MW 38x12 / N38 - magnes neodymowy walcowy
magnes neodymowy walcowy
Numer katalogowy 010060
GTIN/EAN: 5906301810599
Średnica Ø
38 mm [±0,1 mm]
Wysokość
12 mm [±0,1 mm]
Waga
102.07 g
Kierunek magnesowania
↑ osiowy
Udźwig
32.79 kg / 321.71 N
Indukcja magnetyczna
331.00 mT / 3310 Gs
Powłoka
[NiCuNi] nikiel
32.10 ZŁ z VAT / szt. + cena za transport
26.10 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?
Zadzwoń do nas
+48 888 99 98 98
ewentualnie zostaw wiadomość korzystając z
formularz
na stronie kontakt.
Masę oraz formę elementów magnetycznych zweryfikujesz dzięki naszemu
kalkulatorze masy magnetycznej.
Realizacja tego samego dnia przy zamówieniu do 14:00.
Specyfikacja techniczna produktu - MW 38x12 / N38 - magnes neodymowy walcowy
Specyfikacja / charakterystyka - MW 38x12 / N38 - magnes neodymowy walcowy
| właściwości | wartości |
|---|---|
| Nr kat. | 010060 |
| GTIN/EAN | 5906301810599 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Średnica Ø | 38 mm [±0,1 mm] |
| Wysokość | 12 mm [±0,1 mm] |
| Waga | 102.07 g |
| Kierunek magnesowania | ↑ osiowy |
| Udźwig ~ ? | 32.79 kg / 321.71 N |
| Indukcja magnetyczna ~ ? | 331.00 mT / 3310 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [min. - maks.] ? | 12.2-12.6 | kGs |
| remanencja Br [min. - maks.] ? | 1220-1260 | mT |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [min. - maks.] ? | 36-38 | BH max MGOe |
| gęstość energii [min. - maks.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Temperatura Curie TC | 312 - 380 | °C |
| Temperatura Curie TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅cm |
| Siła wyginania | 250 | MPa |
| Wytrzymałość na ściskanie | 1000~1100 | MPa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 10-6 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Symulacja fizyczna magnesu neodymowego - parametry techniczne
Niniejsze dane stanowią wynik analizy matematycznej. Wartości zostały wyliczone na modelach dla materiału Nd2Fe14B. Realne osiągi mogą odbiegać od wyników symulacji. Prosimy traktować te wyliczenia jako wstępny drogowskaz podczas planowania montażu.
Tabela 1: Siła prostopadła statyczna (siła vs dystans) - spadek mocy
MW 38x12 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg/lbs/g/N) | Status ryzyka |
|---|---|---|---|
| 0 mm |
3309 Gs
330.9 mT
|
32.79 kg / 72.29 lbs
32790.0 g / 321.7 N
|
krytyczny poziom |
| 1 mm |
3175 Gs
317.5 mT
|
30.18 kg / 66.54 lbs
30182.9 g / 296.1 N
|
krytyczny poziom |
| 2 mm |
3029 Gs
302.9 mT
|
27.46 kg / 60.55 lbs
27464.0 g / 269.4 N
|
krytyczny poziom |
| 3 mm |
2875 Gs
287.5 mT
|
24.74 kg / 54.55 lbs
24742.8 g / 242.7 N
|
krytyczny poziom |
| 5 mm |
2556 Gs
255.6 mT
|
19.56 kg / 43.13 lbs
19563.2 g / 191.9 N
|
krytyczny poziom |
| 10 mm |
1805 Gs
180.5 mT
|
