.0 g / 3.1 N
|
słaby uchwyt |
| 1 mm |
1570 Gs
157.0 mT
|
0.15 kg / 0.33 lbs
149.5 g / 1.5 N
|
słaby uchwyt |
| 2 mm |
890 Gs
89.0 mT
|
0.05 kg / 0.11 lbs
48.0 g / 0.5 N
|
słaby uchwyt |
| 3 mm |
495 Gs
49.5 mT
|
0.01 kg / 0.03 lbs
14.8 g / 0.1 N
|
słaby uchwyt |
| 5 mm |
178 Gs
17.8 mT
|
0.00 kg / 0.00 lbs
1.9 g / 0.0 N
|
słaby uchwyt |
| 10 mm |
31 Gs
3.1 mT
|
0.00 kg / 0.00 lbs
0.1 g / 0.0 N
|
słaby uchwyt |
| 15 mm |
10 Gs
1.0 mT
|
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
słaby uchwyt |
| 20 mm |
4 Gs
0.4 mT
|
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
słaby uchwyt |
| 30 mm |
1 Gs
0.1 mT
|
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
słaby uchwyt |
| 50 mm |
0 Gs
0.0 mT
|
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
słaby uchwyt |
Tabela 2: Siła równoległa ześlizgu (ściana)
MW 5x1 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg/lbs/g/N) |
|---|---|---|
| 0 mm | Stal (~0.2) |
0.06 kg / 0.14 lbs
64.0 g / 0.6 N
|
| 1 mm | Stal (~0.2) |
0.03 kg / 0.07 lbs
30.0 g / 0.3 N
|
| 2 mm | Stal (~0.2) |
0.01 kg / 0.02 lbs
10.0 g / 0.1 N
|
| 3 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
2.0 g / 0.0 N
|
| 5 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
| 10 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
| 15 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
| 20 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
| 30 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
Tabela 3: Siła na ścianie (poślizg) - udźwig wertykalny
MW 5x1 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg/lbs/g/N) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
0.10 kg / 0.21 lbs
96.0 g / 0.9 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
0.06 kg / 0.14 lbs
64.0 g / 0.6 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
0.03 kg / 0.07 lbs
32.0 g / 0.3 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
0.16 kg / 0.35 lbs
160.0 g / 1.6 N
|
Tabela 4: Grubość stali (wpływ podłoża) - straty mocy
MW 5x1 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg/lbs/g/N) |
|---|---|---|
| 0.5 mm |
|
0.03 kg / 0.07 lbs
32.0 g / 0.3 N
|
| 1 mm |
|
0.08 kg / 0.18 lbs
80.0 g / 0.8 N
|
| 2 mm |
|
0.16 kg / 0.35 lbs
160.0 g / 1.6 N
|
| 3 mm |
|
0.24 kg / 0.53 lbs
240.0 g / 2.4 N
|
| 5 mm |
|
0.32 kg / 0.71 lbs
320.0 g / 3.1 N
|
| 10 mm |
|
0.32 kg / 0.71 lbs
320.0 g / 3.1 N
|
| 11 mm |
|
0.32 kg / 0.71 lbs
320.0 g / 3.1 N
|
| 12 mm |
|
0.32 kg / 0.71 lbs
320.0 g / 3.1 N
|
Tabela 5: Wytrzymałość temperaturowa (zachowanie materiału) - spadek mocy
MW 5x1 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig (kg/lbs/g/N) | Status |
|---|---|---|---|
| 20 °C | 0.0% |
0.32 kg / 0.71 lbs
320.0 g / 3.1 N
|
OK |
| 40 °C | -2.2% |
0.31 kg / 0.69 lbs
313.0 g / 3.1 N
|
OK |
| 60 °C | -4.4% |
0.31 kg / 0.67 lbs
305.9 g / 3.0 N
|
|
| 80 °C | -6.6% |
0.30 kg / 0.66 lbs
298.9 g / 2.9 N
|
|
| 100 °C | -28.8% |
0.23 kg / 0.50 lbs
227.8 g / 2.2 N
|
Tabela 6: Dwa magnesy (odpychanie) - zasięg pola
MW 5x1 / N38
| Szczelina (mm) | Przyciąganie (kg/lbs) (N-S) | Siła ścinająca (kg/lbs/g/N) | Odpychanie (kg/lbs) (N-N) |
|---|---|---|---|
| 0 mm |
0.64 kg / 1.41 lbs
3 860 Gs
|
0.10 kg / 0.21 lbs
96 g / 0.9 N
|
N/A |
| 1 mm |
0.47 kg / 1.04 lbs
3 948 Gs
|
0.07 kg / 0.16 lbs
71 g / 0.7 N
|
0.42 kg / 0.94 lbs
~0 Gs
|
| 2 mm |
0.30 kg / 0.66 lbs
3 141 Gs
|
0.04 kg / 0.10 lbs
45 g / 0.4 N
|
0.27 kg / 0.59 lbs
~0 Gs
|
| 3 mm |
0.17 kg / 0.38 lbs
2 388 Gs
|
0.03 kg / 0.06 lbs
26 g / 0.3 N
|
0.16 kg / 0.34 lbs
~0 Gs
|
| 5 mm |
0.05 kg / 0.12 lbs
1 322 Gs
|
0.01 kg / 0.02 lbs
8 g / 0.1 N
|
0.05 kg / 0.10 lbs
~0 Gs
|
| 10 mm |
0.00 kg / 0.01 lbs
355 Gs
|
0.00 kg / 0.00 lbs
1 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 20 mm |
0.00 kg / 0.00 lbs
