MW 20x2.5 / N38 - magnes neodymowy walcowy
magnes neodymowy walcowy
Numer katalogowy 010042
GTIN/EAN: 5906301810414
Średnica Ø
20 mm [±0,1 mm]
Wysokość
2.5 mm [±0,1 mm]
Waga
5.89 g
Kierunek magnesowania
↑ osiowy
Udźwig
2.41 kg / 23.65 N
Indukcja magnetyczna
150.34 mT / 1503 Gs
Powłoka
[NiCuNi] nikiel
2.51 ZŁ z VAT / szt. + cena za transport
2.04 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?
Dzwoń do nas
+48 22 499 98 98
alternatywnie pisz przez
nasz formularz online
przez naszą stronę.
Udźwig i formę magnesu przetestujesz u nas w
kalkulatorze magnetycznym.
Zamów do 14:00, a wyślemy dziś!
Szczegółowa specyfikacja MW 20x2.5 / N38 - magnes neodymowy walcowy
Specyfikacja / charakterystyka - MW 20x2.5 / N38 - magnes neodymowy walcowy
| właściwości | wartości |
|---|---|
| Nr kat. | 010042 |
| GTIN/EAN | 5906301810414 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Średnica Ø | 20 mm [±0,1 mm] |
| Wysokość | 2.5 mm [±0,1 mm] |
| Waga | 5.89 g |
| Kierunek magnesowania | ↑ osiowy |
| Udźwig ~ ? | 2.41 kg / 23.65 N |
| Indukcja magnetyczna ~ ? | 150.34 mT / 1503 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [min. - maks.] ? | 12.2-12.6 | kGs |
| remanencja Br [min. - maks.] ? | 1220-1260 | mT |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [min. - maks.] ? | 36-38 | BH max MGOe |
| gęstość energii [min. - maks.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Temperatura Curie TC | 312 - 380 | °C |
| Temperatura Curie TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅cm |
| Siła wyginania | 250 | MPa |
| Wytrzymałość na ściskanie | 1000~1100 | MPa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 10-6 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Analiza inżynierska magnesu neodymowego - raport
Przedstawione informacje są rezultat symulacji matematycznej. Wartości oparte są na algorytmach dla klasy Nd2Fe14B. Rzeczywiste osiągi mogą nieznacznie odbiegać od wyników symulacji. Traktuj te dane jako punkt odniesienia dla projektantów.
Tabela 1: Siła prostopadła statyczna (siła vs dystans) - wykres oddziaływania
MW 20x2.5 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg/lbs/g/N) | Status ryzyka |
|---|---|---|---|
| 0 mm |
1503 Gs
150.3 mT
|
2.41 kg / 5.31 lbs
2410.0 g / 23.6 N
|
uwaga |
| 1 mm |
1431 Gs
143.1 mT
|
2.18 kg / 4.82 lbs
2184.9 g / 21.4 N
|
uwaga |
| 2 mm |
1328 Gs
132.8 mT
|
1.88 kg / 4.15 lbs
1882.0 g / 18.5 N
|
słaby uchwyt |
| 3 mm |
1206 Gs
120.6 mT
|
1.55 kg / 3.42 lbs
1552.2 g / 15.2 N
|
słaby uchwyt |
| 5 mm |
947 Gs
94.7 mT
|
0.96 kg / 2.11 lbs
957.1 g / 9.4 N
|
słaby uchwyt |
| 10 mm |
457 Gs
45.7 mT
|
0.22 kg / 0.49 lbs
223.1 g / 2.2 N
|
słaby uchwyt |
| 15 mm |
224 Gs
22.4 mT
|
0.05 kg / 0.12 lbs
53.7 g / 0.5 N
|
słaby uchwyt |
| 20 mm |
120 Gs
12.0 mT
|
0.02 kg / 0.03 lbs
15.4 g / 0.2 N
|
słaby uchwyt |
| 30 mm |
44 Gs
4.4 mT
|
0.00 kg / 0.00 lbs
2.1 g / 0.0 N
|
słaby uchwyt |
| 50 mm |
11 Gs
1.1 mT
|
0.00 kg / 0.00 lbs
0.1 g / 0.0 N
|
słaby uchwyt |
Tabela 2: Siła równoległa zsuwania (pion)
MW 20x2.5 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg/lbs/g/N) |
|---|---|---|
| 0 mm | Stal (~0.2) |
0.48 kg / 1.06 lbs
482.0 g / 4.7 N
|
| 1 mm | Stal (~0.2) |
0.44 kg / 0.96 lbs
436.0 g / 4.3 N
|
| 2 mm | Stal (~0.2) |
0.38 kg / 0.83 lbs
376.0 g / 3.7 N
|
| 3 mm | Stal (~0.2) |
0.31 kg / 0.68 lbs
310.0 g / 3.0 N
