MW 22x10 / N38 - magnes neodymowy walcowy
magnes neodymowy walcowy
Numer katalogowy 010046
GTIN/EAN: 5906301810452
Średnica Ø
22 mm [±0,1 mm]
Wysokość
10 mm [±0,1 mm]
Waga
28.51 g
Kierunek magnesowania
↑ osiowy
Udźwig
14.75 kg / 144.65 N
Indukcja magnetyczna
416.85 mT / 4168 Gs
Powłoka
[NiCuNi] nikiel
11.30 ZŁ z VAT / szt. + cena za transport
9.19 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?
Zadzwoń i zapytaj
+48 22 499 98 98
albo zostaw wiadomość przez
nasz formularz online
przez naszą stronę.
Masę a także formę magnesów neodymowych wyliczysz dzięki naszemu
kalkulatorze siły.
Zamówienia złożone do godziny 14:00 zostaną wysłane tego samego dnia roboczego.
Parametry techniczne produktu - MW 22x10 / N38 - magnes neodymowy walcowy
Specyfikacja / charakterystyka - MW 22x10 / N38 - magnes neodymowy walcowy
| właściwości | wartości |
|---|---|
| Nr kat. | 010046 |
| GTIN/EAN | 5906301810452 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Średnica Ø | 22 mm [±0,1 mm] |
| Wysokość | 10 mm [±0,1 mm] |
| Waga | 28.51 g |
| Kierunek magnesowania | ↑ osiowy |
| Udźwig ~ ? | 14.75 kg / 144.65 N |
| Indukcja magnetyczna ~ ? | 416.85 mT / 4168 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [min. - maks.] ? | 12.2-12.6 | kGs |
| remanencja Br [min. - maks.] ? | 1220-1260 | mT |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [min. - maks.] ? | 36-38 | BH max MGOe |
| gęstość energii [min. - maks.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Temperatura Curie TC | 312 - 380 | °C |
| Temperatura Curie TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅cm |
| Siła wyginania | 250 | MPa |
| Wytrzymałość na ściskanie | 1000~1100 | MPa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 10-6 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Symulacja inżynierska magnesu - raport
Poniższe informacje są wynik kalkulacji matematycznej. Wyniki zostały wyliczone na modelach dla materiału Nd2Fe14B. Realne parametry mogą różnić się od wartości teoretycznych. Prosimy traktować te dane jako pomoc pomocniczą podczas planowania montażu.
Tabela 1: Siła prostopadła statyczna (udźwig vs dystans) - spadek mocy
MW 22x10 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg/lbs/g/N) | Status ryzyka |
|---|---|---|---|
| 0 mm |
4167 Gs
416.7 mT
|
14.75 kg / 32.52 lbs
14750.0 g / 144.7 N
|
krytyczny poziom |
| 1 mm |
3823 Gs
382.3 mT
|
12.41 kg / 27.36 lbs
12412.2 g / 121.8 N
|
krytyczny poziom |
| 2 mm |
3461 Gs
346.1 mT
|
10.18 kg / 22.43 lbs
10175.8 g / 99.8 N
|
krytyczny poziom |
| 3 mm |
3102 Gs
310.2 mT
|
8.17 kg / 18.01 lbs
8171.3 g / 80.2 N
|
uwaga |
| 5 mm |
2434 Gs
243.4 mT
|
5.03 kg / 11.09 lbs
5032.6 g / 49.4 N
|
uwaga |
| 10 mm |
1262 Gs
126.2 mT
|
1.35 kg / 2.98 lbs