9.75 kg / 21.50 lbs
9750.4 g / 95.7 N
|
uwaga |
| 15 mm |
1229 Gs
122.9 mT
|
4.52 kg / 9.96 lbs
4519.1 g / 44.3 N
|
uwaga |
| 20 mm |
836 Gs
83.6 mT
|
2.09 kg / 4.61 lbs
2092.9 g / 20.5 N
|
uwaga |
| 30 mm |
411 Gs
41.1 mT
|
0.51 kg / 1.11 lbs
505.7 g / 5.0 N
|
niskie ryzyko |
| 50 mm |
132 Gs
13.2 mT
|
0.05 kg / 0.12 lbs
52.4 g / 0.5 N
|
niskie ryzyko |
Tabela 2: Równoległa siła ześlizgu (pion)
MW 38x12 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg/lbs/g/N) |
|---|---|---|
| 0 mm | Stal (~0.2) |
6.56 kg / 14.46 lbs
6558.0 g / 64.3 N
|
| 1 mm | Stal (~0.2) |
6.04 kg / 13.31 lbs
6036.0 g / 59.2 N
|
| 2 mm | Stal (~0.2) |
5.49 kg / 12.11 lbs
5492.0 g / 53.9 N
|
| 3 mm | Stal (~0.2) |
4.95 kg / 10.91 lbs
4948.0 g / 48.5 N
|
| 5 mm | Stal (~0.2) |
3.91 kg / 8.62 lbs
3912.0 g / 38.4 N
|
| 10 mm | Stal (~0.2) |
1.95 kg / 4.30 lbs
1950.0 g / 19.1 N
|
| 15 mm | Stal (~0.2) |
0.90 kg / 1.99 lbs
904.0 g / 8.9 N
|
| 20 mm | Stal (~0.2) |
0.42 kg / 0.92 lbs
418.0 g / 4.1 N
|
| 30 mm | Stal (~0.2) |
0.10 kg / 0.22 lbs
102.0 g / 1.0 N
|
| 50 mm | Stal (~0.2) |
0.01 kg / 0.02 lbs
10.0 g / 0.1 N
|
Tabela 3: Siła na ścianie (poślizg) - zachowanie na śliskim podłożu
MW 38x12 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg/lbs/g/N) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
9.84 kg / 21.69 lbs
9837.0 g / 96.5 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
6.56 kg / 14.46 lbs
6558.0 g / 64.3 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
3.28 kg / 7.23 lbs
3279.0 g / 32.2 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
16.40 kg / 36.14 lbs
16395.0 g / 160.8 N
|
Tabela 4: Grubość stali (wpływ podłoża) - dobór blachy
MW 38x12 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg/lbs/g/N) |
|---|---|---|
| 0.5 mm |
|
1.64 kg / 3.61 lbs
1639.5 g / 16.1 N
|
| 1 mm |
|
4.10 kg / 9.04 lbs
4098.8 g / 40.2 N
|
| 2 mm |
|
8.20 kg / 18.07 lbs
8197.5 g / 80.4 N
|
| 3 mm |
|
12.30 kg / 27.11 lbs
12296.3 g / 120.6 N
|
| 5 mm |
|
20.49 kg / 45.18 lbs
20493.8 g / 201.0 N
|
| 10 mm |
|
32.79 kg / 72.29 lbs
32790.0 g / 321.7 N
|
| 11 mm |
|
32.79 kg / 72.29 lbs
32790.0 g / 321.7 N
|
| 12 mm |
|
32.79 kg / 72.29 lbs
32790.0 g / 321.7 N
|
Tabela 5: Praca w cieple (stabilność) - limit termiczny
MW 38x12 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig (kg/lbs/g/N) | Status |
|---|---|---|---|
| 20 °C | 0.0% |
32.79 kg / 72.29 lbs
32790.0 g / 321.7 N
|
OK |
| 40 °C | -2.2% |
32.07 kg / 70.70 lbs
32068.6 g / 314.6 N
|
OK |
| 60 °C | -4.4% |
31.35 kg / 69.11 lbs
31347.2 g / 307.5 N
|
|
| 80 °C | -6.6% |
30.63 kg / 67.52 lbs
30625.9 g / 300.4 N
|
|
| 100 °C | -28.8% |
23.35 kg / 51.47 lbs
23346.5 g / 229.0 N
|
Tabela 6: Dwa magnesy (przyciąganie) - siły w układzie
MW 38x12 / N38
