MW 20x5 / N38 - magnes neodymowy walcowy
magnes neodymowy walcowy
Numer katalogowy 010044
GTIN/EAN: 5906301810438
Średnica Ø
20 mm [±0,1 mm]
Wysokość
5 mm [±0,1 mm]
Waga
11.78 g
Kierunek magnesowania
↑ osiowy
Udźwig
6.93 kg / 67.95 N
Indukcja magnetyczna
277.16 mT / 2772 Gs
Powłoka
[NiCuNi] nikiel
5.56 ZŁ z VAT / szt. + cena za transport
4.52 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?
Skontaktuj się z nami telefonicznie
+48 22 499 98 98
alternatywnie skontaktuj się za pomocą
formularz zgłoszeniowy
w sekcji kontakt.
Masę oraz budowę magnesów przetestujesz dzięki naszemu
modułowym kalkulatorze.
Wysyłka tego samego dnia dla zamówień do godz. 14:00.
Szczegóły techniczne - MW 20x5 / N38 - magnes neodymowy walcowy
Specyfikacja / charakterystyka - MW 20x5 / N38 - magnes neodymowy walcowy
| właściwości | wartości |
|---|---|
| Nr kat. | 010044 |
| GTIN/EAN | 5906301810438 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Średnica Ø | 20 mm [±0,1 mm] |
| Wysokość | 5 mm [±0,1 mm] |
| Waga | 11.78 g |
| Kierunek magnesowania | ↑ osiowy |
| Udźwig ~ ? | 6.93 kg / 67.95 N |
| Indukcja magnetyczna ~ ? | 277.16 mT / 2772 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [min. - maks.] ? | 12.2-12.6 | kGs |
| remanencja Br [min. - maks.] ? | 1220-1260 | mT |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [min. - maks.] ? | 36-38 | BH max MGOe |
| gęstość energii [min. - maks.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Temperatura Curie TC | 312 - 380 | °C |
| Temperatura Curie TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅cm |
| Siła wyginania | 250 | MPa |
| Wytrzymałość na ściskanie | 1000~1100 | MPa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 10-6 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Analiza fizyczna magnesu - raport
Przedstawione wartości są rezultat analizy matematycznej. Wyniki zostały wyliczone na algorytmach dla klasy Nd2Fe14B. Realne warunki mogą odbiegać od wyników symulacji. Prosimy traktować te wyliczenia jako pomoc pomocniczą dla projektantów.
Tabela 1: Udźwig statyczny prostopadły (udźwig vs dystans) - wykres oddziaływania
MW 20x5 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg/lbs/g/N) | Status ryzyka |
|---|---|---|---|
| 0 mm |
2771 Gs
277.1 mT
|
6.93 kg / 15.28 lbs
6930.0 g / 68.0 N
|
średnie ryzyko |
| 1 mm |
2573 Gs
257.3 mT
|
5.97 kg / 13.17 lbs
5975.0 g / 58.6 N
|
średnie ryzyko |
| 2 mm |
2340 Gs
234.0 mT
|
4.94 kg / 10.89 lbs
4940.1 g / 48.5 N
|
średnie ryzyko |
| 3 mm |
2092 Gs
209.2 mT
|
3.95 kg / 8.70 lbs
3948.3 g / 38.7 N
|
średnie ryzyko |
| 5 mm |
1611 Gs
161.1 mT
|
2.34 kg / 5.17 lbs
2343.4 g / 23.0 N
|
średnie ryzyko |
| 10 mm |
775 Gs
77.5 mT
|
0.54 kg / 1.19 lbs
541.6 g / 5.3 N
|
bezpieczny |
| 15 mm |
387 Gs
38.7 mT
|
0.13 kg / 0.30 lbs
135.0 g / 1.3 N
|
bezpieczny |
| 20 mm |
211 Gs
21.1 mT
|
0.04 kg / 0.09 lbs
40.2 g / 0.4 N
|
bezpieczny |
| 30 mm |
80 Gs
8.0 mT
|
0.01 kg / 0.01 lbs
5.7 g / 0.1 N
|
bezpieczny |
| 50 mm |
20 Gs
2.0 mT
|
0.00 kg / 0.00 lbs
0.4 g / 0.0 N
|
bezpieczny |
Tabela 2: Równoległa siła ześlizgu (pion)
MW 20x5 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg/lbs/g/N) |
|---|---|---|
| 0 mm | Stal (~0.2) |
1.39 kg / 3.06 lbs
1386.0 g / 13.6 N
|
| 1 mm | Stal (~0.2) |
1.19 kg / 2.63 lbs
1194.0 g / 11.7 N
|
| 2 mm | Stal (~0.2) |
0.99 kg / 2.18 lbs
988.0 g / 9.7 N
|
| 3 mm | Stal (~0.2) |
0.79 kg / 1.74 lbs