|
| 5 mm | Stal (~0.2) |
0.19 kg / 0.42 lbs
192.0 g / 1.9 N
|
| 10 mm | Stal (~0.2) |
0.04 kg / 0.10 lbs
44.0 g / 0.4 N
|
| 15 mm | Stal (~0.2) |
0.01 kg / 0.02 lbs
10.0 g / 0.1 N
|
| 20 mm | Stal (~0.2) |
0.00 kg / 0.01 lbs
4.0 g / 0.0 N
|
| 30 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
Tabela 3: Montaż pionowy (ścinanie) - zachowanie na śliskim podłożu
MW 20x2.5 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg/lbs/g/N) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
0.72 kg / 1.59 lbs
723.0 g / 7.1 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
0.48 kg / 1.06 lbs
482.0 g / 4.7 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
0.24 kg / 0.53 lbs
241.0 g / 2.4 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
1.21 kg / 2.66 lbs
1205.0 g / 11.8 N
|
Tabela 4: Efektywność materiałowa (wpływ podłoża) - straty mocy
MW 20x2.5 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg/lbs/g/N) |
|---|---|---|
| 0.5 mm |
|
0.24 kg / 0.53 lbs
241.0 g / 2.4 N
|
| 1 mm |
|
0.60 kg / 1.33 lbs
602.5 g / 5.9 N
|
| 2 mm |
|
1.21 kg / 2.66 lbs
1205.0 g / 11.8 N
|
| 3 mm |
|
1.81 kg / 3.98 lbs
1807.5 g / 17.7 N
|
| 5 mm |
|
2.41 kg / 5.31 lbs
2410.0 g / 23.6 N
|
| 10 mm |
|
2.41 kg / 5.31 lbs
2410.0 g / 23.6 N
|
| 11 mm |
|
2.41 kg / 5.31 lbs
2410.0 g / 23.6 N
|
| 12 mm |
|
2.41 kg / 5.31 lbs
2410.0 g / 23.6 N
|
Tabela 5: Stabilność termiczna (stabilność) - próg odporności
MW 20x2.5 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig (kg/lbs/g/N) | Status |
|---|---|---|---|
| 20 °C | 0.0% |
2.41 kg / 5.31 lbs
2410.0 g / 23.6 N
|
OK |
| 40 °C | -2.2% |
2.36 kg / 5.20 lbs
2357.0 g / 23.1 N
|
OK |
| 60 °C | -4.4% |
2.30 kg / 5.08 lbs
2304.0 g / 22.6 N
|
|
| 80 °C | -6.6% |
2.25 kg / 4.96 lbs
2250.9 g / 22.1 N
|
|
| 100 °C | -28.8% |
1.72 kg / 3.78 lbs
1715.9 g / 16.8 N
|
Tabela 6: Dwa magnesy (przyciąganie) - kolizja pól
MW 20x2.5 / N38
| Szczelina (mm) | Przyciąganie (kg/lbs) (N-S) | Siła ścinająca (kg/lbs/g/N) | Odpychanie (kg/lbs) (N-N) |
|---|---|---|---|
| 0 mm |
4.38 kg / 9.65 lbs
2 771 Gs
|
0.66 kg / 1.45 lbs
656 g / 6.4 N
|
N/A |
| 1 mm |
4.20 kg / 9.25 lbs
2 944 Gs
|
0.63 kg / 1.39 lbs
629 g / 6.2 N
|
3.78 kg / 8.33 lbs
~0 Gs
|
| 2 mm |
3.97 kg / 8.75 lbs
2 862 Gs
|
0.60 kg / 1.31 lbs
595 g / 5.8 N
|
3.57 kg / 7.87 lbs
~0 Gs
|
| 3 mm |
3.70 kg / 8.17 lbs
2 766 Gs
|
0.56 kg / 1.22 lbs
556 g / 5.5 N
|
3.33 kg / 7.35 lbs
~0 Gs
|
| 5 mm |
3.12 kg / 6.88 lbs
2 538 Gs
|
0.47 kg / 1.03 lbs
468 g / 4.6 N
|
2.81 kg / 6.19 lbs
~0 Gs
|
| 10 mm |
1.74 kg / 3.83 lbs
1 895 Gs
|
0.26 kg / 0.57 lbs
261 g / 2.6 N
|
1.56 kg / 3.45 lbs
~0 Gs
|
| 20 mm |
0.41 kg / 0.89 lbs
915 Gs
|
0.06 kg / 0.13 lbs
61 g / 0.6 N
|
0.36 kg / 0.80 lbs
~0 Gs
|
| 50 mm |
0.01 kg / 0.02 lbs
140 Gs
|
0.00 kg / 0.00 lbs
1 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 60 mm |
0.00 kg / 0.01 lbs
88 Gs
|
0.00 kg / 0.00 lbs
1 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 70 mm |
0.00 kg / 0.00 lbs
58 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 80 mm |
0.00 kg / 0.00 lbs
41 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 90 mm |
0.00 kg / 0.00 lbs
29 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 100 mm |
0.00 kg / 0.00 lbs
22 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
Tabela 7: Bezpieczeństwo (BHP) (implanty) - ostrzeżenia