62 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 50 mm |
0.00 kg / 0.00 lbs
5 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 60 mm |
0.00 kg / 0.00 lbs
3 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 70 mm |
0.00 kg / 0.00 lbs
2 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 80 mm |
0.00 kg / 0.00 lbs
1 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 90 mm |
0.00 kg / 0.00 lbs
1 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 100 mm |
0.00 kg / 0.00 lbs
1 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
Tabela 7: Strefy ochronne (elektronika) - środki ostrożności
MW 5x1 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 2.0 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 2.0 cm |
| Zegarek mechaniczny | 20 Gs (2.0 mT) | 1.5 cm |
| Telefon / Smartfon | 40 Gs (4.0 mT) | 1.0 cm |
| Kluczyk samochodowy | 50 Gs (5.0 mT) | 1.0 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 0.5 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 0.5 cm |
Tabela 8: Zderzenia (ryzyko pęknięcia) - skutki zderzenia
MW 5x1 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
46.59 km/h
(12.94 m/s)
|
0.01 J | |
| 30 mm |
80.68 km/h
(22.41 m/s)
|
0.04 J | |
| 50 mm |
104.16 km/h
(28.93 m/s)
|
0.06 J | |
| 100 mm |
147.30 km/h
(40.92 m/s)
|
0.13 J |
Tabela 9: Odporność na korozję
MW 5x1 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
Tabela 10: Dane elektryczne (Pc)
MW 5x1 / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 524 Mx | 5.2 µWb |
| Współczynnik Pc | 0.29 | Niski (Płaski) |
Tabela 11: Fizyka poszukiwań podwodnych
MW 5x1 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 0.32 kg | Standard |
| Woda (dno rzeki) |
0.37 kg
(+0.05 kg zysk z wyporności)
|
+14.5% |
1. Udźwig w pionie
*Uwaga: Na pionowej ścianie magnes utrzyma zaledwie ok. 20-30% siły oderwania.
2. Nasycenie magnetyczne
*Cienka blacha (np. obudowa PC 0.5mm) drastycznie redukuje udźwig magnesu.
3. Spadek mocy w temperaturze
*Dla materiału N38 granica bezpieczeństwa to 80°C.
4. Krzywa odmagnesowania i punkt pracy (B-H)
wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 0.29
Powyższy wykres prezentuje charakterystykę magnetyczną materiału w drugim kwadrancie pętli histerezy. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.
Skład chemiczny materiału
| żelazo (Fe) | 64% – 68% |
| neodym (Nd) | 29% – 32% |
| bor (B) | 1.1% – 1.2% |
| dysproz (Dy) | 0.5% – 2.0% |
| powłoka (Ni-Cu-Ni) | < 0.05% |
Ekologia i recykling (GPSR)
| recyklowalność (EoL) | 100% |
| surowce z recyklingu | ~10% (pre-cons) |
| ślad węglowy | low / zredukowany |
| kod odpadu (EWC) | 16 02 16 |
Sprawdź inne propozycje
Zalety i wady magnesów z neodymu Nd2Fe14B.
Zalety
- Praktycznie nie ulegają osłabieniu w czasie; po 10 latach eksploatacji redukcja udźwigu to znikome ~1%.
- Trudno je rozmagnesować, gdyż wykazują wysoką odporność na pola rozmagnesowujące.
- Są nie tylko silne, ale i ładne – dzięki powłokom ich powierzchnia jest refleksyjna i prezentuje się elegancko.
- Generują niezwykle silne pole magnetyczne przy biegunach, co jest ich kluczową cechą.
- Mogą pracować w gorącym otoczeniu – wybrane modele znoszą temperaturę do 230°C (zależnie od wymiarów).
- Możliwość uzyskania złożonych kształtów sprawia, że są doskonałe do nietypowych zastosowań.
- Pełnią kluczową rolę w rozwoju technologii, będąc sercem silników, pamięci masowych i sprzętu medycznego.
- Potęga w małej formie – ich niewielka objętość nie przeszkadza w generowaniu dużej siły przyciągania.
Wady
- Należy uważać na wstrząsy – materiał jest kruchy i może odprysnąć. Ochrona w postaci obudowy to dobre rozwiązanie.
- Wysoka temperatura to wróg neodymów – powyżej 80°C tracą właściwości. Do zadań specjalnych polecamy wersje odporne [AH], działającą stabilnie aż do 230°C.
