MW 22x10 / N38 - magnes neodymowy walcowy
magnes neodymowy walcowy
Numer katalogowy 010046
GTIN/EAN: 5906301810452
Średnica Ø
22 mm [±0,1 mm]
Wysokość
10 mm [±0,1 mm]
Waga
28.51 g
Kierunek magnesowania
↑ osiowy
Udźwig
14.75 kg / 144.65 N
Indukcja magnetyczna
416.85 mT / 4168 Gs
Powłoka
[NiCuNi] nikiel
11.30 ZŁ z VAT / szt. + cena za transport
9.19 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?
Dzwoń do nas
+48 22 499 98 98
ewentualnie zostaw wiadomość korzystając z
nasz formularz online
na stronie kontaktowej.
Masę i budowę magnesów neodymowych zweryfikujesz u nas w
narzędziu online do obliczeń.
Zamówienia złożone do godziny 14:00 zostaną wysłane tego samego dnia roboczego.
Specyfikacja techniczna - MW 22x10 / N38 - magnes neodymowy walcowy
Specyfikacja / charakterystyka - MW 22x10 / N38 - magnes neodymowy walcowy
| właściwości | wartości |
|---|---|
| Nr kat. | 010046 |
| GTIN/EAN | 5906301810452 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Średnica Ø | 22 mm [±0,1 mm] |
| Wysokość | 10 mm [±0,1 mm] |
| Waga | 28.51 g |
| Kierunek magnesowania | ↑ osiowy |
| Udźwig ~ ? | 14.75 kg / 144.65 N |
| Indukcja magnetyczna ~ ? | 416.85 mT / 4168 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [min. - maks.] ? | 12.2-12.6 | kGs |
| remanencja Br [min. - maks.] ? | 1220-1260 | mT |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [min. - maks.] ? | 36-38 | BH max MGOe |
| gęstość energii [min. - maks.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Temperatura Curie TC | 312 - 380 | °C |
| Temperatura Curie TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅cm |
| Siła wyginania | 250 | MPa |
| Wytrzymałość na ściskanie | 1000~1100 | MPa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 10-6 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Analiza fizyczna magnesu - dane
Poniższe wartości są bezpośredni efekt analizy matematycznej. Wartości oparte są na modelach dla klasy Nd2Fe14B. Rzeczywiste osiągi mogą nieznacznie się różnić. Prosimy traktować te dane jako wstępny drogowskaz podczas planowania montażu.
Tabela 1: Udźwig statyczny prostopadły (udźwig vs dystans) - spadek mocy
MW 22x10 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg/lbs/g/N) | Status ryzyka |
|---|---|---|---|
| 0 mm |
4167 Gs
416.7 mT
|
14.75 kg / 32.52 lbs
14750.0 g / 144.7 N
|
krytyczny poziom |
| 1 mm |
3823 Gs
382.3 mT
|
12.41 kg / 27.36 lbs
12412.2 g / 121.8 N
|
krytyczny poziom |
| 2 mm |
3461 Gs
346.1 mT
|
10.18 kg / 22.43 lbs
10175.8 g / 99.8 N
|
krytyczny poziom |
| 3 mm |
3102 Gs
310.2 mT
|
8.17 kg / 18.01 lbs
8171.3 g / 80.2 N
|
średnie ryzyko |
| 5 mm |
2434 Gs
243.4 mT
|
5.03 kg / 11.09 lbs
5032.6 g / 49.4 N
|
średnie ryzyko |
| 10 mm |
1262 Gs
126.2 mT
|
1.35 kg / 2.98 lbs
