MW 33x10 / N38 - magnes neodymowy walcowy
magnes neodymowy walcowy
Numer katalogowy 010057
GTIN/EAN: 5906301810568
Średnica Ø
33 mm [±0,1 mm]
Wysokość
10 mm [±0,1 mm]
Waga
64.15 g
Kierunek magnesowania
↑ osiowy
Udźwig
23.67 kg / 232.15 N
Indukcja magnetyczna
321.26 mT / 3213 Gs
Powłoka
[NiCuNi] nikiel
26.52 ZŁ z VAT / szt. + cena za transport
21.56 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?
Dzwoń do nas
+48 22 499 98 98
lub napisz korzystając z
formularz zgłoszeniowy
przez naszą stronę.
Udźwig a także budowę magnesów neodymowych wyliczysz w naszym
modułowym kalkulatorze.
Zamówienia złożone do godziny 14:00 zostaną wysłane tego samego dnia roboczego.
Dane - MW 33x10 / N38 - magnes neodymowy walcowy
Specyfikacja / charakterystyka - MW 33x10 / N38 - magnes neodymowy walcowy
| właściwości | wartości |
|---|---|
| Nr kat. | 010057 |
| GTIN/EAN | 5906301810568 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Średnica Ø | 33 mm [±0,1 mm] |
| Wysokość | 10 mm [±0,1 mm] |
| Waga | 64.15 g |
| Kierunek magnesowania | ↑ osiowy |
| Udźwig ~ ? | 23.67 kg / 232.15 N |
| Indukcja magnetyczna ~ ? | 321.26 mT / 3213 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [min. - maks.] ? | 12.2-12.6 | kGs |
| remanencja Br [min. - maks.] ? | 1220-1260 | mT |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [min. - maks.] ? | 36-38 | BH max MGOe |
| gęstość energii [min. - maks.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Temperatura Curie TC | 312 - 380 | °C |
| Temperatura Curie TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅cm |
| Siła wyginania | 250 | MPa |
| Wytrzymałość na ściskanie | 1000~1100 | MPa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 10-6 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Analiza techniczna magnesu - raport
Przedstawione wartości są wynik symulacji matematycznej. Wyniki bazują na algorytmach dla klasy Nd2Fe14B. Realne warunki mogą nieznacznie różnić się od wartości teoretycznych. Traktuj te dane jako wstępny drogowskaz podczas planowania montażu.
Tabela 1: Siła prostopadła statyczna (siła vs dystans) - charakterystyka
MW 33x10 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg/lbs/g/N) | Status ryzyka |
|---|---|---|---|
| 0 mm |
3212 Gs
321.2 mT
|
23.67 kg / 52.18 lbs
23670.0 g / 232.2 N
|
miażdżący |
| 1 mm |
3064 Gs
306.4 mT
|
21.54 kg / 47.49 lbs
21539.1 g / 211.3 N
|
miażdżący |
| 2 mm |
2901 Gs
290.1 mT
|
19.30 kg / 42.55 lbs
19302.3 g / 189.4 N
|
miażdżący |
| 3 mm |
2728 Gs
272.8 mT
|
17.07 kg / 37.64 lbs
17072.3 g / 167.5 N
|
miażdżący |
| 5 mm |
2373 Gs
237.3 mT
|
12.91 kg / 28.47 lbs
12913.7 g / 126.7 N
|
miażdżący |
| 10 mm |
1569 Gs
156.9 mT
|
5.65 kg / 12.45 lbs
5648.1 g / 55.4 N
|
uwaga |
| 15 mm |
1004 Gs