MW 20x2.5 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 7.0 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 5.5 cm |
| Zegarek mechaniczny | 20 Gs (2.0 mT) | 4.5 cm |
| Telefon / Smartfon | 40 Gs (4.0 mT) | 3.5 cm |
| Pilot do auta | 50 Gs (5.0 mT) | 3.0 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 1.5 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 1.0 cm |
Tabela 8: Dynamika (energia kinetyczna) - skutki zderzenia
MW 20x2.5 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
21.55 km/h
(5.99 m/s)
|
0.11 J | |
| 30 mm |
35.35 km/h
(9.82 m/s)
|
0.28 J | |
| 50 mm |
45.62 km/h
(12.67 m/s)
|
0.47 J | |
| 100 mm |
64.51 km/h
(17.92 m/s)
|
0.95 J |
Tabela 9: Specyfikacja ochrony powierzchni
MW 20x2.5 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
Tabela 10: Dane konstrukcyjne (Strumień)
MW 20x2.5 / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 5 996 Mx | 60.0 µWb |
| Współczynnik Pc | 0.19 | Niski (Płaski) |
Tabela 11: Hydrostatyka i wyporność
MW 20x2.5 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 2.41 kg | Standard |
| Woda (dno rzeki) |
2.76 kg
(+0.35 kg zysk z wyporności)
|
+14.5% |
1. Siła zsuwająca
*Uwaga: Na pionowej ścianie magnes utrzyma tylko ok. 20-30% siły oderwania.
2. Nasycenie magnetyczne
*Zbyt cienki metal (np. obudowa PC 0.5mm) znacząco osłabia siłę trzymania.
3. Wytrzymałość temperaturowa
*W klasie N38 maksymalna temperatura to 80°C.
4. Krzywa odmagnesowania i punkt pracy (B-H)
wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 0.19
Powyższy wykres prezentuje charakterystykę magnetyczną materiału w drugim kwadrancie pętli histerezy. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.
Specyfikacja materiałowa
| żelazo (Fe) | 64% – 68% |
| neodym (Nd) | 29% – 32% |
| bor (B) | 1.1% – 1.2% |
| dysproz (Dy) | 0.5% – 2.0% |
| powłoka (Ni-Cu-Ni) | < 0.05% |
Ekologia i recykling (GPSR)
| recyklowalność (EoL) | 100% |
| surowce z recyklingu | ~10% (pre-cons) |
| ślad węglowy | low / zredukowany |
| kod odpadu (EWC) | 16 02 16 |
Zobacz też inne propozycje
Zalety oraz wady neodymowych magnesów Nd2Fe14B.
Mocne strony
- Są niezwykle trwałe – przez okres ok. 10 lat gubią maksymalnie ~1% swojej mocy (wg danych).
- Zewnętrzne pola magnetyczne nie powodują ich szybkiego rozmagnesowania – posiadają dużą zdolność koercji.
- Łączą moc z estetyką – poprzez niklowanie lub złocenie ich powierzchnia jest refleksyjna i wygląda estetycznie.
- Oferują najwyższą indukcję magnetyczną w punkcie styku, co gwarantuje ogromną siłę.
- Specjalna mieszanka pierwiastków sprawia, że wykazują odporność na wysokie temperatury (zależnie od kształtu, nawet do 230°C).
- Elastyczność kształtowania – można je produkować w rozmaitych formach, dopasowanych do konkretnego projektu.
- Znajdują szerokie zastosowanie w przemyśle high-tech – od dysków twardych i silników, po precyzyjną diagnostykę.
- Mały rozmiar, wielka moc – przy niewielkich gabarytach oferują ogromną siłę, co jest kluczowe przy miniaturyzacji.
Minusy
- Kruchość to ich słaba strona. Mogą pęknąć przy upadku, dlatego zalecamy obudowy lub montaż w stali.
- Klasyczne neodymy tracą moc powyżej 80°C. Jeśli wymagasz pracy w wyższych temperaturach, zastosuj serię [AH] (odporną do 230°C).
- Ryzyko korozji: bez osłony magnes ulegnie utlenieniu na deszczu. Rozważ wersje powlekane tworzywem do zastosowań zewnętrznych.
