MW 20x35 / N38 - magnes neodymowy walcowy
magnes neodymowy walcowy
Numer katalogowy 010043
GTIN/EAN: 5906301810421
Średnica Ø
20 mm [±0,1 mm]
Wysokość
35 mm [±0,1 mm]
Waga
82.47 g
Kierunek magnesowania
↑ osiowy
Udźwig
9.58 kg / 93.97 N
Indukcja magnetyczna
595.77 mT / 5958 Gs
Powłoka
[NiCuNi] nikiel
49.52 ZŁ z VAT / szt. + cena za transport
40.26 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?
Zadzwoń już teraz
+48 22 499 98 98
ewentualnie pisz za pomocą
formularz kontaktowy
w sekcji kontakt.
Właściwości i wygląd magnesów neodymowych przetestujesz dzięki naszemu
kalkulatorze siły.
Zamówienia złożone do godziny 14:00 zostaną wysłane tego samego dnia roboczego.
Specyfikacja - MW 20x35 / N38 - magnes neodymowy walcowy
Specyfikacja / charakterystyka - MW 20x35 / N38 - magnes neodymowy walcowy
| właściwości | wartości |
|---|---|
| Nr kat. | 010043 |
| GTIN/EAN | 5906301810421 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Średnica Ø | 20 mm [±0,1 mm] |
| Wysokość | 35 mm [±0,1 mm] |
| Waga | 82.47 g |
| Kierunek magnesowania | ↑ osiowy |
| Udźwig ~ ? | 9.58 kg / 93.97 N |
| Indukcja magnetyczna ~ ? | 595.77 mT / 5958 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [min. - maks.] ? | 12.2-12.6 | kGs |
| remanencja Br [min. - maks.] ? | 1220-1260 | mT |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [min. - maks.] ? | 36-38 | BH max MGOe |
| gęstość energii [min. - maks.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Temperatura Curie TC | 312 - 380 | °C |
| Temperatura Curie TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅cm |
| Siła wyginania | 250 | MPa |
| Wytrzymałość na ściskanie | 1000~1100 | MPa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 10-6 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Symulacja inżynierska magnesu neodymowego - parametry techniczne
Przedstawione informacje stanowią rezultat analizy matematycznej. Wartości oparte są na algorytmach dla materiału Nd2Fe14B. Realne osiągi mogą nieznacznie różnić się od wartości teoretycznych. Prosimy traktować te wyliczenia jako pomoc pomocniczą dla projektantów.
Tabela 1: Udźwig statyczny prostopadły (udźwig vs odległość) - charakterystyka
MW 20x35 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg/lbs/g/N) | Status ryzyka |
|---|---|---|---|
| 0 mm |
5955 Gs
595.5 mT
|
9.58 kg / 21.12 lbs
9580.0 g / 94.0 N
|
mocny |
| 1 mm |
5357 Gs
535.7 mT
|
7.75 kg / 17.09 lbs
7751.3 g / 76.0 N
|
mocny |
| 2 mm |
4769 Gs
476.9 mT
|
6.14 kg / 13.55 lbs
6144.2 g / 60.3 N
|
mocny |
| 3 mm |
4214 Gs
421.4 mT
|
4.80 kg / 10.58 lbs
4797.3 g / 47.1 N
|
mocny |
| 5 mm |
3242 Gs
324.2 mT
|
2.84 kg / 6.26 lbs
2839.3 g / 27.9 N
|
mocny |
| 10 mm |
1668 Gs
166.8 mT
|
0.75 kg / 1.66 lbs