| Szczelina (mm) | Przyciąganie (kg/lbs) (N-S) | Siła zsuwania (kg/lbs/g/N) | Odpychanie (kg/lbs) (N-N) |
|---|---|---|---|
| 0 mm |
76.58 kg / 168.83 lbs
4 859 Gs
|
11.49 kg / 25.32 lbs
11487 g / 112.7 N
|
N/A |
| 1 mm |
73.60 kg / 162.27 lbs
6 489 Gs
|
11.04 kg / 24.34 lbs
11040 g / 108.3 N
|
66.24 kg / 146.04 lbs
~0 Gs
|
| 2 mm |
70.49 kg / 155.40 lbs
6 350 Gs
|
10.57 kg / 23.31 lbs
10573 g / 103.7 N
|
63.44 kg / 139.86 lbs
~0 Gs
|
| 3 mm |
67.33 kg / 148.43 lbs
6 206 Gs
|
10.10 kg / 22.26 lbs
10099 g / 99.1 N
|
60.59 kg / 133.59 lbs
~0 Gs
|
| 5 mm |
60.95 kg / 134.38 lbs
5 905 Gs
|
9.14 kg / 20.16 lbs
9143 g / 89.7 N
|
54.86 kg / 120.94 lbs
~0 Gs
|
| 10 mm |
45.69 kg / 100.73 lbs
5 113 Gs
|
6.85 kg / 15.11 lbs
6853 g / 67.2 N
|
41.12 kg / 90.65 lbs
~0 Gs
|
| 20 mm |
22.77 kg / 50.20 lbs
3 609 Gs
|
3.42 kg / 7.53 lbs
3416 g / 33.5 N
|
20.49 kg / 45.18 lbs
~0 Gs
|
| 50 mm |
2.34 kg / 5.17 lbs
1 158 Gs
|
0.35 kg / 0.78 lbs
352 g / 3.5 N
|
2.11 kg / 4.65 lbs
~0 Gs
|
| 60 mm |
1.18 kg / 2.60 lbs
822 Gs
|
0.18 kg / 0.39 lbs
177 g / 1.7 N
|
1.06 kg / 2.34 lbs
~0 Gs
|
| 70 mm |
0.63 kg / 1.38 lbs
598 Gs
|
0.09 kg / 0.21 lbs
94 g / 0.9 N
|
0.56 kg / 1.24 lbs
~0 Gs
|
| 80 mm |
0.35 kg / 0.77 lbs
446 Gs
|
0.05 kg / 0.12 lbs
52 g / 0.5 N
|
0.31 kg / 0.69 lbs
~0 Gs
|
| 90 mm |
0.20 kg / 0.45 lbs
340 Gs
|
0.03 kg / 0.07 lbs
30 g / 0.3 N
|
0.18 kg / 0.40 lbs
~0 Gs
|
| 100 mm |
0.12 kg / 0.27 lbs
264 Gs
|
0.02 kg / 0.04 lbs
18 g / 0.2 N
|
0.11 kg / 0.24 lbs
~0 Gs
|
Tabela 7: Bezpieczeństwo (BHP) (implanty) - środki ostrożności
MW 38x12 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 17.0 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 13.5 cm |
| Zegarek mechaniczny | 20 Gs (2.0 mT) | 10.5 cm |
| Telefon / Smartfon | 40 Gs (4.0 mT) | 8.0 cm |
| Immobilizer | 50 Gs (5.0 mT) | 7.5 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 3.5 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 2.5 cm |
Tabela 8: Dynamika (energia kinetyczna) - skutki zderzenia
MW 38x12 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
21.17 km/h
(5.88 m/s)
|
1.76 J | |
| 30 mm |
31.61 km/h
(8.78 m/s)
|
3.93 J | |
| 50 mm |
40.46 km/h
(11.24 m/s)
|
6.45 J | |
| 100 mm |
57.16 km/h
(15.88 m/s)
|
12.87 J |
Tabela 9: Specyfikacja ochrony powierzchni
MW 38x12 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
Tabela 10: Dane konstrukcyjne (Strumień)
MW 38x12 / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 40 045 Mx | 400.5 µWb |
| Współczynnik Pc | 0.42 | Niski (Płaski) |
Tabela 11: Praca w wodzie (Magnet Fishing)
MW 38x12 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 32.79 kg | Standard |
| Woda (dno rzeki) |
37.54 kg
(+4.75 kg zysk z wyporności)
|
+14.5% |
1. Udźwig w pionie
*Uwaga: Na pionowej ścianie magnes utrzyma zaledwie ok. 20-30% siły oderwania.
