MW 25x5 / N38 - magnes neodymowy walcowy
magnes neodymowy walcowy
Numer katalogowy 010049
GTIN/EAN: 5906301810483
Średnica Ø
25 mm [±0,1 mm]
Wysokość
5 mm [±0,1 mm]
Waga
18.41 g
Kierunek magnesowania
↑ osiowy
Udźwig
7.98 kg / 78.25 N
Indukcja magnetyczna
230.20 mT / 2302 Gs
Powłoka
[NiCuNi] nikiel
8.39 ZŁ z VAT / szt. + cena za transport
6.82 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?
Zadzwoń do nas
+48 22 499 98 98
albo skontaktuj się przez
nasz formularz online
przez naszą stronę.
Masę i formę magnesu zweryfikujesz u nas w
kalkulatorze masy magnetycznej.
Realizacja tego samego dnia przy zamówieniu do 14:00.
Dane produktu - MW 25x5 / N38 - magnes neodymowy walcowy
Specyfikacja / charakterystyka - MW 25x5 / N38 - magnes neodymowy walcowy
| właściwości | wartości |
|---|---|
| Nr kat. | 010049 |
| GTIN/EAN | 5906301810483 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Średnica Ø | 25 mm [±0,1 mm] |
| Wysokość | 5 mm [±0,1 mm] |
| Waga | 18.41 g |
| Kierunek magnesowania | ↑ osiowy |
| Udźwig ~ ? | 7.98 kg / 78.25 N |
| Indukcja magnetyczna ~ ? | 230.20 mT / 2302 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [min. - maks.] ? | 12.2-12.6 | kGs |
| remanencja Br [min. - maks.] ? | 1220-1260 | mT |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [min. - maks.] ? | 36-38 | BH max MGOe |
| gęstość energii [min. - maks.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Temperatura Curie TC | 312 - 380 | °C |
| Temperatura Curie TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅cm |
| Siła wyginania | 250 | MPa |
| Wytrzymałość na ściskanie | 1000~1100 | MPa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 10-6 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Analiza inżynierska magnesu neodymowego - raport
Przedstawione wartości stanowią rezultat symulacji fizycznej. Wartości bazują na modelach dla klasy Nd2Fe14B. Realne osiągi mogą różnić się od wartości teoretycznych. Prosimy traktować te wyliczenia jako pomoc pomocniczą przy projektowaniu systemów.
Tabela 1: Udźwig statyczny prostopadły (siła vs dystans) - wykres oddziaływania
MW 25x5 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg/lbs/g/N) | Status ryzyka |
|---|---|---|---|
| 0 mm |
2302 Gs
230.2 mT
|
7.98 kg / 17.59 lbs
7980.0 g / 78.3 N
|
średnie ryzyko |
| 1 mm |
2189 Gs
218.9 mT
|
7.21 kg / 15.91 lbs
7214.9 g / 70.8 N
|
średnie ryzyko |
| 2 mm |
2050 Gs
205.0 mT
|
6.33 kg / 13.95 lbs
6329.3 g / 62.1 N
|
średnie ryzyko |
| 3 mm |
1895 Gs
189.5 mT
|
5.41 kg / 11.93 lbs
5410.7 g / 53.1 N
|
średnie ryzyko |
| 5 mm |
1570 Gs
157.0 mT
|
3.72 kg / 8.19 lbs
3715.4 g / 36.4 N
|
średnie ryzyko |
| 10 mm |
890 Gs
89.0 mT
|
1.19 kg / 2.63 lbs
1192.8 g / 11.7 N
|
słaby uchwyt |
| 15 mm |
495 Gs
49.5 mT
|
0.37 kg / 0.81 lbs
368.5 g / 3.6 N
|
słaby uchwyt |
| 20 mm |
288 Gs
28.8 mT
|
0.12 kg / 0.28 lbs
124.8 g / 1.2 N
|
słaby uchwyt |
| 30 mm |
116 Gs
11.6 mT
|
0.02 kg / 0.04 lbs
20.2 g / 0.2 N
|
słaby uchwyt |
| 50 mm |
31 Gs
3.1 mT
|
0.00 kg / 0.00 lbs
1.4 g / 0.0 N
|
słaby uchwyt |
Tabela 2: Siła równoległa zsuwania (ściana)
MW 25x5 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg/lbs/g/N) |
|---|---|---|
| 0 mm | Stal (~0.2) |
1.60 kg / 3.52 lbs
1596.0 g / 15.7 N
|
| 1 mm | Stal (~0.2) |
1.44 kg / 3.18 lbs
1442.0 g / 14.1 N
|
| 2 mm | Stal (~0.2) |
1.27 kg / 2.79 lbs
1266.0 g / 12.4 N
|
