MW 25x5 / N38 - magnes neodymowy walcowy
magnes neodymowy walcowy
Numer katalogowy 010049
GTIN/EAN: 5906301810483
Średnica Ø
25 mm [±0,1 mm]
Wysokość
5 mm [±0,1 mm]
Waga
18.41 g
Kierunek magnesowania
↑ osiowy
Udźwig
7.98 kg / 78.25 N
Indukcja magnetyczna
230.20 mT / 2302 Gs
Powłoka
[NiCuNi] nikiel
8.39 ZŁ z VAT / szt. + cena za transport
6.82 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?
Dzwoń do nas
+48 22 499 98 98
lub daj znać poprzez
formularz
na stronie kontakt.
Właściwości a także budowę magnesu neodymowego zobaczysz w naszym
modułowym kalkulatorze.
Zamów do 14:00, a wyślemy dziś!
Szczegółowa specyfikacja MW 25x5 / N38 - magnes neodymowy walcowy
Specyfikacja / charakterystyka - MW 25x5 / N38 - magnes neodymowy walcowy
| właściwości | wartości |
|---|---|
| Nr kat. | 010049 |
| GTIN/EAN | 5906301810483 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Średnica Ø | 25 mm [±0,1 mm] |
| Wysokość | 5 mm [±0,1 mm] |
| Waga | 18.41 g |
| Kierunek magnesowania | ↑ osiowy |
| Udźwig ~ ? | 7.98 kg / 78.25 N |
| Indukcja magnetyczna ~ ? | 230.20 mT / 2302 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [min. - maks.] ? | 12.2-12.6 | kGs |
| remanencja Br [min. - maks.] ? | 1220-1260 | mT |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [min. - maks.] ? | 36-38 | BH max MGOe |
| gęstość energii [min. - maks.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Temperatura Curie TC | 312 - 380 | °C |
| Temperatura Curie TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅cm |
| Siła wyginania | 250 | MPa |
| Wytrzymałość na ściskanie | 1000~1100 | MPa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 10-6 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Analiza fizyczna magnesu neodymowego - parametry techniczne
Niniejsze informacje są rezultat kalkulacji matematycznej. Wartości oparte są na modelach dla klasy Nd2Fe14B. Rzeczywiste parametry mogą nieznacznie odbiegać od wyników symulacji. Traktuj te dane jako punkt odniesienia dla projektantów.
Tabela 1: Siła prostopadła statyczna (udźwig vs dystans) - spadek mocy
MW 25x5 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg/lbs/g/N) | Status ryzyka |
|---|---|---|---|
| 0 mm |
2302 Gs
230.2 mT
|
7.98 kg / 17.59 lbs
7980.0 g / 78.3 N
|
średnie ryzyko |
| 1 mm |
2189 Gs
218.9 mT
|
7.21 kg / 15.91 lbs
7214.9 g / 70.8 N
|
średnie ryzyko |
| 2 mm |
2050 Gs
205.0 mT
|
6.33 kg / 13.95 lbs
6329.3 g / 62.1 N
|
średnie ryzyko |
| 3 mm |
1895 Gs
189.5 mT
|
5.41 kg / 11.93 lbs
5410.7 g / 53.1 N
|
średnie ryzyko |
| 5 mm |
1570 Gs
157.0 mT
|
3.72 kg / 8.19 lbs
3715.4 g / 36.4 N
|
średnie ryzyko |
| 10 mm |
890 Gs
89.0 mT
|
1.19 kg / 2.63 lbs
1192.8 g / 11.7 N
|
niskie ryzyko |
| 15 mm |
495 Gs