790.0 g / 7.7 N
|
| 5 mm | Stal (~0.2) |
0.47 kg / 1.03 lbs
468.0 g / 4.6 N
|
| 10 mm | Stal (~0.2) |
0.11 kg / 0.24 lbs
108.0 g / 1.1 N
|
| 15 mm | Stal (~0.2) |
0.03 kg / 0.06 lbs
26.0 g / 0.3 N
|
| 20 mm | Stal (~0.2) |
0.01 kg / 0.02 lbs
8.0 g / 0.1 N
|
| 30 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
2.0 g / 0.0 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
Tabela 3: Montaż pionowy (poślizg) - udźwig wertykalny
MW 20x5 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg/lbs/g/N) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
2.08 kg / 4.58 lbs
2079.0 g / 20.4 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
1.39 kg / 3.06 lbs
1386.0 g / 13.6 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
0.69 kg / 1.53 lbs
693.0 g / 6.8 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
3.47 kg / 7.64 lbs
3465.0 g / 34.0 N
|
Tabela 4: Efektywność materiałowa (wpływ podłoża) - dobór blachy
MW 20x5 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg/lbs/g/N) |
|---|---|---|
| 0.5 mm |
|
0.69 kg / 1.53 lbs
693.0 g / 6.8 N
|
| 1 mm |
|
1.73 kg / 3.82 lbs
1732.5 g / 17.0 N
|
| 2 mm |
|
3.47 kg / 7.64 lbs
3465.0 g / 34.0 N
|
| 3 mm |
|
5.20 kg / 11.46 lbs
5197.5 g / 51.0 N
|
| 5 mm |
|
6.93 kg / 15.28 lbs
6930.0 g / 68.0 N
|
| 10 mm |
|
6.93 kg / 15.28 lbs
6930.0 g / 68.0 N
|
| 11 mm |
|
6.93 kg / 15.28 lbs
6930.0 g / 68.0 N
|
| 12 mm |
|
6.93 kg / 15.28 lbs
6930.0 g / 68.0 N
|
Tabela 5: Stabilność termiczna (stabilność) - limit termiczny
MW 20x5 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig (kg/lbs/g/N) | Status |
|---|---|---|---|
| 20 °C | 0.0% |
6.93 kg / 15.28 lbs
6930.0 g / 68.0 N
|
OK |
| 40 °C | -2.2% |
6.78 kg / 14.94 lbs
6777.5 g / 66.5 N
|
OK |
| 60 °C | -4.4% |
6.63 kg / 14.61 lbs
6625.1 g / 65.0 N
|
|
| 80 °C | -6.6% |
6.47 kg / 14.27 lbs
6472.6 g / 63.5 N
|
|
| 100 °C | -28.8% |
4.93 kg / 10.88 lbs
4934.2 g / 48.4 N
|
Tabela 6: Dwa magnesy (odpychanie) - siły w układzie
MW 20x5 / N38
| Szczelina (mm) | Przyciąganie (kg/lbs) (N-S) | Siła ścinająca (kg/lbs/g/N) | Odpychanie (kg/lbs) (N-N) |
|---|---|---|---|
| 0 mm |
14.87 kg / 32.79 lbs
4 380 Gs
|
2.23 kg / 4.92 lbs
2231 g / 21.9 N
|
N/A |
| 1 mm |
13.89 kg / 30.63 lbs
5 357 Gs
|
2.08 kg / 4.59 lbs
2084 g / 20.4 N
|
12.50 kg / 27.57 lbs
~0 Gs
|
| 2 mm |
12.82 kg / 28.27 lbs
5 146 Gs
|
1.92 kg / 4.24 lbs
1923 g / 18.9 N
|
11.54 kg / 25.44 lbs
~0 Gs
|
| 3 mm |
11.71 kg / 25.82 lbs
4 918 Gs
|
1.76 kg / 3.87 lbs
1757 g / 17.2 N
|
10.54 kg / 23.24 lbs
~0 Gs
|
| 5 mm |
9.51 kg / 20.97 lbs
4 433 Gs
|
1.43 kg / 3.15 lbs
1427 g / 14.0 N
|
8.56 kg / 18.88 lbs
~0 Gs
|
| 10 mm |
5.03 kg / 11.09 lbs
3 223 Gs
|
0.75 kg / 1.66 lbs
754 g / 7.4 N
|
4.53 kg / 9.98 lbs
~0 Gs
|
| 20 mm |
1.16 kg / 2.56 lbs
1 549 Gs
|
0.17 kg / 0.38 lbs
174 g / 1.7 N
|
1.05 kg / 2.31 lbs
~0 Gs
|
| 50 mm |
0.03 kg / 0.07 lbs
251 Gs
|
0.00 kg / 0.01 lbs
5 g / 0.0 N
|
0.03 kg / 0.06 lbs
~0 Gs
|
| 60 mm |
0.01 kg / 0.03 lbs
159 Gs
|
0.00 kg / 0.00 lbs
2 g / 0.0 N
|
0.01 kg / 0.02 lbs
~0 Gs
|
| 70 mm |
0.01 kg / 0.01 lbs
107 Gs
|
0.00 kg / 0.00 lbs
1 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 80 mm |
0.00 kg / 0.01 lbs
75 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 90 mm |
0.00 kg / 0.00 lbs
54 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 100 mm |
0.00 kg / 0.00 lbs
41 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