751.8 g / 7.4 N
|
słaby uchwyt |
| 15 mm |
921 Gs
92.1 mT
|
0.23 kg / 0.51 lbs
229.1 g / 2.2 N
|
słaby uchwyt |
| 20 mm |
555 Gs
55.5 mT
|
0.08 kg / 0.18 lbs
83.1 g / 0.8 N
|
słaby uchwyt |
| 30 mm |
246 Gs
24.6 mT
|
0.02 kg / 0.04 lbs
16.4 g / 0.2 N
|
słaby uchwyt |
| 50 mm |
78 Gs
7.8 mT
|
0.00 kg / 0.00 lbs
1.6 g / 0.0 N
|
słaby uchwyt |
Tabela 2: Równoległa siła ześlizgu (pion)
MW 20x35 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg/lbs/g/N) |
|---|---|---|
| 0 mm | Stal (~0.2) |
1.92 kg / 4.22 lbs
1916.0 g / 18.8 N
|
| 1 mm | Stal (~0.2) |
1.55 kg / 3.42 lbs
1550.0 g / 15.2 N
|
| 2 mm | Stal (~0.2) |
1.23 kg / 2.71 lbs
1228.0 g / 12.0 N
|
| 3 mm | Stal (~0.2) |
0.96 kg / 2.12 lbs
960.0 g / 9.4 N
|
| 5 mm | Stal (~0.2) |
0.57 kg / 1.25 lbs
568.0 g / 5.6 N
|
| 10 mm | Stal (~0.2) |
0.15 kg / 0.33 lbs
150.0 g / 1.5 N
|
| 15 mm | Stal (~0.2) |
0.05 kg / 0.10 lbs
46.0 g / 0.5 N
|
| 20 mm | Stal (~0.2) |
0.02 kg / 0.04 lbs
16.0 g / 0.2 N
|
| 30 mm | Stal (~0.2) |
0.00 kg / 0.01 lbs
4.0 g / 0.0 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
Tabela 3: Montaż pionowy (ścinanie) - zachowanie na śliskim podłożu
MW 20x35 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg/lbs/g/N) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
2.87 kg / 6.34 lbs
2874.0 g / 28.2 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
1.92 kg / 4.22 lbs
1916.0 g / 18.8 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
0.96 kg / 2.11 lbs
958.0 g / 9.4 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
4.79 kg / 10.56 lbs
4790.0 g / 47.0 N
|
Tabela 4: Efektywność materiałowa (wpływ podłoża) - straty mocy
MW 20x35 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg/lbs/g/N) |
|---|---|---|
| 0.5 mm |
|
0.96 kg / 2.11 lbs
958.0 g / 9.4 N
|
| 1 mm |
|
2.40 kg / 5.28 lbs
2395.0 g / 23.5 N
|
| 2 mm |
|
4.79 kg / 10.56 lbs
4790.0 g / 47.0 N
|
| 3 mm |
|
7.19 kg / 15.84 lbs
7185.0 g / 70.5 N
|
| 5 mm |
|
9.58 kg / 21.12 lbs
9580.0 g / 94.0 N
|
| 10 mm |
|
9.58 kg / 21.12 lbs
9580.0 g / 94.0 N
|
| 11 mm |
|
9.58 kg / 21.12 lbs
9580.0 g / 94.0 N
|
| 12 mm |
|
9.58 kg / 21.12 lbs
9580.0 g / 94.0 N
|
Tabela 5: Wytrzymałość temperaturowa (zachowanie materiału) - limit termiczny
MW 20x35 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig (kg/lbs/g/N) | Status |
|---|---|---|---|
| 20 °C | 0.0% |
9.58 kg / 21.12 lbs
9580.0 g / 94.0 N
|
OK |
| 40 °C | -2.2% |
9.37 kg / 20.66 lbs
9369.2 g / 91.9 N
|
OK |
| 60 °C | -4.4% |
9.16 kg / 20.19 lbs
9158.5 g / 89.8 N
|
OK |
| 80 °C | -6.6% |
8.95 kg / 19.73 lbs
8947.7 g / 87.8 N
|
|
| 100 °C | -28.8% |
6.82 kg / 15.04 lbs
6821.0 g / 66.9 N
|
Tabela 6: Dwa magnesy (przyciąganie) - zasięg pola
MW 20x35 / N38