100.4 mT
|
2.31 kg / 5.10 lbs
2312.6 g / 22.7 N
|
uwaga |
| 20 mm |
650 Gs
65.0 mT
|
0.97 kg / 2.14 lbs
969.4 g / 9.5 N
|
słaby uchwyt |
| 30 mm |
299 Gs
29.9 mT
|
0.21 kg / 0.45 lbs
205.1 g / 2.0 N
|
słaby uchwyt |
| 50 mm |
90 Gs
9.0 mT
|
0.02 kg / 0.04 lbs
18.7 g / 0.2 N
|
słaby uchwyt |
Tabela 2: Równoległa siła obsunięcia (pion)
MW 33x10 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg/lbs/g/N) |
|---|---|---|
| 0 mm | Stal (~0.2) |
4.73 kg / 10.44 lbs
4734.0 g / 46.4 N
|
| 1 mm | Stal (~0.2) |
4.31 kg / 9.50 lbs
4308.0 g / 42.3 N
|
| 2 mm | Stal (~0.2) |
3.86 kg / 8.51 lbs
3860.0 g / 37.9 N
|
| 3 mm | Stal (~0.2) |
3.41 kg / 7.53 lbs
3414.0 g / 33.5 N
|
| 5 mm | Stal (~0.2) |
2.58 kg / 5.69 lbs
2582.0 g / 25.3 N
|
| 10 mm | Stal (~0.2) |
1.13 kg / 2.49 lbs
1130.0 g / 11.1 N
|
| 15 mm | Stal (~0.2) |
0.46 kg / 1.02 lbs
462.0 g / 4.5 N
|
| 20 mm | Stal (~0.2) |
0.19 kg / 0.43 lbs
194.0 g / 1.9 N
|
| 30 mm | Stal (~0.2) |
0.04 kg / 0.09 lbs
42.0 g / 0.4 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 0.01 lbs
4.0 g / 0.0 N
|
Tabela 3: Montaż pionowy (ścinanie) - zachowanie na śliskim podłożu
MW 33x10 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg/lbs/g/N) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
7.10 kg / 15.66 lbs
7101.0 g / 69.7 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
4.73 kg / 10.44 lbs
4734.0 g / 46.4 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
2.37 kg / 5.22 lbs
2367.0 g / 23.2 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
11.84 kg / 26.09 lbs
11835.0 g / 116.1 N
|
Tabela 4: Grubość stali (wpływ podłoża) - straty mocy
MW 33x10 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg/lbs/g/N) |
|---|---|---|
| 0.5 mm |
|
1.18 kg / 2.61 lbs
1183.5 g / 11.6 N
|
| 1 mm |
|
2.96 kg / 6.52 lbs
2958.8 g / 29.0 N
|
| 2 mm |
|
5.92 kg / 13.05 lbs
5917.5 g / 58.1 N
|
| 3 mm |
|
8.88 kg / 19.57 lbs
8876.3 g / 87.1 N
|
| 5 mm |
|
14.79 kg / 32.61 lbs
14793.8 g / 145.1 N
|
| 10 mm |
|
23.67 kg / 52.18 lbs
23670.0 g / 232.2 N
|
| 11 mm |
|
23.67 kg / 52.18 lbs
23670.0 g / 232.2 N
|
| 12 mm |
|
23.67 kg / 52.18 lbs
23670.0 g / 232.2 N
|
Tabela 5: Stabilność termiczna (zachowanie materiału) - próg odporności
MW 33x10 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig (kg/lbs/g/N) | Status |
|---|---|---|---|
| 20 °C | 0.0% |
23.67 kg / 52.18 lbs
23670.0 g / 232.2 N
|
OK |
| 40 °C | -2.2% |
23.15 kg / 51.04 lbs
23149.3 g / 227.1 N
|
OK |
| 60 °C | -4.4% |
22.63 kg / 49.89 lbs
22628.5 g / 222.0 N
|
|
| 80 °C | -6.6% |
22.11 kg / 48.74 lbs
22107.8 g / 216.9 N
|
|
| 100 °C | -28.8% |
16.85 kg / 37.15 lbs
16853.0 g / 165.3 N
|
Tabela 6: Interakcja magnes-magnes (odpychanie) - zasięg pola
MW 33x10 / N38