2. Wpływ grubości blachy
*Zbyt cienki metal (np. obudowa PC 0.5mm) wyraźnie ogranicza udźwig magnesu.
3. Praca w cieple
*Dla materiału N38 maksymalna temperatura to 80°C.
4. Krzywa odmagnesowania i punkt pracy (B-H)
wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 0.42
Niniejsza symulacja obrazuje stabilność magnetyczną wybranego magnesu w konkretnych warunkach geometrycznych. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.
Analiza pierwiastkowa
| żelazo (Fe) | 64% – 68% |
| neodym (Nd) | 29% – 32% |
| bor (B) | 1.1% – 1.2% |
| dysproz (Dy) | 0.5% – 2.0% |
| powłoka (Ni-Cu-Ni) | < 0.05% |
Zrównoważony rozwój
| recyklowalność (EoL) | 100% |
| surowce z recyklingu | ~10% (pre-cons) |
| ślad węglowy | low / zredukowany |
| kod odpadu (EWC) | 16 02 16 |
Zobacz też inne produkty
Zalety oraz wady magnesów z neodymu Nd2Fe14B.
Korzyści
- Utrzymują swoje właściwości przez lata – szacuje się, że po dekadzie tracą na sile o niezauważalny 1%.
- Są stabilne magnetycznie, gdyż wykazują potężną odporność na zewnętrzne czynniki.
- Są nie tylko silne, ale i ładne – dzięki powłokom ich powierzchnia jest refleksyjna i prezentuje się elegancko.
- Oferują najwyższą indukcję magnetyczną w punkcie styku, co przekłada się na skuteczność.
- Odpowiedni skład sprawia, że wykazują odporność na wysokie temperatury (zależnie od kształtu, nawet do 230°C).
- Możliwość uzyskania skomplikowanych kształtów sprawia, że są doskonałe do nietypowych zastosowań.
- Stanowią kluczowy element w technologiach przyszłości, zasilając układy napędowe, urządzenia medyczne czy komputery.
- Moc w skali mikro – ich mała masa nie przeszkadza w generowaniu dużej siły przyciągania.
Ograniczenia
- Delikatność mechaniczna to ich mankament. Łatwo ulegają uszkodzeniu przy zderzeniu, dlatego warto stosować obudowy lub montaż w stali.
- Standardowe magnesy tracą moc powyżej 80°C. Jeśli wymagasz pracy w wyższych temperaturach, zastosuj serię [AH] (odporną do 230°C).
- Nie lubią wody – szybko rdzewieją. Jeśli planujesz montaż w ogrodzie, najlepszą opcją są magnesy w gumowej otulinie.
- Z uwagi na specyfikę materiału, nie zaleca się obróbki mechanicznej magnesu. Bezpieczniej użyć magnesu wklejonego w gniazdo z gwintem.
- Ryzyko połknięcia – małe elementy są niebezpieczne dla dzieci. Połknięcie kilku sztuk grozi poważnymi obrażeniami. Dodatkowo mogą utrudniać badania (np. rezonans).
- Są produktem premium – ich cena jest wyższa niż ferrytów, co należy uwzględnić przy planowaniu kosztów.
Parametry udźwigu
Siła oderwania magnesu w optymalnych warunkach – od czego zależy?