| 3 mm | Stal (~0.2) |
1.08 kg / 2.39 lbs
1082.0 g / 10.6 N
|
| 5 mm | Stal (~0.2) |
0.74 kg / 1.64 lbs
744.0 g / 7.3 N
|
| 10 mm | Stal (~0.2) |
0.24 kg / 0.52 lbs
238.0 g / 2.3 N
|
| 15 mm | Stal (~0.2) |
0.07 kg / 0.16 lbs
74.0 g / 0.7 N
|
| 20 mm | Stal (~0.2) |
0.02 kg / 0.05 lbs
24.0 g / 0.2 N
|
| 30 mm | Stal (~0.2) |
0.00 kg / 0.01 lbs
4.0 g / 0.0 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
Tabela 3: Siła na ścianie (ścinanie) - udźwig wertykalny
MW 25x5 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg/lbs/g/N) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
2.39 kg / 5.28 lbs
2394.0 g / 23.5 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
1.60 kg / 3.52 lbs
1596.0 g / 15.7 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
0.80 kg / 1.76 lbs
798.0 g / 7.8 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
3.99 kg / 8.80 lbs
3990.0 g / 39.1 N
|
Tabela 4: Efektywność materiałowa (nasycenie) - straty mocy
MW 25x5 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg/lbs/g/N) |
|---|---|---|
| 0.5 mm |
|
0.80 kg / 1.76 lbs
798.0 g / 7.8 N
|
| 1 mm |
|
2.00 kg / 4.40 lbs
1995.0 g / 19.6 N
|
| 2 mm |
|
3.99 kg / 8.80 lbs
3990.0 g / 39.1 N
|
| 3 mm |
|
5.99 kg / 13.19 lbs
5985.0 g / 58.7 N
|
| 5 mm |
|
7.98 kg / 17.59 lbs
7980.0 g / 78.3 N
|
| 10 mm |
|
7.98 kg / 17.59 lbs
7980.0 g / 78.3 N
|
| 11 mm |
|
7.98 kg / 17.59 lbs
7980.0 g / 78.3 N
|
| 12 mm |
|
7.98 kg / 17.59 lbs
7980.0 g / 78.3 N
|
Tabela 5: Praca w cieple (stabilność) - limit termiczny
MW 25x5 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig (kg/lbs/g/N) | Status |
|---|---|---|---|
| 20 °C | 0.0% |
7.98 kg / 17.59 lbs
7980.0 g / 78.3 N
|
OK |
| 40 °C | -2.2% |
7.80 kg / 17.21 lbs
7804.4 g / 76.6 N
|
OK |
| 60 °C | -4.4% |
7.63 kg / 16.82 lbs
7628.9 g / 74.8 N
|
|
| 80 °C | -6.6% |
7.45 kg / 16.43 lbs
7453.3 g / 73.1 N
|
|
| 100 °C | -28.8% |
5.68 kg / 12.53 lbs
5681.8 g / 55.7 N
|
Tabela 6: Interakcja magnes-magnes (odpychanie) - siły w układzie
MW 25x5 / N38
| Szczelina (mm) | Przyciąganie (kg/lbs) (N-S) | Siła zsuwania (kg/lbs/g/N) | Odpychanie (kg/lbs) (N-N) |
|---|---|---|---|
| 0 mm |
16.03 kg / 35.34 lbs
3 871 Gs
|
2.40 kg / 5.30 lbs
2405 g / 23.6 N
|
N/A |
| 1 mm |
15.31 kg / 33.75 lbs
4 498 Gs
|
2.30 kg / 5.06 lbs
2296 g / 22.5 N
|
13.78 kg / 30.38 lbs
~0 Gs
|
| 2 mm |
14.49 kg / 31.95 lbs
4 377 Gs
|
2.17 kg / 4.79 lbs
2174 g / 21.3 N
|
13.05 kg / 28.76 lbs
~0 Gs
|
| 3 mm |
13.62 kg / 30.03 lbs
4 243 Gs
|
2.04 kg / 4.50 lbs
2043 g / 20.0 N
|
12.26 kg / 27.03 lbs
~0 Gs
|
| 5 mm |
11.79 kg / 26.00 lbs
3 948 Gs
|
1.77 kg / 3.90 lbs
1769 g / 17.4 N
|
10.61 kg / 23.40 lbs
~0 Gs
|
| 10 mm |
7.46 kg / 16.46 lbs
3 141 Gs
|
1.12 kg / 2.47 lbs
1120 g / 11.0 N
|
6.72 kg / 14.81 lbs
~0 Gs
|
| 20 mm |
2.40 kg / 5.28 lbs
1 780 Gs
|
0.36 kg / 0.79 lbs
359 g / 3.5 N
|
2.16 kg / 4.75 lbs
~0 Gs
|
| 50 mm |
0.10 kg / 0.21 lbs
355 Gs
|
0.01 kg / 0.03 lbs
14 g / 0.1 N
|
0.09 kg / 0.19 lbs
~0 Gs
|
| 60 mm |
0.04 kg / 0.09 lbs
231 Gs
|
0.01 kg / 0.01 lbs
6 g / 0.1 N
|
0.04 kg / 0.08 lbs
~0 Gs
|
| 70 mm |
0.02 kg / 0.04 lbs
158 Gs
|
0.00 kg / 0.01 lbs
3 g / 0.0 N
|
0.02 kg / 0.04 lbs
~0 Gs
|
| 80 mm |
0.01 kg / 0.02 lbs
112 Gs
|
0.00 kg / 0.00 lbs
1 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 90 mm |
0.01 kg / 0.01 lbs
82 Gs
|
0.00 kg / 0.00 lbs
1 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 100 mm |