1352.7 g / 13.3 N
|
słaby uchwyt |
| 15 mm |
675 Gs
67.5 mT
|
0.39 kg / 0.85 lbs
387.3 g / 3.8 N
|
słaby uchwyt |
| 20 mm |
388 Gs
38.8 mT
|
0.13 kg / 0.28 lbs
128.2 g / 1.3 N
|
słaby uchwyt |
| 30 mm |
157 Gs
15.7 mT
|
0.02 kg / 0.05 lbs
20.9 g / 0.2 N
|
słaby uchwyt |
| 50 mm |
43 Gs
4.3 mT
|
0.00 kg / 0.00 lbs
1.6 g / 0.0 N
|
słaby uchwyt |
Tabela 2: Równoległa siła obsunięcia (pion)
MW 22x10 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg/lbs/g/N) |
|---|---|---|
| 0 mm | Stal (~0.2) |
2.95 kg / 6.50 lbs
2950.0 g / 28.9 N
|
| 1 mm | Stal (~0.2) |
2.48 kg / 5.47 lbs
2482.0 g / 24.3 N
|
| 2 mm | Stal (~0.2) |
2.04 kg / 4.49 lbs
2036.0 g / 20.0 N
|
| 3 mm | Stal (~0.2) |
1.63 kg / 3.60 lbs
1634.0 g / 16.0 N
|
| 5 mm | Stal (~0.2) |
1.01 kg / 2.22 lbs
1006.0 g / 9.9 N
|
| 10 mm | Stal (~0.2) |
0.27 kg / 0.60 lbs
270.0 g / 2.6 N
|
| 15 mm | Stal (~0.2) |
0.08 kg / 0.17 lbs
78.0 g / 0.8 N
|
| 20 mm | Stal (~0.2) |
0.03 kg / 0.06 lbs
26.0 g / 0.3 N
|
| 30 mm | Stal (~0.2) |
0.00 kg / 0.01 lbs
4.0 g / 0.0 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
Tabela 3: Montaż pionowy (poślizg) - zachowanie na śliskim podłożu
MW 22x10 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg/lbs/g/N) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
4.43 kg / 9.76 lbs
4425.0 g / 43.4 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
2.95 kg / 6.50 lbs
2950.0 g / 28.9 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
1.48 kg / 3.25 lbs
1475.0 g / 14.5 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
7.38 kg / 16.26 lbs
7375.0 g / 72.3 N
|
Tabela 4: Efektywność materiałowa (nasycenie) - straty mocy
MW 22x10 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg/lbs/g/N) |
|---|---|---|
| 0.5 mm |
|
0.74 kg / 1.63 lbs
737.5 g / 7.2 N
|
| 1 mm |
|
1.84 kg / 4.06 lbs
1843.8 g / 18.1 N
|
| 2 mm |
|
3.69 kg / 8.13 lbs
3687.5 g / 36.2 N
|
| 3 mm |
|
5.53 kg / 12.19 lbs
5531.3 g / 54.3 N
|
| 5 mm |
|
9.22 kg / 20.32 lbs
9218.8 g / 90.4 N
|
| 10 mm |
|
14.75 kg / 32.52 lbs
14750.0 g / 144.7 N
|
| 11 mm |
|
14.75 kg / 32.52 lbs
14750.0 g / 144.7 N
|
| 12 mm |
|
14.75 kg / 32.52 lbs
14750.0 g / 144.7 N
|
Tabela 5: Praca w cieple (zachowanie materiału) - próg odporności
MW 22x10 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig (kg/lbs/g/N) | Status |
|---|---|---|---|
| 20 °C | 0.0% |
14.75 kg / 32.52 lbs
14750.0 g / 144.7 N
|
OK |
| 40 °C | -2.2% |
14.43 kg / 31.80 lbs
14425.5 g / 141.5 N
|
OK |
| 60 °C | -4.4% |
14.10 kg / 31.09 lbs
14101.0 g / 138.3 N
|
|
| 80 °C | -6.6% |
13.78 kg / 30.37 lbs
13776.5 g / 135.1 N
|
|
| 100 °C | -28.8% |
10.50 kg / 23.15 lbs
10502.0 g / 103.0 N
|
Tabela 6: Interakcja magnes-magnes (przyciąganie) - zasięg pola
MW 22x10 / N38
