MW 38x15 / N38 - magnes neodymowy walcowy
magnes neodymowy walcowy
Numer katalogowy 010061
GTIN/EAN: 5906301810605
Średnica Ø
38 mm [±0,1 mm]
Wysokość
15 mm [±0,1 mm]
Waga
127.59 g
Kierunek magnesowania
↑ osiowy
Udźwig
40.08 kg / 393.18 N
Indukcja magnetyczna
384.07 mT / 3841 Gs
Powłoka
[NiCuNi] nikiel
70.00 ZŁ z VAT / szt. + cena za transport
56.91 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?
Zadzwoń i zapytaj
+48 888 99 98 98
alternatywnie daj znać za pomocą
nasz formularz online
przez naszą stronę.
Masę a także wygląd magnesu sprawdzisz u nas w
kalkulatorze mocy.
Wysyłka tego samego dnia dla zamówień do godz. 14:00.
Dane techniczne - MW 38x15 / N38 - magnes neodymowy walcowy
Specyfikacja / charakterystyka - MW 38x15 / N38 - magnes neodymowy walcowy
| właściwości | wartości |
|---|---|
| Nr kat. | 010061 |
| GTIN/EAN | 5906301810605 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Średnica Ø | 38 mm [±0,1 mm] |
| Wysokość | 15 mm [±0,1 mm] |
| Waga | 127.59 g |
| Kierunek magnesowania | ↑ osiowy |
| Udźwig ~ ? | 40.08 kg / 393.18 N |
| Indukcja magnetyczna ~ ? | 384.07 mT / 3841 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [min. - maks.] ? | 12.2-12.6 | kGs |
| remanencja Br [min. - maks.] ? | 1220-1260 | mT |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [min. - maks.] ? | 36-38 | BH max MGOe |
| gęstość energii [min. - maks.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Temperatura Curie TC | 312 - 380 | °C |
| Temperatura Curie TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅cm |
| Siła wyginania | 250 | MPa |
| Wytrzymałość na ściskanie | 1000~1100 | MPa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 10-6 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Symulacja techniczna magnesu neodymowego - dane
Przedstawione informacje są wynik symulacji inżynierskiej. Wartości bazują na modelach dla materiału Nd2Fe14B. Realne parametry mogą się różnić. Traktuj te wyliczenia jako pomoc pomocniczą dla projektantów.
Tabela 1: Udźwig statyczny prostopadły (udźwig vs odległość) - spadek mocy
MW 38x15 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg/lbs/g/N) | Status ryzyka |
|---|---|---|---|
| 0 mm |
3840 Gs
384.0 mT
|
40.08 kg / 88.36 lbs
40080.0 g / 393.2 N
|
miażdżący |
| 1 mm |
3668 Gs
366.8 mT
|
36.56 kg / 80.61 lbs
36563.4 g / 358.7 N
|
miażdżący |
| 2 mm |
3485 Gs
348.5 mT
|
33.01 kg / 72.78 lbs
33011.6 g / 323.8 N
|
miażdżący |
| 3 mm |
3297 Gs
329.7 mT
|
29.55 kg / 65.14 lbs
29545.5 g / 289.8 N
|
miażdżący |
| 5 mm |
2917 Gs
291.7 mT
|
23.13 kg / 50.99 lbs
23128.9 g / 226.9 N
|
miażdżący |
| 10 mm |
2049 Gs
204.9 mT
|
11.41 kg / 25.15 lbs
11406.3 g / 111.9 N
|
miażdżący |
| 15 mm |
1396 Gs
139.6 mT
|
5.30 kg / 11.68 lbs