Tabela 7: Zagrożenia (implanty) - środki ostrożności
MW 20x5 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 8.5 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 6.5 cm |
| Zegarek mechaniczny | 20 Gs (2.0 mT) | 5.5 cm |
| Telefon / Smartfon | 40 Gs (4.0 mT) | 4.0 cm |
| Pilot do auta | 50 Gs (5.0 mT) | 4.0 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 1.5 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 1.5 cm |
Tabela 8: Zderzenia (ryzyko pęknięcia) - skutki zderzenia
MW 20x5 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
25.63 km/h
(7.12 m/s)
|
0.30 J | |
| 30 mm |
42.39 km/h
(11.77 m/s)
|
0.82 J | |
| 50 mm |
54.70 km/h
(15.19 m/s)
|
1.36 J | |
| 100 mm |
77.35 km/h
(21.49 m/s)
|
2.72 J |
Tabela 9: Odporność na korozję
MW 20x5 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
Tabela 10: Dane konstrukcyjne (Pc)
MW 20x5 / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 9 675 Mx | 96.7 µWb |
| Współczynnik Pc | 0.35 | Niski (Płaski) |
Tabela 11: Hydrostatyka i wyporność
MW 20x5 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 6.93 kg | Standard |
| Woda (dno rzeki) |
7.93 kg
(+1.00 kg zysk z wyporności)
|
+14.5% |
1. Udźwig w pionie
*Pamiętaj: Na powierzchni pionowej magnes utrzyma tylko ok. 20-30% siły prostopadłej.
2. Efektywność, a grubość stali
*Cienka blacha (np. blacha karoseryjna) drastycznie redukuje siłę trzymania.
3. Praca w cieple
*Dla materiału N38 granica bezpieczeństwa to 80°C.
4. Krzywa odmagnesowania i punkt pracy (B-H)
wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 0.35
Powyższy wykres prezentuje charakterystykę magnetyczną materiału w drugim kwadrancie pętli histerezy. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.
Skład chemiczny materiału
| żelazo (Fe) | 64% – 68% |
| neodym (Nd) | 29% – 32% |
| bor (B) | 1.1% – 1.2% |
| dysproz (Dy) | 0.5% – 2.0% |
| powłoka (Ni-Cu-Ni) | < 0.05% |
Dane środowiskowe
| recyklowalność (EoL) | 100% |
| surowce z recyklingu | ~10% (pre-cons) |
| ślad węglowy | low / zredukowany |
| kod odpadu (EWC) | 16 02 16 |
Sprawdź inne oferty
Zalety oraz wady neodymowych magnesów Nd2Fe14B.
Mocne strony
- Ich parametry są stabilne w czasie; po 10 latach użytkowania redukcja udźwigu to znikome ~1%.
- Wyróżniają się ogromną odpornością na demagnetyzację, nawet w silnych polach zewnętrznych.
- Pokrycie materiałami takimi jak nikiel czy złoto nadaje im profesjonalny i lśniący charakter.
- Indukcja magnetyczna na powierzchni tych magnesów jest imponująca, co czyni je najsilniejszymi w swojej klasie.
- Specjalna mieszanka pierwiastków sprawia, że są odporne na wysokie temperatury (zależnie od kształtu, nawet do 230°C).
- Można je precyzyjnie obrabiać do specyficznych wymiarów, co pozwala na ich adaptację w skomplikowanych urządzeniach.
- Pełnią kluczową rolę w przemyśle, będąc sercem silników, pamięci masowych i urządzeń ratujących życie.
- Mały rozmiar, wielka moc – przy kompaktowej budowie oferują ogromną siłę, co jest kluczowe przy budowie małych urządzeń.
Słabe strony
- Delikatność mechaniczna to ich słaba strona. Łatwo ulegają uszkodzeniu przy upadku, dlatego zalecamy osłony lub montaż w stali.
- Wysoka temperatura to wróg neodymów – powyżej 80°C tracą właściwości. Do zadań specjalnych polecamy serię [AH], działającą stabilnie aż do 230°C.
- Są podatne na rdzewienie w kontakcie z wodą. Na zewnątrz zalecamy użycie magnesów wodoszczelnych (np. w gumie).