| Szczelina (mm) | Przyciąganie (kg/lbs) (N-S) | Opór ścinania (kg/lbs/g/N) | Odpychanie (kg/lbs) (N-N) |
|---|---|---|---|
| 0 mm |
68.69 kg / 151.44 lbs
6 132 Gs
|
10.30 kg / 22.72 lbs
10304 g / 101.1 N
|
N/A |
| 1 mm |
62.01 kg / 136.70 lbs
11 316 Gs
|
9.30 kg / 20.50 lbs
9301 g / 91.2 N
|
55.81 kg / 123.03 lbs
~0 Gs
|
| 2 mm |
55.58 kg / 122.53 lbs
10 714 Gs
|
8.34 kg / 18.38 lbs
8337 g / 81.8 N
|
50.02 kg / 110.28 lbs
~0 Gs
|
| 3 mm |
49.59 kg / 109.32 lbs
10 120 Gs
|
7.44 kg / 16.40 lbs
7438 g / 73.0 N
|
44.63 kg / 98.39 lbs
~0 Gs
|
| 5 mm |
38.99 kg / 85.96 lbs
8 974 Gs
|
5.85 kg / 12.89 lbs
5849 g / 57.4 N
|
35.09 kg / 77.37 lbs
~0 Gs
|
| 10 mm |
20.36 kg / 44.88 lbs
6 484 Gs
|
3.05 kg / 6.73 lbs
3054 g / 30.0 N
|
18.32 kg / 40.40 lbs
~0 Gs
|
| 20 mm |
5.39 kg / 11.88 lbs
3 337 Gs
|
0.81 kg / 1.78 lbs
809 g / 7.9 N
|
4.85 kg / 10.70 lbs
~0 Gs
|
| 50 mm |
0.25 kg / 0.55 lbs
718 Gs
|
0.04 kg / 0.08 lbs
37 g / 0.4 N
|
0.22 kg / 0.50 lbs
~0 Gs
|
| 60 mm |
0.12 kg / 0.26 lbs
492 Gs
|
0.02 kg / 0.04 lbs
18 g / 0.2 N
|
0.11 kg / 0.23 lbs
~0 Gs
|
| 70 mm |
0.06 kg / 0.13 lbs
352 Gs
|
0.01 kg / 0.02 lbs
9 g / 0.1 N
|
0.05 kg / 0.12 lbs
~0 Gs
|
| 80 mm |
0.03 kg / 0.07 lbs
261 Gs
|
0.00 kg / 0.01 lbs
5 g / 0.0 N
|
0.03 kg / 0.07 lbs
~0 Gs
|
| 90 mm |
0.02 kg / 0.04 lbs
200 Gs
|
0.00 kg / 0.01 lbs
3 g / 0.0 N
|
0.02 kg / 0.04 lbs
~0 Gs
|
| 100 mm |
0.01 kg / 0.03 lbs
156 Gs
|
0.00 kg / 0.00 lbs
2 g / 0.0 N
|
0.01 kg / 0.02 lbs
~0 Gs
|
Tabela 7: Bezpieczeństwo (BHP) (implanty) - ostrzeżenia
MW 20x35 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 15.0 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 11.5 cm |
| Zegarek mechaniczny | 20 Gs (2.0 mT) | 9.0 cm |
| Telefon / Smartfon | 40 Gs (4.0 mT) | 7.0 cm |
| Pilot do auta | 50 Gs (5.0 mT) | 6.5 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 2.5 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 2.0 cm |
Tabela 8: Energia uderzenia (ryzyko pęknięcia) - ostrzeżenie
MW 20x35 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
11.39 km/h
(3.16 m/s)
|
0.41 J | |
| 30 mm |
18.85 km/h
(5.24 m/s)
|
1.13 J | |
| 50 mm |
24.31 km/h
(6.75 m/s)
|
1.88 J | |
| 100 mm |
34.37 km/h
(9.55 m/s)
|
3.76 J |
Tabela 9: Trwałość powłoki antykorozyjnej
MW 20x35 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
Tabela 10: Dane konstrukcyjne (Pc)
MW 20x35 / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 20 408 Mx | 204.1 µWb |
| Współczynnik Pc | 1.16 | Wysoki (Stabilny) |
Tabela 11: Zastosowanie podwodne
MW 20x35 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 9.58 kg | Standard |
| Woda (dno rzeki) |
10.97 kg
(+1.39 kg zysk z wyporności)
|
+14.5% |
1. Siła zsuwająca
*Ważne: Na powierzchni pionowej magnes utrzyma jedynie ok. 20-30% siły prostopadłej.