| Szczelina (mm) | Przyciąganie (kg/lbs) (N-S) | Opór ścinania (kg/lbs/g/N) | Odpychanie (kg/lbs) (N-N) |
|---|---|---|---|
| 0 mm |
54.40 kg / 119.94 lbs
4 780 Gs
|
8.16 kg / 17.99 lbs
8160 g / 80.1 N
|
N/A |
| 1 mm |
52.02 kg / 114.68 lbs
6 282 Gs
|
7.80 kg / 17.20 lbs
7803 g / 76.5 N
|
46.82 kg / 103.21 lbs
~0 Gs
|
| 2 mm |
49.51 kg / 109.14 lbs
6 128 Gs
|
7.43 kg / 16.37 lbs
7426 g / 72.8 N
|
44.55 kg / 98.23 lbs
~0 Gs
|
| 3 mm |
46.95 kg / 103.50 lbs
5 968 Gs
|
7.04 kg / 15.52 lbs
7042 g / 69.1 N
|
42.25 kg / 93.15 lbs
~0 Gs
|
| 5 mm |
41.79 kg / 92.13 lbs
5 630 Gs
|
6.27 kg / 13.82 lbs
6268 g / 61.5 N
|
37.61 kg / 82.91 lbs
~0 Gs
|
| 10 mm |
29.68 kg / 65.43 lbs
4 745 Gs
|
4.45 kg / 9.82 lbs
4452 g / 43.7 N
|
26.71 kg / 58.89 lbs
~0 Gs
|
| 20 mm |
12.98 kg / 28.62 lbs
3 138 Gs
|
1.95 kg / 4.29 lbs
1947 g / 19.1 N
|
11.68 kg / 25.76 lbs
~0 Gs
|
| 50 mm |
0.99 kg / 2.18 lbs
867 Gs
|
0.15 kg / 0.33 lbs
149 g / 1.5 N
|
0.89 kg / 1.97 lbs
~0 Gs
|
| 60 mm |
0.47 kg / 1.04 lbs
598 Gs
|
0.07 kg / 0.16 lbs
71 g / 0.7 N
|
0.42 kg / 0.94 lbs
~0 Gs
|
| 70 mm |
0.24 kg / 0.53 lbs
426 Gs
|
0.04 kg / 0.08 lbs
36 g / 0.4 N
|
0.22 kg / 0.47 lbs
~0 Gs
|
| 80 mm |
0.13 kg / 0.28 lbs
312 Gs
|
0.02 kg / 0.04 lbs
19 g / 0.2 N
|
0.12 kg / 0.26 lbs
~0 Gs
|
| 90 mm |
0.07 kg / 0.16 lbs
235 Gs
|
0.01 kg / 0.02 lbs
11 g / 0.1 N
|
0.07 kg / 0.14 lbs
~0 Gs
|
| 100 mm |
0.04 kg / 0.09 lbs
181 Gs
|
0.01 kg / 0.01 lbs
6 g / 0.1 N
|
0.04 kg / 0.09 lbs
~0 Gs
|
Tabela 7: Zagrożenia (implanty) - ostrzeżenia
MW 33x10 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 14.5 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 11.5 cm |
| Zegarek mechaniczny | 20 Gs (2.0 mT) | 9.0 cm |
| Telefon / Smartfon | 40 Gs (4.0 mT) | 7.0 cm |
| Kluczyk samochodowy | 50 Gs (5.0 mT) | 6.5 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 3.0 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 2.5 cm |
Tabela 8: Zderzenia (energia kinetyczna) - ostrzeżenie
MW 33x10 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
22.07 km/h
(6.13 m/s)
|
1.21 J | |
| 30 mm |
33.74 km/h
(9.37 m/s)
|
2.82 J | |
| 50 mm |
43.34 km/h
(12.04 m/s)
|
4.65 J | |
| 100 mm |
61.26 km/h
(17.02 m/s)
|
9.29 J |
Tabela 9: Specyfikacja ochrony powierzchni
MW 33x10 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
Tabela 10: Dane konstrukcyjne (Pc)
MW 33x10 / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 29 509 Mx | 295.1 µWb |
| Współczynnik Pc | 0.40 | Niski (Płaski) |
Tabela 11: Hydrostatyka i wyporność
MW 33x10 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 23.67 kg | Standard |
| Woda (dno rzeki) |
27.10 kg
(+3.43 kg zysk z wyporności)
|
+14.5% |
1. Montaż na ścianie (ześlizg)
*Pamiętaj: Na powierzchni pionowej magnes utrzyma tylko ułamek siły oderwania.