| Szczelina (mm) | Przyciąganie (kg/lbs) (N-S) | Siła ścinająca (kg/lbs/g/N) | Odpychanie (kg/lbs) (N-N) |
|---|---|---|---|
| 0 mm |
40.70 kg / 89.72 lbs
5 428 Gs
|
6.10 kg / 13.46 lbs
6105 g / 59.9 N
|
N/A |
| 1 mm |
37.49 kg / 82.64 lbs
7 999 Gs
|
5.62 kg / 12.40 lbs
5623 g / 55.2 N
|
33.74 kg / 74.38 lbs
~0 Gs
|
| 2 mm |
34.25 kg / 75.50 lbs
7 645 Gs
|
5.14 kg / 11.33 lbs
5137 g / 50.4 N
|
30.82 kg / 67.95 lbs
~0 Gs
|
| 3 mm |
31.10 kg / 68.56 lbs
7 285 Gs
|
4.66 kg / 10.28 lbs
4664 g / 45.8 N
|
27.99 kg / 61.70 lbs
~0 Gs
|
| 5 mm |
25.22 kg / 55.60 lbs
6 561 Gs
|
3.78 kg / 8.34 lbs
3783 g / 37.1 N
|
22.70 kg / 50.04 lbs
~0 Gs
|
| 10 mm |
13.89 kg / 30.61 lbs
4 868 Gs
|
2.08 kg / 4.59 lbs
2083 g / 20.4 N
|
12.50 kg / 27.55 lbs
~0 Gs
|
| 20 mm |
3.73 kg / 8.23 lbs
2 524 Gs
|
0.56 kg / 1.23 lbs
560 g / 5.5 N
|
3.36 kg / 7.41 lbs
~0 Gs
|
| 50 mm |
0.13 kg / 0.30 lbs
480 Gs
|
0.02 kg / 0.04 lbs
20 g / 0.2 N
|
0.12 kg / 0.27 lbs
~0 Gs
|
| 60 mm |
0.06 kg / 0.13 lbs
314 Gs
|
0.01 kg / 0.02 lbs
9 g / 0.1 N
|
0.05 kg / 0.11 lbs
~0 Gs
|
| 70 mm |
0.03 kg / 0.06 lbs
216 Gs
|
0.00 kg / 0.01 lbs
4 g / 0.0 N
|
0.02 kg / 0.05 lbs
~0 Gs
|
| 80 mm |
0.01 kg / 0.03 lbs
154 Gs
|
0.00 kg / 0.00 lbs
2 g / 0.0 N
|
0.01 kg / 0.03 lbs
~0 Gs
|
| 90 mm |
0.01 kg / 0.02 lbs
114 Gs
|
0.00 kg / 0.00 lbs
1 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 100 mm |
0.00 kg / 0.01 lbs
86 Gs
|
0.00 kg / 0.00 lbs
1 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
Tabela 7: Zagrożenia (elektronika) - ostrzeżenia
MW 22x10 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 11.0 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 9.0 cm |
| Zegarek mechaniczny | 20 Gs (2.0 mT) | 7.0 cm |
| Telefon / Smartfon | 40 Gs (4.0 mT) | 5.5 cm |
| Immobilizer | 50 Gs (5.0 mT) | 5.0 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 2.0 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 2.0 cm |
Tabela 8: Energia uderzenia (energia kinetyczna) - ostrzeżenie
MW 22x10 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
24.22 km/h
(6.73 m/s)
|
0.65 J | |
| 30 mm |
39.77 km/h
(11.05 m/s)
|
1.74 J | |
| 50 mm |
51.30 km/h
(14.25 m/s)
|
2.89 J | |
| 100 mm |
72.54 km/h
(20.15 m/s)
|
5.79 J |
Tabela 9: Parametry powłoki (trwałość)
MW 22x10 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
Tabela 10: Dane elektryczne (Pc)
MW 22x10 / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 16 172 Mx | 161.7 µWb |
| Współczynnik Pc | 0.55 | Niski (Płaski) |
Tabela 11: Hydrostatyka i wyporność
MW 22x10 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 14.75 kg | Standard |
| Woda (dno rzeki) |
16.89 kg
(+2.14 kg zysk z wyporności)
|
+14.5% |
1. Udźwig w pionie
*Ważne: Na pionowej ścianie magnes zachowa tylko ok. 20-30% siły oderwania.