49.5 mT
|
0.37 kg / 0.81 lbs
368.5 g / 3.6 N
|
niskie ryzyko |
| 20 mm |
288 Gs
28.8 mT
|
0.12 kg / 0.28 lbs
124.8 g / 1.2 N
|
niskie ryzyko |
| 30 mm |
116 Gs
11.6 mT
|
0.02 kg / 0.04 lbs
20.2 g / 0.2 N
|
niskie ryzyko |
| 50 mm |
31 Gs
3.1 mT
|
0.00 kg / 0.00 lbs
1.4 g / 0.0 N
|
niskie ryzyko |
Tabela 2: Siła równoległa obsunięcia (ściana)
MW 25x5 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg/lbs/g/N) |
|---|---|---|
| 0 mm | Stal (~0.2) |
1.60 kg / 3.52 lbs
1596.0 g / 15.7 N
|
| 1 mm | Stal (~0.2) |
1.44 kg / 3.18 lbs
1442.0 g / 14.1 N
|
| 2 mm | Stal (~0.2) |
1.27 kg / 2.79 lbs
1266.0 g / 12.4 N
|
| 3 mm | Stal (~0.2) |
1.08 kg / 2.39 lbs
1082.0 g / 10.6 N
|
| 5 mm | Stal (~0.2) |
0.74 kg / 1.64 lbs
744.0 g / 7.3 N
|
| 10 mm | Stal (~0.2) |
0.24 kg / 0.52 lbs
238.0 g / 2.3 N
|
| 15 mm | Stal (~0.2) |
0.07 kg / 0.16 lbs
74.0 g / 0.7 N
|
| 20 mm | Stal (~0.2) |
0.02 kg / 0.05 lbs
24.0 g / 0.2 N
|
| 30 mm | Stal (~0.2) |
0.00 kg / 0.01 lbs
4.0 g / 0.0 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
Tabela 3: Montaż pionowy (ścinanie) - zachowanie na śliskim podłożu
MW 25x5 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg/lbs/g/N) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
2.39 kg / 5.28 lbs
2394.0 g / 23.5 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
1.60 kg / 3.52 lbs
1596.0 g / 15.7 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
0.80 kg / 1.76 lbs
798.0 g / 7.8 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
3.99 kg / 8.80 lbs
3990.0 g / 39.1 N
|
Tabela 4: Grubość stali (wpływ podłoża) - straty mocy
MW 25x5 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg/lbs/g/N) |
|---|---|---|
| 0.5 mm |
|
0.80 kg / 1.76 lbs
798.0 g / 7.8 N
|
| 1 mm |
|
2.00 kg / 4.40 lbs
1995.0 g / 19.6 N
|
| 2 mm |
|
3.99 kg / 8.80 lbs
3990.0 g / 39.1 N
|
| 3 mm |
|
5.99 kg / 13.19 lbs
5985.0 g / 58.7 N
|
| 5 mm |
|
7.98 kg / 17.59 lbs
7980.0 g / 78.3 N
|
| 10 mm |
|
7.98 kg / 17.59 lbs
7980.0 g / 78.3 N
|
| 11 mm |
|
7.98 kg / 17.59 lbs
7980.0 g / 78.3 N
|
| 12 mm |
|
7.98 kg / 17.59 lbs
7980.0 g / 78.3 N
|
Tabela 5: Wytrzymałość temperaturowa (zachowanie materiału) - limit termiczny
MW 25x5 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig (kg/lbs/g/N) | Status |
|---|---|---|---|
| 20 °C | 0.0% |
7.98 kg / 17.59 lbs
7980.0 g / 78.3 N
|
OK |
| 40 °C | -2.2% |
7.80 kg / 17.21 lbs
7804.4 g / 76.6 N
|
OK |
| 60 °C | -4.4% |
7.63 kg / 16.82 lbs
7628.9 g / 74.8 N
|
|
| 80 °C | -6.6% |
7.45 kg / 16.43 lbs
7453.3 g / 73.1 N
|
|
| 100 °C | -28.8% |
5.68 kg / 12.53 lbs
5681.8 g / 55.7 N
|
Tabela 6: Interakcja magnes-magnes (odpychanie) - siły w układzie
MW 25x5 / N38
| Szczelina (mm) | Przyciąganie (kg/lbs) (N-S) | Siła zsuwania (kg/lbs/g/N) | Odpychanie (kg/lbs) (N-N) |