2. Nasycenie magnetyczne
*Zbyt cienki metal (np. obudowa PC 0.5mm) znacząco osłabia udźwig magnesu.
3. Wytrzymałość temperaturowa
*W klasie N38 krytyczny próg to 80°C.
4. Krzywa odmagnesowania i punkt pracy (B-H)
wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 0.40
Powyższy wykres prezentuje charakterystykę magnetyczną materiału w drugim kwadrancie pętli histerezy. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.
Analiza pierwiastkowa
| żelazo (Fe) | 64% – 68% |
| neodym (Nd) | 29% – 32% |
| bor (B) | 1.1% – 1.2% |
| dysproz (Dy) | 0.5% – 2.0% |
| powłoka (Ni-Cu-Ni) | < 0.05% |
Dane środowiskowe
| recyklowalność (EoL) | 100% |
| surowce z recyklingu | ~10% (pre-cons) |
| ślad węglowy | low / zredukowany |
| kod odpadu (EWC) | 16 02 16 |
Inne propozycje
Wady oraz zalety magnesów z neodymu Nd2Fe14B.
Mocne strony
- Zachowują swoje właściwości przez lata – szacuje się, że po dekadzie słabną o symboliczny 1%.
- Inne źródła magnetyzmu nie powodują ich utraty mocy – posiadają dużą zdolność odporności magnetycznej.
- Wykończenie materiałami takimi jak nikiel, srebro lub złoto nadaje im profesjonalny i gładki charakter.
- Indukcja magnetyczna na powierzchni tych magnesów jest bardzo wysoka, co czyni je najwydajniejszymi w swojej klasie.
- Wersje specjalistyczne radzą sobie w temperaturach sięgających 230°C, zachowując swoje właściwości.
- Można je precyzyjnie obrabiać do niestandardowych wymiarów, co pozwala na ich adaptację w skomplikowanych urządzeniach.
- Znajdują szerokie zastosowanie w nowoczesnej technice – od dysków twardych i silników, po precyzyjną diagnostykę.
- Mały rozmiar, wielka moc – przy kompaktowej budowie oferują potężny udźwig, co jest kluczowe przy budowie małych urządzeń.
Minusy
- Należy uważać na wstrząsy – materiał jest kruchy i grozi pęknięciem. Ochrona w postaci obudowy to dobre rozwiązanie.
- Uwaga na temperaturę – dla zwykłych magnesów limit to 80°C. W trudnych warunkach (do 230°C) sprawdzą się tylko modele z oznaczeniem [AH].
- Ryzyko korozji: bez osłony magnes ulegnie utlenieniu na deszczu. Wybierz wersje powlekane tworzywem do zastosowań zewnętrznych.
- Z uwagi na specyfikę materiału, nie zaleca się obróbki mechanicznej magnesu. Bezpieczniej użyć magnesu wklejonego w stalowy kubek z gwintem.
- Drobne magnesy to ryzyko – połknięcie wymaga interwencji chirurga. Mogą też być problemem przy diagnostyce MRI.
- Cena – są bardziej kosztowne niż magnesy ferrytowe, co przy wielkich nakładach może być barierą.
Parametry udźwigu
Maksymalna moc trzymania magnesu – od czego zależy?