2. Wpływ grubości blachy
*Cienka blacha (np. blacha karoseryjna) znacząco redukuje siłę trzymania.
3. Wytrzymałość temperaturowa
*Dla standardowych magnesów krytyczny próg to 80°C.
4. Krzywa odmagnesowania i punkt pracy (B-H)
wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 0.55
Powyższy wykres prezentuje charakterystykę magnetyczną materiału w drugim kwadrancie pętli histerezy. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.
Specyfikacja materiałowa
| żelazo (Fe) | 64% – 68% |
| neodym (Nd) | 29% – 32% |
| bor (B) | 1.1% – 1.2% |
| dysproz (Dy) | 0.5% – 2.0% |
| powłoka (Ni-Cu-Ni) | < 0.05% |
Zrównoważony rozwój
| recyklowalność (EoL) | 100% |
| surowce z recyklingu | ~10% (pre-cons) |
| ślad węglowy | low / zredukowany |
| kod odpadu (EWC) | 16 02 16 |
Sprawdź inne propozycje
Wady i zalety neodymowych magnesów Nd2Fe14B.
Mocne strony
- Długowieczność to ich atut – nawet po dekady utrata siły magnetycznej wynosi tylko ~1% (teoretycznie).
- Są stabilne magnetycznie, gdyż wykazują potężną odporność na pola rozmagnesowujące.
- Warstwa ochronna (np. niklowa) zapewnia im metaliczny połysk, co podnosi ich walory wizualne.
- Generują skoncentrowane pole magnetyczne na swojej powierzchni, co jest ich znakiem rozpoznawczym.
- Są przystosowane do pracy w gorącym otoczeniu – wybrane modele znoszą temperaturę do 230°C (zależnie od wymiarów).
- Dają się łatwo formować do specyficznych wymiarów, co ułatwia ich adaptację w skomplikowanych urządzeniach.
- Stanowią kluczowy element w innowacjach, zasilając układy napędowe, urządzenia medyczne czy komputery.
- Dzięki kompaktowości, zajmują mało miejsca, a jednocześnie zapewniają wysoką skuteczność.
Słabe strony
- Należy uważać na wstrząsy – materiał jest kruchy i może odprysnąć. Ochrona w postaci obudowy to dobre rozwiązanie.
- Uwaga na temperaturę – dla zwykłych magnesów limit to 80°C. W trudnych warunkach (do 230°C) należy używać modele z oznaczeniem [AH].
- Nie lubią wody – szybko rdzewieją. Jeśli planujesz montaż w ogrodzie, jedynym słusznym wyborem są magnesy w plastikowej osłonie.
- Trudności montażowe: zamiast próbować gwintować kruchy magnes, skorzystaj z uchwytów w stalowej obudowie, które posiadają gwinty.
- Drobne magnesy to ryzyko – połknięcie wymaga interwencji chirurga. Mogą też być problemem przy badaniach lekarskich.
- Za jakość trzeba płacić – magnesy neodymowe są droższe od ceramicznych, co wpływa na ekonomię rozwiązania.
Parametry udźwigu
Maksymalna siła przyciągania magnesu – od czego zależy?
