MW 25x6 / N38 - magnes neodymowy walcowy
magnes neodymowy walcowy
Numer katalogowy 010050
GTIN/EAN: 5906301810490
Średnica Ø
25 mm [±0,1 mm]
Wysokość
6 mm [±0,1 mm]
Waga
22.09 g
Kierunek magnesowania
↑ osiowy
Udźwig
10.27 kg / 100.71 N
Indukcja magnetyczna
268.21 mT / 2682 Gs
Powłoka
[NiCuNi] nikiel
7.40 ZŁ z VAT / szt. + cena za transport
6.02 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?Nie wiesz jaki magnes kupić?
Zadzwoń i zapytaj
+48 22 499 98 98
alternatywnie napisz za pomocą
nasz formularz online
przez naszą stronę.
Udźwig oraz budowę magnesu przetestujesz w naszym
kalkulatorze magnetycznym.
Realizacja tego samego dnia przy zamówieniu do 14:00.
MW 25x6 / N38 - magnes neodymowy walcowy
Specyfikacja / charakterystyka MW 25x6 / N38 - magnes neodymowy walcowy
| właściwości | wartości |
|---|---|
| Nr kat. | 010050 |
| GTIN/EAN | 5906301810490 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Średnica Ø | 25 mm [±0,1 mm] |
| Wysokość | 6 mm [±0,1 mm] |
| Waga | 22.09 g |
| Kierunek magnesowania | ↑ osiowy |
| Udźwig ~ ? | 10.27 kg / 100.71 N |
| Indukcja magnetyczna ~ ? | 268.21 mT / 2682 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [min. - maks.] ? | 12.2-12.6 | kGs |
| remanencja Br [min. - maks.] ? | 1220-1260 | mT |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [min. - maks.] ? | 36-38 | BH max MGOe |
| gęstość energii [min. - maks.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Temperatura Curie TC | 312 - 380 | °C |
| Temperatura Curie TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅cm |
| Siła wyginania | 250 | MPa |
| Wytrzymałość na ściskanie | 1000~1100 | MPa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 10-6 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Analiza fizyczna magnesu neodymowego - parametry techniczne
Poniższe dane są rezultat analizy matematycznej. Wyniki zostały wyliczone na algorytmach dla klasy Nd2Fe14B. Rzeczywiste warunki mogą nieznacznie się różnić. Traktuj te dane jako wstępny drogowskaz przy projektowaniu systemów.
MW 25x6 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg)(gram)(Niuton) | Status ryzyka |
|---|---|---|---|
| 0 mm |
2682 Gs
268.2 mT
|
10.27 kg / 10270.0 g
100.7 N
|
niebezpieczny! |
| 1 mm |
2535 Gs
253.5 mT
|
9.18 kg / 9177.2 g
90.0 N
|
uwaga |
| 2 mm |
2363 Gs
236.3 mT
|
7.97 kg / 7971.8 g
78.2 N
|
uwaga |
| 3 mm |
2176 Gs
217.6 mT
|
6.76 kg / 6761.0 g
66.3 N
|
uwaga |
| 5 mm |
1793 Gs
179.3 mT
|
4.59 kg / 4592.7 g
45.1 N
|
uwaga |
| 10 mm |
1013 Gs
101.3 mT
|
1.46 kg / 1464.5 g
14.4 N
|
niskie ryzyko |
| 15 mm |
565 Gs
56.5 mT
|
0.46 kg / 455.3 g
4.5 N
|
niskie ryzyko |
| 20 mm |
330 Gs
33.0 mT
|
0.16 kg / 155.7 g
1.5 N
|
niskie ryzyko |
| 30 mm |
134 Gs
13.4 mT
|
0.03 kg / 25.6 g
0.3 N
|
niskie ryzyko |
| 50 mm |
36 Gs
3.6 mT
|
0.00 kg / 1.9 g
0.0 N
|
niskie ryzyko |
MW 25x6 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg)(gram)(Niuton) |
|---|---|---|
| 0 mm | Stal (~0.2) |
2.05 kg / 2054.0 g
20.1 N
|
| 1 mm | Stal (~0.2) |
1.84 kg / 1836.0 g
18.0 N
|
| 2 mm | Stal (~0.2) |
1.59 kg / 1594.0 g
15.6 N