- z użyciem blachy ze stali o wysokiej przenikalności, działającej jako idealny przewodnik strumienia
- o grubości nie mniejszej niż 10 mm
- z płaszczyzną oczyszczoną i gładką
- w warunkach idealnego przylegania (powierzchnia do powierzchni)
- dla siły działającej pod kątem prostym (na odrywanie, nie zsuwanie)
- w stabilnej temperaturze pokojowej
Udźwig w praktyce – czynniki wpływu
- Szczelina powietrzna (między magnesem a metalem), ponieważ nawet bardzo mała przerwa (np. 0,5 mm) może spowodować redukcję udźwigu nawet o 50% (dotyczy to także farby, korozji czy brudu).
- Kąt odrywania – należy wiedzieć, że magnes ma największą siłę prostopadle. Przy zsuwaniu w dół, siła trzymania spada drastycznie, często do poziomu 20-30% wartości maksymalnej.
- Grubość elementu – dla pełnej efektywności, stal musi być wystarczająco masywna. Cienka blacha ogranicza siłę przyciągania (magnes „przebija” ją na wylot).
- Skład chemiczny podłoża – stal niskowęglowa przyciąga najlepiej. Domieszki stopowe obniżają przenikalność magnetyczną i siłę trzymania.
- Jakość powierzchni – im równiejsza powierzchnia, tym większa strefa kontaktu i wyższy udźwig. Chropowatość tworzą dystans powietrzny.
- Wpływ temperatury – gorące środowisko zmniejsza pole magnetyczne. Zbyt wysoka temperatura może trwale rozmagnesować magnes.
Udźwig określano używając blachy o gładkiej powierzchni o właściwej grubości (min. 20 mm), przy prostopadłym działaniu siły odrywającej, jednak przy siłach działających równolegle nośność jest mniejsza nawet pięciokrotnie. Co więcej, nawet drobny odstęp pomiędzy magnesem, a blachą redukuje siłę trzymania.
Ostrzeżenia
Chronić przed dziećmi
Neodymowe magnesy nie służą do zabawy. Przypadkowe zjedzenie kilku magnesów może doprowadzić do ich zaciśnięciem jelit, co stwarza stan krytyczny i wiąże się z koniecznością pilnej interwencji chirurgicznej.
Ryzyko złamań
Ryzyko obrażeń: Moc ściskania jest tak duża, że może spowodować krwiaki, zmiażdżenia, a nawet złamania kości. Stosuj solidne rękawice ochronne.
Zagrożenie dla nawigacji
Moduły GPS i smartfony są niezwykle podatne na wpływ magnesów. Bezpośredni kontakt z silnym magnesem może zniszczyć sensory w Twoim telefonie.
Bezpieczny dystans
Unikaj zbliżania magnesów do portfela, laptopa czy ekranu. Pole magnetyczne może nieodwracalnie zepsuć te urządzenia oraz wymazać paski magnetyczne z kart.
Wpływ na zdrowie
Ostrzeżenie dla sercowców: Promieniowanie magnetyczne zakłóca elektronikę medyczną. Zachowaj co najmniej 30 cm odstępu lub zleć komuś innemu obsługę magnesów.
Limity termiczne
Kontroluj ciepło. Ekspozycja magnesu na wysoką temperaturę zdegraduje jego strukturę magnetyczną i udźwig.
Kruchy spiek
Mimo niklowej powłoki, neodym jest kruchy i nieodporny na uderzenia. Nie uderzaj, gdyż magnes może się rozpaść na drobiny.
Reakcje alergiczne
Część populacji posiada nadwrażliwość na nikiel, którym pokryta jest większość magnesy neodymowe. Długotrwała ekspozycja może skutkować zaczerwienienie skóry. Zalecamy noszenie rękawiczek ochronnych.
Ostrożność wymagana
Stosuj magnesy świadomie. Ich potężna moc może zszokować nawet doświadczonych użytkowników. Bądź skupiony i respektuj ich siły.
Obróbka mechaniczna
Proszek powstający podczas obróbki magnesów jest łatwopalny. Nie wierć w magnesach w warunkach domowych.