5297.4 g / 52.0 N
|
uwaga |
| 20 mm |
954 Gs
95.4 mT
|
2.47 kg / 5.45 lbs
2473.1 g / 24.3 N
|
uwaga |
| 30 mm |
474 Gs
47.4 mT
|
0.61 kg / 1.35 lbs
610.3 g / 6.0 N
|
bezpieczny |
| 50 mm |
155 Gs
15.5 mT
|
0.07 kg / 0.14 lbs
65.6 g / 0.6 N
|
bezpieczny |
Tabela 2: Równoległa siła zsuwania (ściana)
MW 38x15 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg/lbs/g/N) |
|---|---|---|
| 0 mm | Stal (~0.2) |
8.02 kg / 17.67 lbs
8016.0 g / 78.6 N
|
| 1 mm | Stal (~0.2) |
7.31 kg / 16.12 lbs
7312.0 g / 71.7 N
|
| 2 mm | Stal (~0.2) |
6.60 kg / 14.55 lbs
6602.0 g / 64.8 N
|
| 3 mm | Stal (~0.2) |
5.91 kg / 13.03 lbs
5910.0 g / 58.0 N
|
| 5 mm | Stal (~0.2) |
4.63 kg / 10.20 lbs
4626.0 g / 45.4 N
|
| 10 mm | Stal (~0.2) |
2.28 kg / 5.03 lbs
2282.0 g / 22.4 N
|
| 15 mm | Stal (~0.2) |
1.06 kg / 2.34 lbs
1060.0 g / 10.4 N
|
| 20 mm | Stal (~0.2) |
0.49 kg / 1.09 lbs
494.0 g / 4.8 N
|
| 30 mm | Stal (~0.2) |
0.12 kg / 0.27 lbs
122.0 g / 1.2 N
|
| 50 mm | Stal (~0.2) |
0.01 kg / 0.03 lbs
14.0 g / 0.1 N
|
Tabela 3: Montaż pionowy (poślizg) - zachowanie na śliskim podłożu
MW 38x15 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg/lbs/g/N) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
12.02 kg / 26.51 lbs
12024.0 g / 118.0 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
8.02 kg / 17.67 lbs
8016.0 g / 78.6 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
4.01 kg / 8.84 lbs
4008.0 g / 39.3 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
20.04 kg / 44.18 lbs
20040.0 g / 196.6 N
|
Tabela 4: Grubość stali (nasycenie) - dobór blachy
MW 38x15 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg/lbs/g/N) |
|---|---|---|
| 0.5 mm |
|
2.00 kg / 4.42 lbs
2004.0 g / 19.7 N
|
| 1 mm |
|
5.01 kg / 11.05 lbs
5010.0 g / 49.1 N
|
| 2 mm |
|
10.02 kg / 22.09 lbs
10020.0 g / 98.3 N
|
| 3 mm |
|
15.03 kg / 33.14 lbs
15030.0 g / 147.4 N
|
| 5 mm |
|
25.05 kg / 55.23 lbs
25050.0 g / 245.7 N
|
| 10 mm |
|
40.08 kg / 88.36 lbs
40080.0 g / 393.2 N
|
| 11 mm |
|
40.08 kg / 88.36 lbs
40080.0 g / 393.2 N
|
| 12 mm |
|
40.08 kg / 88.36 lbs
40080.0 g / 393.2 N
|
Tabela 5: Wytrzymałość temperaturowa (stabilność) - spadek mocy
MW 38x15 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig (kg/lbs/g/N) | Status |
|---|---|---|---|
| 20 °C | 0.0% |
40.08 kg / 88.36 lbs
40080.0 g / 393.2 N
|
OK |
| 40 °C | -2.2% |
39.20 kg / 86.42 lbs
39198.2 g / 384.5 N
|
OK |
| 60 °C | -4.4% |
38.32 kg / 84.47 lbs
38316.5 g / 375.9 N
|
|
| 80 °C | -6.6% |
37.43 kg / 82.53 lbs
37434.7 g / 367.2 N
|
|
| 100 °C | -28.8% |
28.54 kg / 62.91 lbs
28537.0 g / 279.9 N
|
Tabela 6: Dwa magnesy (przyciąganie) - siły w układzie
MW 38x15 / N38
| Szczelina (mm) | Przyciąganie (kg/lbs) (N-S) | Siła zsuwania (kg/lbs/g/N) | Odpychanie (kg/lbs) (N-N) |