|
| 3 mm | Stal (~0.2) |
1.35 kg / 1352.0 g
13.3 N
|
| 5 mm | Stal (~0.2) |
0.92 kg / 918.0 g
9.0 N
|
| 10 mm | Stal (~0.2) |
0.29 kg / 292.0 g
2.9 N
|
| 15 mm | Stal (~0.2) |
0.09 kg / 92.0 g
0.9 N
|
| 20 mm | Stal (~0.2) |
0.03 kg / 32.0 g
0.3 N
|
| 30 mm | Stal (~0.2) |
0.01 kg / 6.0 g
0.1 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
MW 25x6 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
3.08 kg / 3081.0 g
30.2 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
2.05 kg / 2054.0 g
20.1 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
1.03 kg / 1027.0 g
10.1 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
5.14 kg / 5135.0 g
50.4 N
|
MW 25x6 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg) |
|---|---|---|
| 0.5 mm |
|
0.51 kg / 513.5 g
5.0 N
|
| 1 mm |
|
1.28 kg / 1283.8 g
12.6 N
|
| 2 mm |
|
2.57 kg / 2567.5 g
25.2 N
|
| 5 mm |
|
6.42 kg / 6418.7 g
63.0 N
|
| 10 mm |
|
10.27 kg / 10270.0 g
100.7 N
|
MW 25x6 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig | Status |
|---|---|---|---|
| 20 °C | 0.0% |
10.27 kg / 10270.0 g
100.7 N
|
OK |
| 40 °C | -2.2% |
10.04 kg / 10044.1 g
98.5 N
|
OK |
| 60 °C | -4.4% |
9.82 kg / 9818.1 g
96.3 N
|
|
| 80 °C | -6.6% |
9.59 kg / 9592.2 g
94.1 N
|
|
| 100 °C | -28.8% |
7.31 kg / 7312.2 g
71.7 N
|
MW 25x6 / N38
| Szczelina (mm) | Przyciąganie (kg) (N-S) | Odpychanie (kg) (N-N) |
|---|---|---|
| 0 mm |
21.76 kg / 21762 g
213.5 N
4 291 Gs
|
N/A |
| 1 mm |
20.66 kg / 20656 g
202.6 N
5 225 Gs
|
18.59 kg / 18590 g
182.4 N
~0 Gs
|
| 2 mm |
19.45 kg / 19446 g
190.8 N
5 070 Gs
|
17.50 kg / 17502 g
171.7 N
~0 Gs
|
| 3 mm |
18.18 kg / 18182 g
178.4 N
4 902 Gs
|
16.36 kg / 16364 g
160.5 N
~0 Gs
|
| 5 mm |
15.60 kg / 15599 g
153.0 N
4 541 Gs
|
14.04 kg / 14040 g
137.7 N
~0 Gs
|
| 10 mm |
9.73 kg / 9732 g
95.5 N
3 587 Gs
|
8.76 kg / 8759 g
85.9 N
~0 Gs
|
| 20 mm |
3.10 kg / 3103 g
30.4 N
2 025 Gs
|
2.79 kg / 2793 g
27.4 N
~0 Gs
|
| 50 mm |
0.13 kg / 127 g
1.2 N
409 Gs
|
0.11 kg / 114 g
1.1 N
~0 Gs
|
MW 25x6 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 10.5 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 8.0 cm |
| Zegarek mechaniczny | 20 Gs (2.0 mT) | 6.5 cm |
| Telefon / Smartfon | 40 Gs (4.0 mT) | 5.0 cm |
| Pilot do auta | 50 Gs (5.0 mT) | 4.5 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 2.0 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 1.5 cm |
MW 25x6 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
23.60 km/h
(6.56 m/s)
|
0.47 J | |
| 30 mm |
37.72 km/h
(10.48 m/s)
|
1.21 J | |
| 50 mm |
48.63 km/h
(13.51 m/s)
|
2.02 J | |
| 100 mm |
68.77 km/h
(19.10 m/s)
|
4.03 J |
MW 25x6 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
MW 25x6 / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 14 740 Mx | 147.4 µWb |
| Współczynnik Pc | 0.34 | Niski (Płaski) |
MW 25x6 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 10.27 kg | Standard |
| Woda (dno rzeki) |
11.76 kg
(+1.49 kg Zysk z wyporności)
|
+14.5% |
1. Udźwig w pionie
*Uwaga: Na powierzchni pionowej magnes utrzyma jedynie ułamek siły prostopadłej.