- Wilgoć powoduje korozję w kontakcie z wodą. Na zewnątrz zalecamy użycie magnesów wodoszczelnych (np. w gumie).
- Magnesy ciężko się obrabia – do montażu śrubowego służą specjalne uchwyty magnetyczne z wbudowanym gwintem.
- Zachowaj ostrożność – połknięcie magnesów przez dziecko to stan krytyczny. Ponadto, ich obecność w ciele uniemożliwia diagnostykę obrazową.
- Za jakość trzeba płacić – magnesy neodymowe są droższe od ceramicznych, co wpływa na budżet projektu.
Analiza siły trzymania
Maksymalna siła przyciągania magnesu – co ma na to wpływ?
- z wykorzystaniem podłoża ze stali o wysokiej przenikalności, działającej jako idealny przewodnik strumienia
- której grubość to min. 10 mm
- charakteryzującej się równą strukturą
- bez żadnej przerwy powietrznej pomiędzy magnesem a stalą
- dla siły przyłożonej pod kątem prostym (w osi magnesu)
- w temp. ok. 20°C
Determinanty praktycznego udźwigu magnesu
- Szczelina powietrzna (między magnesem a metalem), ponieważ nawet mikroskopijna odległość (np. 0,5 mm) skutkuje redukcję siły nawet o 50% (dotyczy to także lakieru, rdzy czy brudu).
- Kierunek siły – deklarowany udźwig dotyczy ciągnięcia w pionie. Przy sile działającej równolegle, magnes trzyma dużo słabiej (zazwyczaj ok. 20-30% siły maksymalnej).
- Grubość metalu – im cieńsza blacha, tym słabsze trzymanie. Strumień magnetyczny przechodzi przez materiał, zamiast generować siłę.
- Rodzaj materiału – idealnym podłożem jest czysta stal żelazna. Żeliwo mogą przyciągać słabiej.
- Stan powierzchni – powierzchnie gładkie zapewniają maksymalny styk, co zwiększa nasycenie pola. Nierówny metal zmniejszają efektywność.
- Wpływ temperatury – gorące środowisko osłabia pole magnetyczne. Przekroczenie temperatury granicznej może trwale rozmagnesować magnes.
Siłę trzymania sprawdzano na gładkiej blasze o grubości 20 mm, kiedy działała siła prostopadła, jednak przy działaniu siły na zsuwanie nośność jest mniejsza nawet 75%. Co więcej, nawet niewielka szczelina między powierzchnią magnesu, a blachą obniża udźwig.
BHP przy magnesach
Ostrożność wymagana
Przed przystąpieniem do pracy, zapoznaj się z zasadami. Gwałtowne złączenie może połamać magnes lub uszkodzić palce. Myśl o krok do przodu.
Ryzyko połknięcia
Neodymowe magnesy to nie zabawki. Inhalacja dwóch lub więcej magnesów może doprowadzić do ich przyciągnięciem przez ścianki jelit, co stwarza stan krytyczny i wymaga pilnej interwencji chirurgicznej.
Zakaz obróbki
Obróbka mechaniczna magnesów neodymowych grozi pożarem. Proszek magnetyczny utlenia się błyskawicznie z tlenem i jest niebezpieczny.
Karty i dyski
Zagrożenie dla danych: Magnesy neodymowe mogą uszkodzić karty bankomatowe oraz delikatną elektronikę (implanty, protezy słuchu, zegarki mechaniczne).
Unikaj kontaktu w przypadku alergii
Ostrzeżenie dla alergików: warstwa ochronna Ni-Cu-Ni ma w składzie nikiel. W przypadku wystąpienia reakcji alergicznej, należy bezzwłocznie przerwać pracę z magnesami i zabezpieczyć dłonie.
Ryzyko zmiażdżenia
Ryzyko obrażeń: Moc ściskania jest tak duża, że może spowodować krwiaki, zmiażdżenia, a nawet złamania kości. Stosuj solidne rękawice ochronne.
Uwaga na odpryski
Ryzyko skaleczenia. Magnesy mogą eksplodować przy niekontrolowanym uderzeniu, wyrzucając kawałki metalu w powietrze. Noś okulary.
Zakłócenia GPS i telefonów
Silne pole magnetyczne wpływa negatywnie na działanie czujników w telefonach i urządzeniach lokalizacyjnych. Zachowaj odstęp magnesów do smartfona, aby uniknąć awarii czujników.
Limity termiczne
Chroń przed wysoką temperaturą. Magnesy neodymowe są wrażliwe na ciepło. Jeśli wymagasz odporności powyżej 80°C, wybierz magnesy odporne na ciepło (H, SH, UH).
Uwaga medyczna
Uwaga zdrowotna: Magnesy neodymowe mogą wyłączyć rozruszniki serca i defibrylatory. Nie zbliżaj się, jeśli posiadasz urządzenia wspomagające.