- przy użyciu blachy ze stali niskowęglowej, zapewniającej pełne nasycenie magnetyczne
- posiadającej masywność min. 10 mm dla pełnego zamknięcia strumienia
- z płaszczyzną idealnie równą
- przy bezpośrednim styku (brak farby)
- podczas odrywania w kierunku pionowym do płaszczyzny mocowania
- w temp. ok. 20°C
Udźwig magnesu w użyciu – kluczowe czynniki
- Dystans (między magnesem a blachą), bowiem nawet mikroskopijna przerwa (np. 0,5 mm) powoduje zmniejszenie siły nawet o 50% (dotyczy to także farby, korozji czy zanieczyszczeń).
- Kierunek siły – pamiętaj, że magnes ma największą siłę prostopadle. Przy działaniu sił bocznych, udźwig spada znacząco, często do poziomu 20-30% wartości nominalnej.
- Grubość ścianki – im cieńsza blacha, tym słabsze trzymanie. Strumień magnetyczny przenika na wylot, zamiast zamienić się w udźwig.
- Skład materiału – nie każda stal reaguje tak samo. Wysoka zawartość węgla pogarszają efekt przyciągania.
- Stan powierzchni – szlifowane elementy gwarantują idealne doleganie, co poprawia nasycenie pola. Nierówny metal osłabiają chwyt.
- Temperatura – wzrost temperatury powoduje tymczasowy spadek indukcji. Należy pamiętać o limit termiczny dla danego modelu.
Pomiar udźwigu realizowano na gładkiej blaszce o optymalnej grubości, przy siłach prostopadłych, z kolei przy działaniu siły na zsuwanie nośność jest mniejsza nawet pięciokrotnie. Ponadto, nawet minimalna przerwa pomiędzy powierzchnią magnesu, a blachą zmniejsza udźwig.
Zasady BHP dla użytkowników magnesów
Ryzyko rozmagnesowania
Typowe magnesy neodymowe (typ N) tracą moc po przekroczeniu temperatury 80°C. Strata siły jest trwała i nieodwracalna.
Zagrożenie dla elektroniki
Bezpieczeństwo sprzętu: Magnesy neodymowe mogą zdegradować karty bankomatowe oraz delikatną elektronikę (rozruszniki serca, aparaty słuchowe, czasomierze).
Dla uczulonych
Ostrzeżenie dla alergików: warstwa ochronna Ni-Cu-Ni ma w składzie nikiel. W przypadku wystąpienia reakcji alergicznej, należy natychmiast zakończyć pracę z magnesami i użyć środków ochronnych.
Nie dawać dzieciom
Te produkty magnetyczne nie służą do zabawy. Przypadkowe zjedzenie kilku magnesów może skutkować ich przyciągnięciem przez ścianki jelit, co stanowi bezpośrednie zagrożenie życia i wymaga pilnej interwencji chirurgicznej.
Rozprysk materiału
Spieki NdFeB to materiał ceramiczny, co oznacza, że są bardzo kruche. Zderzenie dwóch magnesów wywoła ich rozpryśnięcie na drobne kawałki.
Ryzyko złamań
Uważaj na palce. Dwa duże magnesy złączą się z ogromną prędkością z siłą kilkuset kilogramów, niszcząc wszystko na swojej drodze. Zachowaj ekstremalną uwagę!
Zagrożenie zapłonem
Obróbka mechaniczna magnesów neodymowych grozi pożarem. Proszek magnetyczny reaguje gwałtownie z tlenem i jest trudny do gaszenia.
Potężne pole
Postępuj ostrożnie. Magnesy neodymowe przyciągają z dużej odległości i łączą się z impetem, często gwałtowniej niż zdążysz zareagować.
Uwaga medyczna
Dla posiadaczy implantów: Silne pole magnetyczne wpływa na urządzenia medyczne. Utrzymuj co najmniej 30 cm odstępu lub zleć komuś innemu pracę z magnesów.
Elektronika precyzyjna
Moduły GPS i smartfony są niezwykle podatne na wpływ magnesów. Bezpośredni kontakt z silnym magnesem może zniszczyć sensory w Twoim telefonie.