2. Grubość podłoża
*Zbyt cienki metal (np. blacha karoseryjna) wyraźnie ogranicza siłę trzymania.
3. Wytrzymałość temperaturowa
*W klasie N38 maksymalna temperatura to 80°C.
4. Krzywa odmagnesowania i punkt pracy (B-H)
wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 0.34
Niniejsza symulacja obrazuje stabilność magnetyczną wybranego magnesu w konkretnych warunkach geometrycznych. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.
Analiza pierwiastkowa
| żelazo (Fe) | 64% – 68% |
| neodym (Nd) | 29% – 32% |
| bor (B) | 1.1% – 1.2% |
| dysproz (Dy) | 0.5% – 2.0% |
| powłoka (Ni-Cu-Ni) | < 0.05% |
Zrównoważony rozwój
| recyklowalność (EoL) | 100% |
| surowce z recyklingu | ~10% (pre-cons) |
| ślad węglowy | low / zredukowany |
| kod odpadu (EWC) | 16 02 16 |
Inne produkty
Wady oraz zalety neodymowych magnesów Nd2Fe14B.
Zalety
- Cechują się stabilnością – przez okres blisko 10 lat gubią maksymalnie ~1% swojej pierwotnej siły (wg danych).
- Pozostają niewrażliwe na zewnętrzne zakłócenia, co czyni je odpornymi na rozmagnesowanie w trudnych warunkach.
- Wykończenie materiałami takimi jak nikiel, srebro lub złoto nadaje im profesjonalny i gładki charakter.
- Wytwarzają skoncentrowane pole magnetyczne na swojej powierzchni, co jest ich kluczową cechą.
- Są przystosowane do pracy w gorącym otoczeniu – wybrane modele znoszą temperaturę do 230°C (zależnie od wymiarów).
- Dają się łatwo formować do specyficznych wymiarów, co pozwala na ich adaptację w skomplikowanych urządzeniach.
- Spotkasz je wszędzie tam, gdzie liczy się precyzja: w automatyce, rezonansach oraz systemach IT.
- Idealny stosunek wielkości do siły – są małe, ale bardzo silne, co pozwala na ich montaż w ciasnych przestrzeniach.
Minusy
- Uwaga na uszkodzenia mechaniczne – bez odpowiedniej obudowy mogą pękać przy upadku na twarde podłoże.
- Uwaga na temperaturę – dla zwykłych magnesów limit to 80°C. W gorącym środowisku (do 230°C) sprawdzą się tylko modele z oznaczeniem [AH].
- Ryzyko korozji: bez osłony magnes zardzewieje na deszczu. Wybierz wersje powlekane tworzywem do zastosowań zewnętrznych.
- Z uwagi na specyfikę materiału, nie zaleca się gwintowania magnesu. Bezpieczniej użyć magnesu wklejonego w stalowy kubek z gwintem.
- Drobne magnesy to ryzyko – połknięcie wymaga interwencji chirurga. Mogą też być problemem przy badaniach lekarskich.
- Za jakość trzeba płacić – magnesy neodymowe są droższe od ceramicznych, co wpływa na budżet projektu.
Analiza siły trzymania
Najwyższa nośność magnesu – co się na to składa?