1352.7 g / 13.3 N
|
bezpieczny |
| 15 mm |
675 Gs
67.5 mT
|
0.39 kg / 0.85 lbs
387.3 g / 3.8 N
|
bezpieczny |
| 20 mm |
388 Gs
38.8 mT
|
0.13 kg / 0.28 lbs
128.2 g / 1.3 N
|
bezpieczny |
| 30 mm |
157 Gs
15.7 mT
|
0.02 kg / 0.05 lbs
20.9 g / 0.2 N
|
bezpieczny |
| 50 mm |
43 Gs
4.3 mT
|
0.00 kg / 0.00 lbs
1.6 g / 0.0 N
|
bezpieczny |
Tabela 2: Siła równoległa obsunięcia (pion)
MW 22x10 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg/lbs/g/N) |
|---|---|---|
| 0 mm | Stal (~0.2) |
2.95 kg / 6.50 lbs
2950.0 g / 28.9 N
|
| 1 mm | Stal (~0.2) |
2.48 kg / 5.47 lbs
2482.0 g / 24.3 N
|
| 2 mm | Stal (~0.2) |
2.04 kg / 4.49 lbs
2036.0 g / 20.0 N
|
| 3 mm | Stal (~0.2) |
1.63 kg / 3.60 lbs
1634.0 g / 16.0 N
|
| 5 mm | Stal (~0.2) |
1.01 kg / 2.22 lbs
1006.0 g / 9.9 N
|
| 10 mm | Stal (~0.2) |
0.27 kg / 0.60 lbs
270.0 g / 2.6 N
|
| 15 mm | Stal (~0.2) |
0.08 kg / 0.17 lbs
78.0 g / 0.8 N
|
| 20 mm | Stal (~0.2) |
0.03 kg / 0.06 lbs
26.0 g / 0.3 N
|
| 30 mm | Stal (~0.2) |
0.00 kg / 0.01 lbs
4.0 g / 0.0 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
Tabela 3: Montaż pionowy (poślizg) - udźwig wertykalny
MW 22x10 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg/lbs/g/N) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
4.43 kg / 9.76 lbs
4425.0 g / 43.4 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
2.95 kg / 6.50 lbs
2950.0 g / 28.9 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
1.48 kg / 3.25 lbs
1475.0 g / 14.5 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
7.38 kg / 16.26 lbs
7375.0 g / 72.3 N
|
Tabela 4: Efektywność materiałowa (wpływ podłoża) - straty mocy
MW 22x10 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg/lbs/g/N) |
|---|---|---|
| 0.5 mm |
|
0.74 kg / 1.63 lbs
737.5 g / 7.2 N
|
| 1 mm |
|
1.84 kg / 4.06 lbs
1843.8 g / 18.1 N
|
| 2 mm |
|
3.69 kg / 8.13 lbs
3687.5 g / 36.2 N
|
| 3 mm |
|
5.53 kg / 12.19 lbs
5531.3 g / 54.3 N
|
| 5 mm |
|
9.22 kg / 20.32 lbs
9218.8 g / 90.4 N
|
| 10 mm |
|
14.75 kg / 32.52 lbs
14750.0 g / 144.7 N
|
| 11 mm |
|
14.75 kg / 32.52 lbs
14750.0 g / 144.7 N
|
| 12 mm |
|
14.75 kg / 32.52 lbs
14750.0 g / 144.7 N
|
Tabela 5: Praca w cieple (stabilność) - próg odporności
MW 22x10 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig (kg/lbs/g/N) | Status |
|---|---|---|---|
| 20 °C | 0.0% |
14.75 kg / 32.52 lbs
14750.0 g / 144.7 N
|
OK |
| 40 °C | -2.2% |
14.43 kg / 31.80 lbs
14425.5 g / 141.5 N
|
OK |
| 60 °C | -4.4% |
14.10 kg / 31.09 lbs
14101.0 g / 138.3 N
|
|
| 80 °C | -6.6% |
13.78 kg / 30.37 lbs
13776.5 g / 135.1 N
|
|
| 100 °C | -28.8% |
10.50 kg / 23.15 lbs
10502.0 g / 103.0 N
|
Tabela 6: Dwa magnesy (przyciąganie) - zasięg pola
MW 22x10 / N38
| Szczelina (mm) | Przyciąganie (kg/lbs) (N-S) | Siła ścinająca (kg/lbs/g/N) | Odpychanie (kg/lbs) (N-N) |