|---|---|---|---|
| 0 mm |
16.03 kg / 35.34 lbs
3 871 Gs
|
2.40 kg / 5.30 lbs
2405 g / 23.6 N
|
N/A |
| 1 mm |
15.31 kg / 33.75 lbs
4 498 Gs
|
2.30 kg / 5.06 lbs
2296 g / 22.5 N
|
13.78 kg / 30.38 lbs
~0 Gs
|
| 2 mm |
14.49 kg / 31.95 lbs
4 377 Gs
|
2.17 kg / 4.79 lbs
2174 g / 21.3 N
|
13.05 kg / 28.76 lbs
~0 Gs
|
| 3 mm |
13.62 kg / 30.03 lbs
4 243 Gs
|
2.04 kg / 4.50 lbs
2043 g / 20.0 N
|
12.26 kg / 27.03 lbs
~0 Gs
|
| 5 mm |
11.79 kg / 26.00 lbs
3 948 Gs
|
1.77 kg / 3.90 lbs
1769 g / 17.4 N
|
10.61 kg / 23.40 lbs
~0 Gs
|
| 10 mm |
7.46 kg / 16.46 lbs
3 141 Gs
|
1.12 kg / 2.47 lbs
1120 g / 11.0 N
|
6.72 kg / 14.81 lbs
~0 Gs
|
| 20 mm |
2.40 kg / 5.28 lbs
1 780 Gs
|
0.36 kg / 0.79 lbs
359 g / 3.5 N
|
2.16 kg / 4.75 lbs
~0 Gs
|
| 50 mm |
0.10 kg / 0.21 lbs
355 Gs
|
0.01 kg / 0.03 lbs
14 g / 0.1 N
|
0.09 kg / 0.19 lbs
~0 Gs
|
| 60 mm |
0.04 kg / 0.09 lbs
231 Gs
|
0.01 kg / 0.01 lbs
6 g / 0.1 N
|
0.04 kg / 0.08 lbs
~0 Gs
|
| 70 mm |
0.02 kg / 0.04 lbs
158 Gs
|
0.00 kg / 0.01 lbs
3 g / 0.0 N
|
0.02 kg / 0.04 lbs
~0 Gs
|
| 80 mm |
0.01 kg / 0.02 lbs
112 Gs
|
0.00 kg / 0.00 lbs
1 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 90 mm |
0.01 kg / 0.01 lbs
82 Gs
|
0.00 kg / 0.00 lbs
1 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 100 mm |
0.00 kg / 0.01 lbs
62 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
Tabela 7: Bezpieczeństwo (BHP) (elektronika) - środki ostrożności
MW 25x5 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 10.0 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 8.0 cm |
| Zegarek mechaniczny | 20 Gs (2.0 mT) | 6.0 cm |
| Telefon / Smartfon | 40 Gs (4.0 mT) | 5.0 cm |
| Kluczyk samochodowy | 50 Gs (5.0 mT) | 4.5 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 2.0 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 1.5 cm |
Tabela 8: Energia uderzenia (ryzyko pęknięcia) - skutki zderzenia
MW 25x5 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
22.87 km/h
(6.35 m/s)
|
0.37 J | |
| 30 mm |
36.43 km/h
(10.12 m/s)
|
0.94 J | |
| 50 mm |
46.96 km/h
(13.04 m/s)
|
1.57 J | |
| 100 mm |
66.40 km/h
(18.44 m/s)
|
3.13 J |
Tabela 9: Odporność na korozję
MW 25x5 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
Tabela 10: Dane elektryczne (Pc)
MW 25x5 / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 13 107 Mx | 131.1 µWb |
| Współczynnik Pc | 0.29 | Niski (Płaski) |
Tabela 11: Fizyka poszukiwań podwodnych
MW 25x5 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 7.98 kg | Standard |
| Woda (dno rzeki) |
9.14 kg
(+1.16 kg zysk z wyporności)
|
+14.5% |
1. Siła zsuwająca
*Pamiętaj: Na powierzchni pionowej magnes zachowa zaledwie ok. 20-30% siły prostopadłej.