- na podłożu wykonanej ze stali konstrukcyjnej, doskonale skupiającej strumień magnetyczny
- której grubość wynosi ok. 10 mm
- z powierzchnią idealnie równą
- bez żadnej przerwy powietrznej pomiędzy magnesem a stalą
- podczas odrywania w kierunku prostopadłym do powierzchni mocowania
- w temp. ok. 20°C
Udźwig w warunkach rzeczywistych – czynniki
- Przerwa między magnesem a stalą – nawet ułamek milimetra odległości (spowodowany np. okleiną lub nierównością) drastycznie redukuje efektywność magnesu, często o połowę przy zaledwie 0,5 mm.
- Sposób obciążenia – parametr katalogowy dotyczy odrywania w pionie. Przy sile działającej równolegle, magnes trzyma znacznie mniejszą moc (zazwyczaj ok. 20-30% siły maksymalnej).
- Grubość podłoża – aby wykorzystać 100% mocy, stal musi być wystarczająco masywna. Cienka blacha ogranicza udźwig (magnes „przebija” ją na wylot).
- Typ metalu – nie każda stal przyciąga się identycznie. Wysoka zawartość węgla pogarszają interakcję z magnesem.
- Faktura blachy – szlifowane elementy zapewniają maksymalny styk, co poprawia nasycenie pola. Powierzchnie chropowate zmniejszają efektywność.
- Temperatura pracy – spieki NdFeB posiadają wrażliwość na temperaturę. W wyższych temperaturach tracą moc, a w niskich zyskują na sile (do pewnej granicy).
Udźwig określano stosując blachy o gładkiej powierzchni o właściwej grubości (min. 20 mm), przy prostopadłym działaniu siły odrywającej, natomiast przy próbie przesunięcia magnesu siła trzymania jest mniejsza nawet pięciokrotnie. Dodatkowo, nawet minimalna przerwa pomiędzy powierzchnią magnesu, a blachą obniża nośność.
Kompas i GPS
Urządzenia nawigacyjne są niezwykle podatne na wpływ magnesów. Bezpośredni kontakt z silnym magnesem może trwale uszkodzić sensory w Twoim telefonie.
Zagrożenie dla elektroniki
Potężne oddziaływanie może skasować dane na kartach płatniczych, nośnikach HDD i innych pamięciach. Zachowaj odstęp min. 10 cm.
Nie lekceważ mocy
Zachowaj rozwagę. Magnesy neodymowe działają z daleka i łączą się z ogromną siłą, często gwałtowniej niż jesteś w stanie przewidzieć.
Samozapłon
Proszek powstający podczas cięcia magnesów jest samozapalny. Zakaz wiercenia w magnesach bez odpowiedniego chłodzenia i wiedzy.
Rozprysk materiału
Mimo metalicznego wyglądu, neodym jest kruchy i nie znosi udarów. Unikaj uderzeń, gdyż magnes może się rozpaść na drobiny.
Ryzyko rozmagnesowania
Nie przegrzewaj. Magnesy neodymowe są nieodporne na ciepło. Jeśli wymagasz odporności powyżej 80°C, wybierz specjalne serie wysokotemperaturowe (H, SH, UH).
Chronić przed dziećmi
Bezwzględnie chroń magnesy przed najmłodszymi. Niebezpieczeństwo połknięcia jest bardzo duże, a konsekwencje połączenia się magnesów wewnątrz organizmu są dramatyczne.
Zagrożenie fizyczne
Chroń dłonie. Dwa duże magnesy złączą się z ogromną prędkością z siłą kilkuset kilogramów, niszcząc wszystko na swojej drodze. Bądź ostrożny!
Ryzyko uczulenia
Informacja alergiczna: powłoka Ni-Cu-Ni zawiera nikiel. W przypadku pojawienia się reakcji alergicznej, należy bezzwłocznie przerwać pracę z magnesami i zabezpieczyć dłonie.
Interferencja medyczna
Ostrzeżenie dla sercowców: Silne pole magnetyczne zakłóca elektronikę medyczną. Utrzymuj co najmniej 30 cm odstępu lub zleć komuś innemu obsługę magnesów.