|---|---|---|---|
| 0 mm |
40.70 kg / 89.72 lbs
5 428 Gs
|
6.10 kg / 13.46 lbs
6105 g / 59.9 N
|
N/A |
| 1 mm |
37.49 kg / 82.64 lbs
7 999 Gs
|
5.62 kg / 12.40 lbs
5623 g / 55.2 N
|
33.74 kg / 74.38 lbs
~0 Gs
|
| 2 mm |
34.25 kg / 75.50 lbs
7 645 Gs
|
5.14 kg / 11.33 lbs
5137 g / 50.4 N
|
30.82 kg / 67.95 lbs
~0 Gs
|
| 3 mm |
31.10 kg / 68.56 lbs
7 285 Gs
|
4.66 kg / 10.28 lbs
4664 g / 45.8 N
|
27.99 kg / 61.70 lbs
~0 Gs
|
| 5 mm |
25.22 kg / 55.60 lbs
6 561 Gs
|
3.78 kg / 8.34 lbs
3783 g / 37.1 N
|
22.70 kg / 50.04 lbs
~0 Gs
|
| 10 mm |
13.89 kg / 30.61 lbs
4 868 Gs
|
2.08 kg / 4.59 lbs
2083 g / 20.4 N
|
12.50 kg / 27.55 lbs
~0 Gs
|
| 20 mm |
3.73 kg / 8.23 lbs
2 524 Gs
|
0.56 kg / 1.23 lbs
560 g / 5.5 N
|
3.36 kg / 7.41 lbs
~0 Gs
|
| 50 mm |
0.13 kg / 0.30 lbs
480 Gs
|
0.02 kg / 0.04 lbs
20 g / 0.2 N
|
0.12 kg / 0.27 lbs
~0 Gs
|
| 60 mm |
0.06 kg / 0.13 lbs
314 Gs
|
0.01 kg / 0.02 lbs
9 g / 0.1 N
|
0.05 kg / 0.11 lbs
~0 Gs
|
| 70 mm |
0.03 kg / 0.06 lbs
216 Gs
|
0.00 kg / 0.01 lbs
4 g / 0.0 N
|
0.02 kg / 0.05 lbs
~0 Gs
|
| 80 mm |
0.01 kg / 0.03 lbs
154 Gs
|
0.00 kg / 0.00 lbs
2 g / 0.0 N
|
0.01 kg / 0.03 lbs
~0 Gs
|
| 90 mm |
0.01 kg / 0.02 lbs
114 Gs
|
0.00 kg / 0.00 lbs
1 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 100 mm |
0.00 kg / 0.01 lbs
86 Gs
|
0.00 kg / 0.00 lbs
1 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
Tabela 7: Strefy ochronne (elektronika) - środki ostrożności
MW 22x10 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 11.0 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 9.0 cm |
| Zegarek mechaniczny | 20 Gs (2.0 mT) | 7.0 cm |
| Telefon / Smartfon | 40 Gs (4.0 mT) | 5.5 cm |
| Pilot do auta | 50 Gs (5.0 mT) | 5.0 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 2.0 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 2.0 cm |
Tabela 8: Dynamika (ryzyko pęknięcia) - ostrzeżenie
MW 22x10 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
24.22 km/h
(6.73 m/s)
|
0.65 J | |
| 30 mm |
39.77 km/h
(11.05 m/s)
|
1.74 J | |
| 50 mm |
51.30 km/h
(14.25 m/s)
|
2.89 J | |
| 100 mm |
72.54 km/h
(20.15 m/s)
|
5.79 J |
Tabela 9: Parametry powłoki (trwałość)
MW 22x10 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
Tabela 10: Dane elektryczne (Flux)
MW 22x10 / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 16 172 Mx | 161.7 µWb |
| Współczynnik Pc | 0.55 | Niski (Płaski) |
Tabela 11: Praca w wodzie (Magnet Fishing)
MW 22x10 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 14.75 kg | Standard |
| Woda (dno rzeki) |
16.89 kg
(+2.14 kg zysk z wyporności)
|
+14.5% |
1. Ześlizg (ściana)
*Pamiętaj: Na powierzchni pionowej magnes utrzyma jedynie ok. 20-30% nominalnego udźwigu.