2. Nasycenie magnetyczne
*Zbyt cienki metal (np. blacha karoseryjna) znacząco redukuje siłę trzymania.
3. Spadek mocy w temperaturze
*Dla materiału N38 granica bezpieczeństwa to 80°C.
4. Krzywa odmagnesowania i punkt pracy (B-H)
wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 1.16
Powyższy wykres prezentuje charakterystykę magnetyczną materiału w drugim kwadrancie pętli histerezy. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.
Specyfikacja materiałowa
| żelazo (Fe) | 64% – 68% |
| neodym (Nd) | 29% – 32% |
| bor (B) | 1.1% – 1.2% |
| dysproz (Dy) | 0.5% – 2.0% |
| powłoka (Ni-Cu-Ni) | < 0.05% |
Dane środowiskowe
| recyklowalność (EoL) | 100% |
| surowce z recyklingu | ~10% (pre-cons) |
| ślad węglowy | low / zredukowany |
| kod odpadu (EWC) | 16 02 16 |
Inne produkty
Wady oraz zalety neodymowych magnesów Nd2Fe14B.
Zalety
- Ich parametry są stabilne w czasie; po 10 latach użytkowania redukcja udźwigu to znikome ~1%.
- Są niewrażliwe na zewnętrzne zakłócenia, co czyni je odpornymi na rozmagnesowanie w trudnych warunkach.
- Pokrycie materiałami takimi jak nikiel, srebro lub złoto nadaje im czysty i gładki charakter.
- Indukcja magnetyczna na powierzchni tych magnesów jest imponująca, co czyni je najwydajniejszymi w swojej klasie.
- Dzięki zaawansowanej technologii radzą sobie w temperaturach sięgających 230°C, zachowując swoje właściwości.
- Można je precyzyjnie obrabiać do niestandardowych wymiarów, co ułatwia ich adaptację w przemyśle.
- Spotkasz je wszędzie tam, gdzie liczy się precyzja: w automatyce, medycynie oraz przemyśle komputerowym.
- Moc w skali mikro – ich niewielka objętość nie przeszkadza w generowaniu dużej siły przyciągania.
Ograniczenia
- Należy uważać na wstrząsy – materiał jest kruchy i grozi pęknięciem. Ochrona w postaci obudowy to dobre rozwiązanie.
- Uwaga na temperaturę – dla zwykłych magnesów limit to 80°C. W trudnych warunkach (do 230°C) należy używać modele z oznaczeniem [AH].
- Brak odporności na wodę skutkuje utlenianiem. Do zadań zewnętrznych rekomendujemy wyłącznie magnesy w pełnej izolacji (plastik/guma).
- Trudności montażowe: zamiast próbować robić otwory kruchy magnes, wybierz uchwytów w stalowej obudowie, które posiadają gotowe mocowania.
- Dbaj o bezpieczeństwo – połknięcie magnesów przez dziecko to zagrożenie życia. Ponadto, ich obecność w ciele komplikuje diagnostykę obrazową.
- Wyższa cena w porównaniu do tańszych zamienników to ich minus, szczególnie przy dużych ilościach.
Parametry udźwigu
Najwyższa nośność magnesu – co ma na to wpływ?