2. Efektywność, a grubość stali
*Zbyt cienki metal (np. obudowa PC 0.5mm) znacząco ogranicza udźwig magnesu.
3. Stabilność termiczna
*W klasie N38 granica bezpieczeństwa to 80°C.
4. Krzywa odmagnesowania i punkt pracy (B-H)
wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 0.29
Powyższy wykres prezentuje charakterystykę magnetyczną materiału w drugim kwadrancie pętli histerezy. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.
Analiza pierwiastkowa
| żelazo (Fe) | 64% – 68% |
| neodym (Nd) | 29% – 32% |
| bor (B) | 1.1% – 1.2% |
| dysproz (Dy) | 0.5% – 2.0% |
| powłoka (Ni-Cu-Ni) | < 0.05% |
Ekologia i recykling (GPSR)
| recyklowalność (EoL) | 100% |
| surowce z recyklingu | ~10% (pre-cons) |
| ślad węglowy | low / zredukowany |
| kod odpadu (EWC) | 16 02 16 |
Sprawdź inne produkty
Wady oraz zalety magnesów z neodymu Nd2Fe14B.
Zalety
- Są niezwykle trwałe – przez okres blisko 10 lat tracą maksymalnie ~1% swojej mocy (wg danych).
- Inne źródła magnetyzmu nie wpływają na ich szybkiego rozmagnesowania – posiadają wysoki współczynnik koercji.
- Dzięki powłoce (NiCuNi, złoto, Ag) zyskują estetyczny, metaliczny wygląd.
- Oferują maksymalną indukcję magnetyczną w punkcie styku, co przekłada się na skuteczność.
- Są przystosowane do pracy w ekstremalnym cieple – wybrane modele znoszą temperaturę do 230°C (zależnie od wymiarów).
- Dają się łatwo formować do niestandardowych wymiarów, co ułatwia ich adaptację w skomplikowanych urządzeniach.
- Pełnią kluczową rolę w rozwoju technologii, będąc sercem generatorów, pamięci masowych i urządzeń ratujących życie.
- Doskonała relacja wielkości do siły – są małe, ale niezwykle mocne, co pozwala na ich montaż w ciasnych przestrzeniach.
Ograniczenia
- Pamiętaj o ich kruchości – bez odpowiedniej obudowy mogą pękać przy upadku na twarde podłoże.
- Gorąco to wróg neodymów – powyżej 80°C tracą właściwości. Do zadań specjalnych polecamy serię [AH], działającą stabilnie aż do 230°C.
- Ryzyko korozji: bez osłony magnes ulegnie utlenieniu na deszczu. Rozważ wersje w obudowie z tworzywa do zastosowań zewnętrznych.
- Trudności montażowe: zamiast próbować robić otwory kruchy magnes, wybierz uchwytów w stalowej obudowie, które posiadają gotowe mocowania.
- Dbaj o bezpieczeństwo – połknięcie magnesów przez dziecko to stan krytyczny. Ponadto, ich obecność w ciele komplikuje diagnostykę obrazową.
- Za jakość trzeba płacić – magnesy neodymowe są droższe od ceramicznych, co wpływa na budżet projektu.
Parametry udźwigu
Najwyższa nośność magnesu – co się na to składa?