|---|---|---|---|
| 0 mm |
103.10 kg / 227.31 lbs
5 235 Gs
|
15.47 kg / 34.10 lbs
15466 g / 151.7 N
|
N/A |
| 1 mm |
98.64 kg / 217.47 lbs
7 512 Gs
|
14.80 kg / 32.62 lbs
14796 g / 145.2 N
|
88.78 kg / 195.72 lbs
~0 Gs
|
| 2 mm |
94.06 kg / 207.36 lbs
7 336 Gs
|
14.11 kg / 31.10 lbs
14109 g / 138.4 N
|
84.65 kg / 186.63 lbs
~0 Gs
|
| 3 mm |
89.48 kg / 197.26 lbs
7 155 Gs
|
13.42 kg / 29.59 lbs
13421 g / 131.7 N
|
80.53 kg / 177.53 lbs
~0 Gs
|
| 5 mm |
80.42 kg / 177.30 lbs
6 783 Gs
|
12.06 kg / 26.60 lbs
12064 g / 118.3 N
|
72.38 kg / 159.57 lbs
~0 Gs
|
| 10 mm |
59.50 kg / 131.17 lbs
5 834 Gs
|
8.92 kg / 19.68 lbs
8925 g / 87.6 N
|
53.55 kg / 118.05 lbs
~0 Gs
|
| 20 mm |
29.34 kg / 64.69 lbs
4 097 Gs
|
4.40 kg / 9.70 lbs
4401 g / 43.2 N
|
26.41 kg / 58.22 lbs
~0 Gs
|
| 50 mm |
3.08 kg / 6.80 lbs
1 328 Gs
|
0.46 kg / 1.02 lbs
463 g / 4.5 N
|
2.78 kg / 6.12 lbs
~0 Gs
|
| 60 mm |
1.57 kg / 3.46 lbs
948 Gs
|
0.24 kg / 0.52 lbs
236 g / 2.3 N
|
1.41 kg / 3.12 lbs
~0 Gs
|
| 70 mm |
0.84 kg / 1.85 lbs
694 Gs
|
0.13 kg / 0.28 lbs
126 g / 1.2 N
|
0.76 kg / 1.67 lbs
~0 Gs
|
| 80 mm |
0.47 kg / 1.04 lbs
520 Gs
|
0.07 kg / 0.16 lbs
71 g / 0.7 N
|
0.42 kg / 0.94 lbs
~0 Gs
|
| 90 mm |
0.28 kg / 0.61 lbs
398 Gs
|
0.04 kg / 0.09 lbs
42 g / 0.4 N
|
0.25 kg / 0.55 lbs
~0 Gs
|
| 100 mm |
0.17 kg / 0.37 lbs
311 Gs
|
0.03 kg / 0.06 lbs
25 g / 0.2 N
|
0.15 kg / 0.33 lbs
~0 Gs
|
Tabela 7: Strefy ochronne (implanty) - środki ostrożności
MW 38x15 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 18.5 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 14.5 cm |
| Zegarek mechaniczny | 20 Gs (2.0 mT) | 11.5 cm |
| Telefon / Smartfon | 40 Gs (4.0 mT) | 9.0 cm |
| Kluczyk samochodowy | 50 Gs (5.0 mT) | 8.0 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 3.5 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 3.0 cm |
Tabela 8: Dynamika (ryzyko pęknięcia) - skutki zderzenia
MW 38x15 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
20.81 km/h
(5.78 m/s)
|
2.13 J | |
| 30 mm |
31.25 km/h
(8.68 m/s)
|
4.81 J | |
| 50 mm |
40.01 km/h
(11.11 m/s)
|
7.88 J | |
| 100 mm |
56.53 km/h
(15.70 m/s)
|
15.73 J |
Tabela 9: Odporność na korozję
MW 38x15 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
Tabela 10: Dane elektryczne (Strumień)
MW 38x15 / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 45 065 Mx | 450.7 µWb |
| Współczynnik Pc | 0.50 | Niski (Płaski) |
Tabela 11: Hydrostatyka i wyporność
MW 38x15 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 40.08 kg | Standard |
| Woda (dno rzeki) |
45.89 kg
(+5.81 kg zysk z wyporności)
|
+14.5% |
1. Siła zsuwająca
*Pamiętaj: Na pionowej ścianie magnes utrzyma tylko ok. 20-30% siły prostopadłej.