2. Nasycenie magnetyczne
*Cienka blacha (np. blacha karoseryjna) wyraźnie osłabia udźwig magnesu.
3. Stabilność termiczna
*W klasie N38 granica bezpieczeństwa to 80°C.
4. Krzywa odmagnesowania i punkt pracy (B-H)
wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 0.55
Niniejsza symulacja obrazuje stabilność magnetyczną wybranego magnesu w konkretnych warunkach geometrycznych. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.
Specyfikacja materiałowa
| żelazo (Fe) | 64% – 68% |
| neodym (Nd) | 29% – 32% |
| bor (B) | 1.1% – 1.2% |
| dysproz (Dy) | 0.5% – 2.0% |
| powłoka (Ni-Cu-Ni) | < 0.05% |
Zrównoważony rozwój
| recyklowalność (EoL) | 100% |
| surowce z recyklingu | ~10% (pre-cons) |
| ślad węglowy | low / zredukowany |
| kod odpadu (EWC) | 16 02 16 |
Inne oferty
Wady i zalety magnesów z neodymu Nd2Fe14B.
Korzyści
- Cechują się stabilnością – przez okres ok. 10 lat tracą maksymalnie ~1% swojej pierwotnej siły (pomiary wskazują na taką wartość).
- Pozostają niewrażliwe na wpływ innych pól, co czyni je odpornymi na rozmagnesowanie w trudnych warunkach.
- Wykończenie materiałami takimi jak nikiel czy złoto nadaje im profesjonalny i lśniący charakter.
- Wytwarzają skoncentrowane pole magnetyczne przy biegunach, co jest ich znakiem rozpoznawczym.
- Posiadają imponującą wytrzymałość termiczną, co umożliwia ich użycie w warunkach do 230°C (dotyczy odpowiednich serii).
- Duża swoboda w projektowaniu kształtu i wymiaru to ich wielka zaleta w inżynierii.
- Stanowią kluczowy element w technologiach przyszłości, zasilając silniki, sprzęt szpitalny czy elektronikę użytkową.
- Moc w skali mikro – ich niewielka objętość nie przeszkadza w generowaniu dużej siły przyciągania.
Wady
- Ze względu na brak elastyczności, wymagają ostrożności. Silne uderzenie może je zniszczyć, stąd rekomendacja stosowania osłon.
- Wrażliwość na ciepło: przekroczenie 80°C może trwale osłabić magnes (zależnie od wymiarów). Rozwiązaniem są nasze magnesy wysokotemperaturowe [AH].
- Brak odporności na wodę skutkuje utlenianiem. Do zadań zewnętrznych sugerujemy wyłącznie magnesy w pełnej izolacji (plastik/guma).
- Magnesy ciężko się obrabia – do montażu śrubowego przeznaczone są specjalne uchwyty magnetyczne z wbudowanym gwintem.
- Drobne magnesy to ryzyko – połknięcie wymaga interwencji chirurga. Mogą też być problemem przy diagnostyce MRI.
- Cena – są droższe niż magnesy ferrytowe, co przy produkcji masowej może być istotnym kosztem.
Charakterystyka udźwigu
Wytrzymałość na oderwanie magnesu w warunkach idealnych – od czego zależy?