- przy kontakcie z zwory ze stali niskowęglowej, gwarantującej maksymalne skupienie pola
- o przekroju wynoszącej minimum 10 mm
- charakteryzującej się równą strukturą
- bez żadnej szczeliny pomiędzy magnesem a stalą
- dla siły działającej pod kątem prostym (w osi magnesu)
- przy temperaturze otoczenia pokojowej
Kluczowe elementy wpływające na udźwig
- Dystans – występowanie jakiejkolwiek warstwy (rdza, taśma, powietrze) przerywa obwód magnetyczny, co redukuje udźwig lawinowo (nawet o 50% przy 0,5 mm).
- Kąt odrywania – pamiętaj, że magnes ma największą siłę prostopadle. Przy zsuwaniu w dół, udźwig spada drastycznie, często do poziomu 20-30% wartości maksymalnej.
- Grubość metalu – cienki materiał nie pozwala na pełne wykorzystanie magnesu. Strumień magnetyczny przechodzi przez materiał, zamiast zamienić się w udźwig.
- Skład materiału – nie każda stal reaguje tak samo. Dodatki stopowe pogarszają efekt przyciągania.
- Gładkość podłoża – im równiejsza powierzchnia, tym lepsze przyleganie i wyższy udźwig. Chropowatość tworzą dystans powietrzny.
- Wpływ temperatury – gorące środowisko osłabia pole magnetyczne. Przekroczenie temperatury granicznej może trwale rozmagnesować magnes.
Udźwig mierzono z wykorzystaniem wypolerowanej blachy o właściwej grubości (min. 20 mm), przy działaniu siły prostopadłej, z kolei przy próbie przesunięcia magnesu siła trzymania jest mniejsza nawet 75%. Dodatkowo, nawet drobny odstęp pomiędzy powierzchnią magnesu, a blachą redukuje udźwig.
Instrukcja bezpiecznej obsługi magnesów
Magnesy są kruche
Ryzyko skaleczenia. Magnesy mogą eksplodować przy niekontrolowanym uderzeniu, wyrzucając kawałki metalu w powietrze. Zalecamy okulary ochronne.
Ochrona dłoni
Chroń dłonie. Dwa duże magnesy zderzą błyskawicznie z siłą wielu ton, niszcząc wszystko na swojej drodze. Bądź ostrożny!
Pole magnetyczne a elektronika
Ochrona danych: Magnesy neodymowe mogą zdegradować nośniki danych oraz delikatną elektronikę (implanty, protezy słuchu, czasomierze).
Ogromna siła
Przed przystąpieniem do pracy, przeczytaj instrukcję. Niekontrolowane przyciągnięcie może połamać magnes lub uszkodzić palce. Myśl o krok do przodu.
To nie jest zabawka
Silne magnesy nie są przeznaczone dla dzieci. Inhalacja kilku magnesów może doprowadzić do ich przyciągnięciem przez ścianki jelit, co stanowi stan krytyczny i wymaga pilnej interwencji chirurgicznej.
Uszkodzenia czujników
Uwaga: magnesy neodymowe generują pole, które zakłócają elektronikę precyzyjną. Zachowaj bezpieczny dystans od telefonu, tabletu i nawigacji.
Zagrożenie wybuchem pyłu
Proszek generowany podczas cięcia magnesów jest samozapalny. Nie wierć w magnesach bez odpowiedniego chłodzenia i wiedzy.
Wpływ na zdrowie
Uwaga zdrowotna: Magnesy neodymowe mogą wyłączyć rozruszniki serca i defibrylatory. Nie zbliżaj się, jeśli masz wszczepione implanty elektroniczne.
Ryzyko uczulenia
Wiedza medyczna potwierdza, że powłoka niklowa (typowe wykończenie magnesów) jest silnym alergenem. Jeśli Twoja skóra źle reaguje na metale, unikaj bezpośredniego dotyku lub wybierz magnesy powlekane tworzywem.
Przegrzanie magnesu
Nie przegrzewaj. Magnesy neodymowe są wrażliwe na temperaturę. Jeśli wymagasz odporności powyżej 80°C, zapytaj nas o magnesy odporne na ciepło (H, SH, UH).