2. Nasycenie magnetyczne
*Zbyt cienki metal (np. blacha karoseryjna) wyraźnie ogranicza siłę trzymania.
3. Spadek mocy w temperaturze
*Dla standardowych magnesów krytyczny próg to 80°C.
4. Krzywa odmagnesowania i punkt pracy (B-H)
wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 0.50
Powyższy wykres prezentuje charakterystykę magnetyczną materiału w drugim kwadrancie pętli histerezy. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.
Analiza pierwiastkowa
| żelazo (Fe) | 64% – 68% |
| neodym (Nd) | 29% – 32% |
| bor (B) | 1.1% – 1.2% |
| dysproz (Dy) | 0.5% – 2.0% |
| powłoka (Ni-Cu-Ni) | < 0.05% |
Dane środowiskowe
| recyklowalność (EoL) | 100% |
| surowce z recyklingu | ~10% (pre-cons) |
| ślad węglowy | low / zredukowany |
| kod odpadu (EWC) | 16 02 16 |
Zobacz też inne oferty
Zalety i wady magnesów neodymowych Nd2Fe14B.
Mocne strony
- Długowieczność to ich atut – po upływie 10 lat spadek mocy wynosi tylko ~1% (wg testów).
- Wyróżniają się niezwykłą odpornością na demagnetyzację, nawet w obecności innych silnych magnesów.
- Są nie tylko silne, ale i ładne – poprzez niklowanie lub złocenie ich powierzchnia jest błyszcząca i wygląda estetycznie.
- Indukcja magnetyczna na powierzchni tych magnesów jest imponująca, co czyni je najwydajniejszymi w swojej klasie.
- Posiadają imponującą wytrzymałość termiczną, co umożliwia ich użycie w warunkach do 230°C (dotyczy odpowiednich serii).
- Opcja produkcji skomplikowanych kształtów sprawia, że są idealne do nietypowych zastosowań.
- Spotkasz je wszędzie tam, gdzie liczy się precyzja: w napędach, rezonansach oraz systemach IT.
- Dzięki kompaktowości, zajmują mało miejsca, a jednocześnie zapewniają wysoką skuteczność.
Minusy
- Należy uważać na wstrząsy – materiał jest kruchy i może odprysnąć. Ochrona w postaci obudowy jest kluczowa.
- Ograniczenia termiczne – dla zwykłych magnesów limit to 80°C. W trudnych warunkach (do 230°C) sprawdzą się tylko modele z oznaczeniem [AH].
- Są podatne na rdzewienie w kontakcie z wodą. Na zewnątrz konieczne jest użycie magnesów wodoszczelnych (np. w gumie).
- Obróbka jest trudna – wiercenie otworów w samym magnesie jest ryzykowne. Zalecamy gotowe uchwyty magnetyczne (magnes w obudowie).
- Ryzyko połknięcia – małe elementy są niebezpieczne dla najmłodszych. Połknięcie kilku sztuk grozi poważnymi obrażeniami. Dodatkowo mogą utrudniać badania (np. rezonans).
- Za jakość trzeba płacić – magnesy neodymowe są droższe od ceramicznych, co wpływa na budżet projektu.
Analiza siły trzymania
Udźwig maksymalny dla magnesu neodymowego – od czego zależy?