- Obróbka jest trudna – wiercenie otworów w samym magnesie jest ryzykowne. Lepiej wybrać gotowe uchwyty magnetyczne (magnes w obudowie).
- Ryzyko połknięcia – małe elementy są groźne dla dzieci. Połknięcie kilku sztuk grozi poważnymi obrażeniami. Dodatkowo mogą utrudniać badania (np. rezonans).
- Nie należą do tanich – ich cena jest wyższa niż ferrytów, co należy uwzględnić przy planowaniu kosztów.
Parametry udźwigu
Najwyższa nośność magnesu – od czego zależy?
- przy użyciu blachy ze stali niskowęglowej, gwarantującej pełne nasycenie magnetyczne
- o przekroju nie mniejszej niż 10 mm
- charakteryzującej się równą strukturą
- bez żadnej przerwy powietrznej pomiędzy magnesem a stalą
- dla siły przyłożonej pod kątem prostym (w osi magnesu)
- w temp. ok. 20°C
Wpływ czynników na nośność magnesu w praktyce
- Szczelina – obecność jakiejkolwiek warstwy (rdza, brud, powietrze) przerywa obwód magnetyczny, co redukuje udźwig lawinowo (nawet o 50% przy 0,5 mm).
- Kąt przyłożenia siły – maksymalny parametr osiągamy tylko przy ciągnięciu pod kątem 90°. Siła potrzebna do przesunięcia magnesu po powierzchni jest zazwyczaj kilkukrotnie niższa (ok. 1/5 udźwigu).
- Masywność podłoża – za chuda stal powoduje nasycenie magnetyczne, przez co część mocy ucieka w powietrzu.
- Gatunek stali – idealnym podłożem jest czysta stal żelazna. Stale nierdzewne mogą generować mniejszy udźwig.
- Faktura blachy – powierzchnie gładkie gwarantują idealne doleganie, co poprawia nasycenie pola. Powierzchnie chropowate zmniejszają efektywność.
- Temperatura pracy – spieki NdFeB posiadają ujemny współczynnik temperaturowy. W wyższych temperaturach tracą moc, a w niskich mogą być silniejsze (do pewnej granicy).
Pomiar udźwigu wykonywano na gładkiej blaszce o optymalnej grubości, przy siłach prostopadłych, z kolei przy działaniu siły na zsuwanie udźwig jest mniejszy nawet 75%. Dodatkowo, nawet niewielka szczelina pomiędzy magnesem, a blachą zmniejsza udźwig.
Środki ostrożności podczas pracy z magnesami neodymowymi
Ostrzeżenie dla alergików
Część populacji posiada alergię kontaktową na nikiel, którym powlekane są standardowo magnesy neodymowe. Długotrwała ekspozycja może skutkować silną reakcję alergiczną. Wskazane jest noszenie rękawiczek ochronnych.
Zagrożenie zapłonem
Ryzyko wybuchu: Pył neodymowy jest wysoce łatwopalny. Nie modyfikuj mechanicznie magnesów amatorsko, gdyż może to wywołać pożar.
Interferencja medyczna
Zagrożenie życia: Magnesy neodymowe mogą dezaktywować stymulatory i defibrylatory. Nie zbliżaj się, jeśli masz wszczepione implanty elektroniczne.
Nie lekceważ mocy
Stosuj magnesy świadomie. Ich gigantyczny udźwig może zaskoczyć nawet profesjonalistów. Zachowaj czujność i respektuj ich siły.
Interferencja magnetyczna
Uwaga: magnesy neodymowe generują pole, które zakłócają systemy nawigacji. Zachowaj odpowiednią odległość od komórki, tabletu i nawigacji.
Zagrożenie dla elektroniki
Ochrona danych: Magnesy neodymowe mogą zdegradować nośniki danych oraz urządzenia precyzyjne (rozruszniki serca, aparaty słuchowe, zegarki mechaniczne).
Siła zgniatająca
Duże magnesy mogą zdruzgotać palce w ułamku sekundy. Absolutnie nie umieszczaj dłoni między dwa przyciągające się elementy.
Wrażliwość na ciepło
Monitoruj warunki termiczne. Podgrzanie magnesu powyżej 80 stopni Celsjusza zniszczy jego domenę magnetyczną i udźwig.
Magnesy są kruche
Mimo niklowej powłoki, neodym jest delikatny i nie znosi udarów. Nie uderzaj, gdyż magnes może się pokruszyć na drobiny.
Uwaga: zadławienie
Silne magnesy to nie zabawki. Przypadkowe zjedzenie dwóch lub więcej magnesów może doprowadzić do ich zaciśnięciem jelit, co stwarza stan krytyczny i wiąże się z koniecznością natychmiastowej operacji.