- z wykorzystaniem blachy ze stali o wysokiej przenikalności, pełniącej rolę zwora magnetyczna
- posiadającej masywność minimum 10 mm dla pełnego zamknięcia strumienia
- o szlifowanej powierzchni kontaktu
- przy bezpośrednim styku (bez powłok)
- dla siły działającej pod kątem prostym (w osi magnesu)
- przy temperaturze otoczenia pokojowej
Udźwig w praktyce – czynniki wpływu
- Szczelina powietrzna (pomiędzy magnesem a blachą), ponieważ nawet mikroskopijna odległość (np. 0,5 mm) może spowodować drastyczny spadek udźwigu nawet o 50% (dotyczy to także farby, rdzy czy zanieczyszczeń).
- Kierunek siły – pamiętaj, że magnes ma największą siłę prostopadle. Przy działaniu sił bocznych, udźwig spada drastycznie, często do poziomu 20-30% wartości maksymalnej.
- Grubość podłoża – dla pełnej efektywności, stal musi być odpowiednio gruba. Cienka blacha ogranicza siłę przyciągania (magnes „przebija” ją na wylot).
- Skład materiału – różne stopy przyciąga się identycznie. Wysoka zawartość węgla pogarszają interakcję z magnesem.
- Gładkość podłoża – im gładsza i bardziej polerowana powierzchnia, tym lepsze przyleganie i silniejsze trzymanie. Nierówności działają jak mikroszczeliny.
- Wpływ temperatury – wysoka temperatura osłabia pole magnetyczne. Przekroczenie temperatury granicznej może trwale rozmagnesować magnes.
Udźwig mierzono używając blachy o gładkiej powierzchni o właściwej grubości (min. 20 mm), przy prostopadłym działaniu siły odrywającej, natomiast przy siłach działających równolegle siła trzymania jest mniejsza nawet pięć razy. Co więcej, nawet drobny odstęp pomiędzy powierzchnią magnesu, a blachą obniża siłę trzymania.
BHP przy magnesach
Reakcje alergiczne
Niektóre osoby ma alergię kontaktową na nikiel, którym pokryta jest większość magnesy neodymowe. Częste dotykanie może powodować zaczerwienienie skóry. Rekomendujemy noszenie rękawic bezlateksowych.
Pył jest łatwopalny
Wiercenie i cięcie magnesów neodymowych stwarza ryzyko zapłonu. Proszek magnetyczny reaguje gwałtownie z tlenem i jest niebezpieczny.
Zagrożenie fizyczne
Zagrożenie fizyczne: Siła przyciągania jest tak duża, że może spowodować krwiaki, zgniecenia, a nawet otwarte złamania. Używaj grubych rękawic.
Limity termiczne
Kontroluj ciepło. Ekspozycja magnesu na wysoką temperaturę trwale osłabi jego strukturę magnetyczną i siłę przyciągania.
Rozruszniki serca
Osoby z stymulatorem serca muszą utrzymać duży odstęp od magnesów. Pole magnetyczne może zakłócić pracę urządzenia ratującego życie.
Zagrożenie dla elektroniki
Nie zbliżaj magnesów do dokumentów, komputera czy telewizora. Magnes może nieodwracalnie zepsuć te urządzenia oraz wymazać paski magnetyczne z kart.
Magnesy są kruche
Spieki NdFeB to materiał ceramiczny, co oznacza, że są podatne na pęknięcia. Zderzenie dwóch magnesów wywoła ich rozkruszenie na drobne kawałki.
Ryzyko połknięcia
Artykuł tylko dla osób pełnoletnich. Małe elementy mogą zostać aspirrowane, co prowadzi do poważnych obrażeń. Trzymaj poza zasięgiem niepowołanych osób.
Trzymaj z dala od elektroniki
Ważna informacja: magnesy neodymowe generują pole, które zakłócają elektronikę precyzyjną. Zachowaj odpowiednią odległość od telefonu, tabletu i nawigacji.
Ogromna siła
Zanim zaczniesz, przeczytaj instrukcję. Gwałtowne złączenie może zniszczyć magnes lub zranić dłoń. Bądź przewidujący.