- na podłożu wykonanej ze stali konstrukcyjnej, optymalnie przewodzącej pole magnetyczne
- o grubości nie mniejszej niż 10 mm
- z płaszczyzną wolną od rys
- przy zerowej szczelinie (brak zanieczyszczeń)
- dla siły działającej pod kątem prostym (na odrywanie, nie zsuwanie)
- w warunkach ok. 20°C
Kluczowe elementy wpływające na udźwig
- Szczelina – obecność ciała obcego (rdza, brud, szczelina) działa jak izolator, co redukuje moc gwałtownie (nawet o 50% przy 0,5 mm).
- Kierunek siły – należy wiedzieć, że magnes najmocniej trzyma prostopadle. Przy działaniu sił bocznych, udźwig spada drastycznie, często do poziomu 20-30% wartości maksymalnej.
- Grubość blachy – zbyt cienka płyta nie zamyka strumienia, przez co część strumienia jest tracona w powietrzu.
- Typ metalu – nie każda stal reaguje tak samo. Dodatki stopowe pogarszają efekt przyciągania.
- Gładkość podłoża – im gładsza i bardziej polerowana blacha, tym większa strefa kontaktu i silniejsze trzymanie. Nierówności działają jak mikroszczeliny.
- Otoczenie termiczne – wzrost temperatury powoduje tymczasowy spadek siły. Warto sprawdzić limit termiczny dla danego modelu.
Siłę trzymania testowano na gładkiej blasze o grubości 20 mm, kiedy przyłożono siłę prostopadłą, z kolei przy działaniu siły na zsuwanie nośność jest mniejsza nawet 5 razy. Dodatkowo, nawet minimalna przerwa między magnesem, a blachą zmniejsza siłę trzymania.
Instrukcja bezpiecznej obsługi magnesów
Produkt nie dla dzieci
Zawsze chroń magnesy przed dostępem dzieci. Ryzyko zadławienia jest wysokie, a konsekwencje zwarcia magnesów wewnątrz organizmu są nieodwracalne.
Utrata mocy w cieple
Typowe magnesy neodymowe (typ N) tracą właściwości po osiągnięciu temperatury 80°C. Uszkodzenie jest permanentne.
Łamliwość magnesów
Choć wyglądają jak stal, neodym jest delikatny i nie znosi udarów. Nie uderzaj, gdyż magnes może się rozpaść na ostre, niebezpieczne kawałki.
Ochrona dłoni
Ryzyko obrażeń: Siła przyciągania jest tak duża, że może wywołać rany, zmiażdżenia, a nawet otwarte złamania. Używaj grubych rękawic.
Kompas i GPS
Urządzenia nawigacyjne są wyjątkowo wrażliwe na pole magnetyczne. Bezpośredni kontakt z silnym magnesem może zniszczyć czujniki w Twoim telefonie.
Łatwopalność
Obróbka mechaniczna magnesów neodymowych stwarza ryzyko zapłonu. Proszek magnetyczny reaguje gwałtownie z tlenem i jest trudny do gaszenia.
Alergia na nikiel
Niektóre osoby ma alergię kontaktową na nikiel, którym pokryta jest większość nasze produkty. Dłuższy kontakt może powodować silną reakcję alergiczną. Sugerujemy noszenie rękawiczek ochronnych.
Nośniki danych
Potężne pole magnetyczne może zniszczyć zapis na kartach kredytowych, nośnikach HDD i innych pamięciach. Trzymaj dystans min. 10 cm.
Uwaga medyczna
Uwaga zdrowotna: Magnesy neodymowe mogą dezaktywować stymulatory i defibrylatory. Nie zbliżaj się, jeśli posiadasz urządzenia wspomagające.
Moc przyciągania
Przed przystąpieniem do pracy, zapoznaj się z zasadami. Niekontrolowane przyciągnięcie może zniszczyć magnes lub uszkodzić palce. Myśl o krok do przodu.