- przy kontakcie z blachy ze specjalnej stali pomiarowej, gwarantującej maksymalne skupienie pola
- posiadającej masywność minimum 10 mm aby uniknąć nasycenia
- z płaszczyzną wolną od rys
- w warunkach braku dystansu (metal do metalu)
- przy pionowym kierunku działania siły (kąt 90 stopni)
- przy temperaturze otoczenia ok. 20 stopni Celsjusza
Czynniki determinujące udźwig w warunkach realnych
- Szczelina – obecność ciała obcego (farba, brud, powietrze) działa jak izolator, co redukuje moc lawinowo (nawet o 50% przy 0,5 mm).
- Kierunek działania siły – maksymalny parametr uzyskujemy tylko przy ciągnięciu pod kątem 90°. Siła ścinająca magnesu po blasze jest zazwyczaj kilkukrotnie mniejsza (ok. 1/5 udźwigu).
- Grubość metalu – cienki materiał nie pozwala na pełne wykorzystanie magnesu. Strumień magnetyczny przenika na wylot, zamiast generować siłę.
- Rodzaj materiału – idealnym podłożem jest stal o wysokiej przenikalności. Żeliwo mogą generować mniejszy udźwig.
- Wykończenie powierzchni – pełny kontakt jest możliwy tylko na gładkiej stali. Chropowata faktura zmniejszają realną powierzchnię styku, osłabiając magnes.
- Otoczenie termiczne – wzrost temperatury skutkuje osłabieniem siły. Należy pamiętać o maksymalną temperaturę pracy dla danego modelu.
Siłę trzymania mierzy się na gładkiej blasze o grubości 20 mm, kiedy przyłożono siłę prostopadłą, natomiast przy próbie przesunięcia magnesu siła trzymania jest mniejsza nawet 75%. Dodatkowo, nawet drobny odstęp pomiędzy magnesem, a blachą obniża nośność.
BHP przy magnesach
Świadome użytkowanie
Zanim zaczniesz, przeczytaj instrukcję. Niekontrolowane przyciągnięcie może zniszczyć magnes lub uszkodzić palce. Bądź przewidujący.
Ryzyko zmiażdżenia
Ryzyko obrażeń: Siła przyciągania jest tak duża, że może wywołać rany, zgniecenia, a nawet złamania kości. Stosuj solidne rękawice ochronne.
Zakłócenia GPS i telefonów
Intensywne promieniowanie magnetyczne zakłóca funkcjonowanie magnetometrów w telefonach i urządzeniach lokalizacyjnych. Zachowaj odstęp magnesów do smartfona, aby nie uszkodzić czujników.
Ostrzeżenie dla alergików
Informacja alergiczna: powłoka Ni-Cu-Ni zawiera nikiel. W przypadku wystąpienia świądu lub podrażnienia, należy bezzwłocznie zakończyć pracę z magnesami i zabezpieczyć dłonie.
Samozapłon
Szlifowanie magnesów neodymowych grozi pożarem. Proszek magnetyczny utlenia się błyskawicznie z tlenem i jest niebezpieczny.
Kruchość materiału
Chroń oczy. Magnesy mogą eksplodować przy niekontrolowanym uderzeniu, wyrzucając ostre odłamki w powietrze. Zalecamy okulary ochronne.
Chronić przed dziećmi
Produkt przeznaczony dla dorosłych. Małe elementy mogą zostać połknięte, co prowadzi do poważnych obrażeń. Trzymaj z dala od dzieci i zwierząt.
Nośniki danych
Bardzo silne pole magnetyczne może zniszczyć zapis na kartach kredytowych, nośnikach HDD i innych nośnikach magnetycznych. Zachowaj odstęp min. 10 cm.
Utrata mocy w cieple
Kontroluj ciepło. Ekspozycja magnesu powyżej 80 stopni Celsjusza zniszczy jego domenę magnetyczną i siłę przyciągania.
Uwaga medyczna
Ostrzeżenie dla sercowców: Silne pole magnetyczne zakłóca urządzenia medyczne. Utrzymuj co najmniej 30 cm odstępu lub zleć komuś innemu obsługę magnesów.