- z zastosowaniem blachy ze stali niskowęglowej, pełniącej rolę idealny przewodnik strumienia
- posiadającej masywność min. 10 mm dla pełnego zamknięcia strumienia
- o idealnie gładkiej powierzchni styku
- bez najmniejszej warstwy izolującej pomiędzy magnesem a stalą
- podczas odrywania w kierunku pionowym do płaszczyzny mocowania
- przy temperaturze pokojowej
Udźwig w praktyce – czynniki wpływu
- Przerwa między magnesem a stalą – każdy milimetr dystansu (spowodowany np. okleiną lub brudem) zmniejsza efektywność magnesu, często o połowę przy zaledwie 0,5 mm.
- Wektor obciążenia – największą siłę mamy tylko przy prostopadłym odrywaniu. Opór przy zsuwaniu magnesu po powierzchni jest standardowo wielokrotnie mniejsza (ok. 1/5 udźwigu).
- Grubość stali – zbyt cienka płyta nie zamyka strumienia, przez co część mocy ucieka na drugą stronę.
- Rodzaj stali – stal niskowęglowa przyciąga najlepiej. Większa zawartość węgla redukują przenikalność magnetyczną i udźwig.
- Struktura powierzchni – im równiejsza blacha, tym większa strefa kontaktu i wyższy udźwig. Chropowatość działają jak mikroszczeliny.
- Temperatura – wzrost temperatury powoduje tymczasowy spadek indukcji. Warto sprawdzić limit termiczny dla danego modelu.
Pomiar udźwigu realizowano na gładkiej blaszce o optymalnej grubości, przy prostopadłym działaniu siły, z kolei przy działaniu siły na zsuwanie siła trzymania jest mniejsza nawet pięciokrotnie. Co więcej, nawet niewielka szczelina pomiędzy magnesem, a blachą zmniejsza nośność.
Bezpieczna praca z magnesami neodymowymi
Reakcje alergiczne
Część populacji wykazuje alergię kontaktową na nikiel, którym pokryta jest większość magnesy neodymowe. Długotrwała ekspozycja może powodować zaczerwienienie skóry. Sugerujemy stosowanie rękawiczek ochronnych.
Elektronika precyzyjna
Silne pole magnetyczne destabilizuje działanie magnetometrów w smartfonach i nawigacjach GPS. Trzymaj z dala magnesów od telefonu, aby nie uszkodzić czujników.
Wpływ na zdrowie
Osoby z stymulatorem serca muszą utrzymać duży odstęp od magnesów. Pole magnetyczne może zakłócić działanie implantu.
Zagrożenie dla elektroniki
Bezpieczeństwo sprzętu: Magnesy neodymowe mogą uszkodzić karty bankomatowe oraz delikatną elektronikę (rozruszniki serca, aparaty słuchowe, zegarki mechaniczne).
Zakaz zabawy
Bezwzględnie chroń magnesy przed dostępem dzieci. Ryzyko zadławienia jest bardzo duże, a skutki połączenia się magnesów wewnątrz organizmu są tragiczne.
Magnesy są kruche
Chroń oczy. Magnesy mogą eksplodować przy gwałtownym złączeniu, rozrzucając kawałki metalu w powietrze. Zalecamy okulary ochronne.
Ryzyko rozmagnesowania
Nie przegrzewaj. Magnesy neodymowe są wrażliwe na ciepło. Jeśli wymagasz odporności powyżej 80°C, wybierz specjalne serie wysokotemperaturowe (H, SH, UH).
Bezpieczna praca
Stosuj magnesy świadomie. Ich ogromna siła może zaskoczyć nawet doświadczonych użytkowników. Planuj ruchy i respektuj ich siły.
Samozapłon
Obróbka mechaniczna magnesów neodymowych grozi pożarem. Proszek magnetyczny reaguje gwałtownie z tlenem i jest trudny do gaszenia.
Zagrożenie fizyczne
Uważaj na palce. Dwa duże magnesy złączą się z ogromną prędkością z siłą kilkuset kilogramów, niszcząc wszystko na swojej drodze. Zachowaj ekstremalną uwagę!