0.00 kg / 0.01 lbs
62 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
Tabela 7: Bezpieczeństwo (BHP) (implanty) - środki ostrożności
MW 25x5 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 10.0 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 8.0 cm |
| Zegarek mechaniczny | 20 Gs (2.0 mT) | 6.0 cm |
| Telefon / Smartfon | 40 Gs (4.0 mT) | 5.0 cm |
| Kluczyk samochodowy | 50 Gs (5.0 mT) | 4.5 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 2.0 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 1.5 cm |
Tabela 8: Zderzenia (energia kinetyczna) - skutki zderzenia
MW 25x5 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
22.87 km/h
(6.35 m/s)
|
0.37 J | |
| 30 mm |
36.43 km/h
(10.12 m/s)
|
0.94 J | |
| 50 mm |
46.96 km/h
(13.04 m/s)
|
1.57 J | |
| 100 mm |
66.40 km/h
(18.44 m/s)
|
3.13 J |
Tabela 9: Specyfikacja ochrony powierzchni
MW 25x5 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
Tabela 10: Dane konstrukcyjne (Pc)
MW 25x5 / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 13 107 Mx | 131.1 µWb |
| Współczynnik Pc | 0.29 | Niski (Płaski) |
Tabela 11: Hydrostatyka i wyporność
MW 25x5 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 7.98 kg | Standard |
| Woda (dno rzeki) |
9.14 kg
(+1.16 kg zysk z wyporności)
|
+14.5% |
1. Udźwig w pionie
*Ważne: Na powierzchni pionowej magnes zachowa zaledwie ok. 20-30% nominalnego udźwigu.
2. Wpływ grubości blachy
*Cienka blacha (np. blacha karoseryjna) wyraźnie ogranicza udźwig magnesu.
3. Wytrzymałość temperaturowa
*Dla standardowych magnesów krytyczny próg to 80°C.
4. Krzywa odmagnesowania i punkt pracy (B-H)
wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 0.29
Niniejsza symulacja obrazuje stabilność magnetyczną wybranego magnesu w konkretnych warunkach geometrycznych. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.
Skład chemiczny materiału
| żelazo (Fe) | 64% – 68% |
| neodym (Nd) | 29% – 32% |
| bor (B) | 1.1% – 1.2% |
| dysproz (Dy) | 0.5% – 2.0% |
| powłoka (Ni-Cu-Ni) | < 0.05% |
Zrównoważony rozwój
| recyklowalność (EoL) | 100% |
| surowce z recyklingu | ~10% (pre-cons) |
| ślad węglowy | low / zredukowany |
| kod odpadu (EWC) | 16 02 16 |
Sprawdź inne oferty
Zalety oraz wady magnesów neodymowych Nd2Fe14B.
Mocne strony
- Długowieczność to ich atut – po upływie 10 lat utrata mocy wynosi jedynie ~1% (wg testów).
- Pozostają niewrażliwe na zewnętrzne zakłócenia, co czyni je odpornymi na rozmagnesowanie w wymagającym środowisku.
- Łączą moc z estetyką – poprzez niklowanie lub złocenie ich powierzchnia jest refleksyjna i wygląda estetycznie.
- Oferują najwyższą indukcję magnetyczną w punkcie styku, co gwarantuje skuteczność.
- Specjalna mieszanka pierwiastków sprawia, że są odporne na wysokie temperatury (zależnie od kształtu, nawet do 230°C).
- Możliwość uzyskania złożonych kształtów sprawia, że są doskonałe do indywidualnych zastosowań.
- Są niezbędne w innowacjach, zasilając silniki, sprzęt szpitalny czy komputery.
- Moc w skali mikro – ich niewielka objętość nie przeszkadza w generowaniu dużej siły przyciągania.
Ograniczenia
- Należy uważać na wstrząsy – materiał jest kruchy i grozi pęknięciem. Ochrona w postaci obudowy jest kluczowa.
- Uwaga na temperaturę – dla zwykłych magnesów limit to 80°C. W trudnych warunkach (do 230°C) należy używać modele z oznaczeniem [AH].