- Nie należy ich nawiercać – do montażu śrubowego służą specjalne uchwyty magnetyczne z wbudowanym gwintem.
- Produkt niebezpieczny po połknięciu. Bezwzględnie chronić przed dziećmi. Wewnątrz ciała magnesy mogą się połączyć, powodując poważne urazy.
- Wysoki koszt zakupu w porównaniu do ferrytów to ich minus, szczególnie przy dużych ilościach.
Analiza siły trzymania
Maksymalny udźwig magnesu – co ma na to wpływ?
- na płycie wykonanej ze stali miękkiej, doskonale skupiającej strumień magnetyczny
- posiadającej grubość co najmniej 10 mm aby uniknąć nasycenia
- charakteryzującej się równą strukturą
- bez najmniejszej przerwy powietrznej pomiędzy magnesem a stalą
- przy pionowym kierunku działania siły (kąt 90 stopni)
- przy temperaturze ok. 20 stopni Celsjusza
Wpływ czynników na nośność magnesu w praktyce
- Dystans (pomiędzy magnesem a metalem), bowiem nawet niewielka przerwa (np. 0,5 mm) powoduje drastyczny spadek udźwigu nawet o 50% (dotyczy to także farby, korozji czy zanieczyszczeń).
- Kierunek działania siły – maksymalny parametr uzyskujemy tylko przy ciągnięciu pod kątem 90°. Siła potrzebna do przesunięcia magnesu po blasze jest zazwyczaj wielokrotnie mniejsza (ok. 1/5 udźwigu).
- Grubość metalu – im cieńsza blacha, tym słabsze trzymanie. Strumień magnetyczny przechodzi przez materiał, zamiast zamienić się w udźwig.
- Typ metalu – nie każda stal reaguje tak samo. Dodatki stopowe pogarszają interakcję z magnesem.
- Struktura powierzchni – im równiejsza blacha, tym lepsze przyleganie i silniejsze trzymanie. Nierówności działają jak mikroszczeliny.
- Czynnik termiczny – wysoka temperatura osłabia siłę przyciągania. Zbyt wysoka temperatura może trwale uszkodzić magnes.
Udźwig mierzono z wykorzystaniem wypolerowanej blachy o właściwej grubości (min. 20 mm), przy działaniu siły prostopadłej, jednak przy próbie przesunięcia magnesu udźwig jest mniejszy nawet pięć razy. Co więcej, nawet minimalna przerwa między powierzchnią magnesu, a blachą zmniejsza udźwig.
BHP przy magnesach
Wpływ na zdrowie
Uwaga zdrowotna: Magnesy neodymowe mogą dezaktywować rozruszniki serca i defibrylatory. Nie zbliżaj się, jeśli masz wszczepione urządzenia wspomagające.
Alergia na nikiel
Informacja alergiczna: warstwa ochronna Ni-Cu-Ni ma w składzie nikiel. W przypadku wystąpienia świądu lub podrażnienia, należy bezzwłocznie zakończyć pracę z magnesami i zabezpieczyć dłonie.
Uszkodzenia czujników
Silne pole magnetyczne zakłóca funkcjonowanie kompasów w smartfonach i nawigacjach GPS. Nie zbliżaj magnesów od telefonu, aby uniknąć awarii czujników.
Zagrożenie zapłonem
Pył generowany podczas obróbki magnesów jest łatwopalny. Zakaz wiercenia w magnesach w warunkach domowych.
Poważne obrażenia
Niebezpieczeństwo urazu: Siła przyciągania jest tak duża, że może wywołać krwiaki, zmiażdżenia, a nawet otwarte złamania. Używaj grubych rękawic.
Świadome użytkowanie
Zachowaj rozwagę. Magnesy neodymowe przyciągają z dużej odległości i łączą się z impetem, często gwałtowniej niż zdążysz zareagować.
Przegrzanie magnesu
Kontroluj ciepło. Podgrzanie magnesu na wysoką temperaturę zdegraduje jego domenę magnetyczną i udźwig.
Łamliwość magnesów
Spieki NdFeB to materiał ceramiczny, co oznacza, że są bardzo kruche. Zderzenie dwóch magnesów spowoduje ich rozpryśnięcie na ostre odłamki.
Karty i dyski
Bardzo silne oddziaływanie może usunąć informacje na kartach płatniczych, nośnikach HDD i innych pamięciach. Zachowaj odstęp min. 10 cm.
Produkt nie dla dzieci
Bezwzględnie chroń magnesy przed najmłodszymi. Ryzyko zadławienia jest wysokie, a konsekwencje zwarcia magnesów wewnątrz organizmu są tragiczne.