- Brak odporności na wodę skutkuje utlenianiem. Do zadań zewnętrznych rekomendujemy wyłącznie magnesy w pełnej izolacji (plastik/guma).
- Obróbka jest trudna – wykonanie gwintu w samym magnesie jest ryzykowne. Zalecamy gotowe uchwyty magnetyczne (magnes w obudowie).
- Produkt niebezpieczny po połknięciu. Bezwzględnie chronić przed dziećmi. Wewnątrz ciała magnesy mogą się połączyć, powodując poważne urazy.
- Wysoki koszt zakupu w porównaniu do tańszych zamienników to ich minus, szczególnie przy zakupach hurtowych.
Analiza siły trzymania
Wytrzymałość magnetyczna na maksimum – co się na to składa?
- na płycie wykonanej ze stali miękkiej, efektywnie zamykającej strumień magnetyczny
- o grubości wynoszącej minimum 10 mm
- z płaszczyzną oczyszczoną i gładką
- w warunkach braku dystansu (metal do metalu)
- przy osiowym kierunku działania siły (kąt 90 stopni)
- przy temperaturze ok. 20 stopni Celsjusza
Determinanty praktycznego udźwigu magnesu
- Szczelina – występowanie ciała obcego (rdza, brud, szczelina) działa jak izolator, co redukuje moc lawinowo (nawet o 50% przy 0,5 mm).
- Wektor obciążenia – maksymalny parametr osiągamy tylko przy ciągnięciu pod kątem 90°. Opór przy zsuwaniu magnesu po blasze jest z reguły wielokrotnie niższa (ok. 1/5 udźwigu).
- Grubość stali – zbyt cienka blacha nie przyjmuje całego pola, przez co część mocy ucieka w powietrzu.
- Rodzaj stali – stal niskowęglowa przyciąga najlepiej. Domieszki stopowe zmniejszają przenikalność magnetyczną i udźwig.
- Faktura blachy – powierzchnie gładkie gwarantują idealne doleganie, co zwiększa nasycenie pola. Powierzchnie chropowate zmniejszają efektywność.
- Temperatura – podgrzanie magnesu skutkuje osłabieniem siły. Warto sprawdzić limit termiczny dla danego modelu.
Udźwig określano używając gładkiej blachy o optymalnej grubości (min. 20 mm), przy działaniu siły prostopadłej, z kolei przy próbie przesunięcia magnesu udźwig jest mniejszy nawet 5 razy. Dodatkowo, nawet niewielka szczelina pomiędzy powierzchnią magnesu, a blachą obniża siłę trzymania.
Ostrzeżenia
Rozruszniki serca
Dla posiadaczy implantów: Silne pole magnetyczne zakłóca elektronikę medyczną. Utrzymuj co najmniej 30 cm odstępu lub poproś inną osobę obsługę magnesów.
Nie lekceważ mocy
Postępuj ostrożnie. Magnesy neodymowe przyciągają z dużej odległości i zwierają z ogromną siłą, często gwałtowniej niż jesteś w stanie przewidzieć.
Łatwopalność
Wiercenie i cięcie magnesów neodymowych stwarza ryzyko zapłonu. Pył neodymowy reaguje gwałtownie z tlenem i jest trudny do gaszenia.
Trwała utrata siły
Nie przegrzewaj. Magnesy neodymowe są nieodporne na ciepło. Jeśli wymagasz odporności powyżej 80°C, wybierz magnesy odporne na ciepło (H, SH, UH).
Zagrożenie dla elektroniki
Zagrożenie dla danych: Magnesy neodymowe mogą uszkodzić karty bankomatowe oraz delikatną elektronikę (rozruszniki serca, protezy słuchu, zegarki mechaniczne).
Kruchość materiału
Ryzyko skaleczenia. Magnesy mogą pęknąć przy niekontrolowanym uderzeniu, rozrzucając ostre odłamki w powietrze. Ochrona wzroku wymagana.
Reakcje alergiczne
Informacja alergiczna: warstwa ochronna Ni-Cu-Ni zawiera nikiel. W przypadku pojawienia się reakcji alergicznej, należy bezzwłocznie zakończyć pracę z magnesami i zabezpieczyć dłonie.
Zakaz zabawy
Produkt przeznaczony dla dorosłych. Drobne magnesy mogą zostać połknięte, co prowadzi do perforacji jelit. Trzymaj poza zasięgiem niepowołanych osób.
Ryzyko zmiażdżenia
Silne magnesy mogą połamać palce w ułamku sekundy. Pod żadnym pozorem wkładaj dłoni pomiędzy dwa przyciągające się elementy.
Zagrożenie dla nawigacji
Uwaga: magnesy neodymowe wytwarzają pole, które mylą elektronikę precyzyjną. Utrzymuj bezpieczny dystans od komórki, tabletu i nawigacji.
