MW 20x35 / N38 - magnes neodymowy walcowy
magnes neodymowy walcowy
Numer katalogowy 010043
GTIN/EAN: 5906301810421
Średnica Ø
20 mm [±0,1 mm]
Wysokość
35 mm [±0,1 mm]
Waga
82.47 g
Kierunek magnesowania
↑ osiowy
Udźwig
9.58 kg / 93.97 N
Indukcja magnetyczna
595.77 mT / 5958 Gs
Powłoka
[NiCuNi] nikiel
49.52 ZŁ z VAT / szt. + cena za transport
40.26 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?
Zadzwoń już teraz
+48 888 99 98 98
alternatywnie skontaktuj się korzystając z
formularz zgłoszeniowy
na stronie kontaktowej.
Masę a także wygląd elementów magnetycznych wyliczysz u nas w
naszym kalkulatorze magnetycznym.
Wysyłka tego samego dnia dla zamówień do godz. 14:00.
Właściwości fizyczne MW 20x35 / N38 - magnes neodymowy walcowy
Specyfikacja / charakterystyka - MW 20x35 / N38 - magnes neodymowy walcowy
| właściwości | wartości |
|---|---|
| Nr kat. | 010043 |
| GTIN/EAN | 5906301810421 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Średnica Ø | 20 mm [±0,1 mm] |
| Wysokość | 35 mm [±0,1 mm] |
| Waga | 82.47 g |
| Kierunek magnesowania | ↑ osiowy |
| Udźwig ~ ? | 9.58 kg / 93.97 N |
| Indukcja magnetyczna ~ ? | 595.77 mT / 5958 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [min. - maks.] ? | 12.2-12.6 | kGs |
| remanencja Br [min. - maks.] ? | 1220-1260 | mT |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [min. - maks.] ? | 36-38 | BH max MGOe |
| gęstość energii [min. - maks.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Temperatura Curie TC | 312 - 380 | °C |
| Temperatura Curie TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅cm |
| Siła wyginania | 250 | MPa |
| Wytrzymałość na ściskanie | 1000~1100 | MPa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 10-6 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Symulacja techniczna magnesu neodymowego - parametry techniczne
Poniższe informacje stanowią rezultat analizy matematycznej. Wyniki zostały wyliczone na algorytmach dla materiału Nd2Fe14B. Realne warunki mogą odbiegać od wyników symulacji. Prosimy traktować te wyliczenia jako wstępny drogowskaz podczas planowania montażu.
Tabela 1: Siła prostopadła statyczna (udźwig vs odległość) - wykres oddziaływania
MW 20x35 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg/lbs/g/N) | Status ryzyka |
|---|---|---|---|
| 0 mm |
5955 Gs
595.5 mT
|
9.58 kg / 21.12 lbs
9580.0 g / 94.0 N
|
średnie ryzyko |
| 1 mm |
5357 Gs
535.7 mT
|
7.75 kg / 17.09 lbs
7751.3 g / 76.0 N
|
średnie ryzyko |
| 2 mm |
4769 Gs
476.9 mT
|
6.14 kg / 13.55 lbs
6144.2 g / 60.3 N
|
średnie ryzyko |
| 3 mm |
4214 Gs
421.4 mT
|
4.80 kg / 10.58 lbs
4797.3 g / 47.1 N
|
średnie ryzyko |
| 5 mm |
3242 Gs
324.2 mT
|
2.84 kg / 6.26 lbs
2839.3 g / 27.9 N
|
średnie ryzyko |
| 10 mm |
1668 Gs
166.8 mT
|
0.75 kg / 1.66 lbs
751.8 g / 7.4 N
|
niskie ryzyko |
| 15 mm |
921 Gs
92.1 mT
|
0.23 kg / 0.51 lbs
229.1 g / 2.2 N
|
niskie ryzyko |
| 20 mm |
555 Gs
55.5 mT
|
0.08 kg / 0.18 lbs
83.1 g / 0.8 N
|
niskie ryzyko |
| 30 mm |
246 Gs
24.6 mT
|
0.02 kg / 0.04 lbs
16.4 g / 0.2 N
|
niskie ryzyko |
| 50 mm |
78 Gs
7.8 mT
|
0.00 kg / 0.00 lbs
1.6 g / 0.0 N
|
niskie ryzyko |
Tabela 2: Równoległa siła zsuwania (pion)
MW 20x35 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg/lbs/g/N) |
|---|---|---|
| 0 mm | Stal (~0.2) |
1.92 kg / 4.22 lbs
1916.0 g / 18.8 N
|
| 1 mm | Stal (~0.2) |
1.55 kg / 3.42 lbs
1550.0 g / 15.2 N
|
| 2 mm | Stal (~0.2) |
1.23 kg / 2.71 lbs
1228.0 g / 12.0 N
|
| 3 mm | Stal (~0.2) |
0.96 kg / 2.12 lbs
960.0 g / 9.4 N
|
| 5 mm | Stal (~0.2) |
0.57 kg / 1.25 lbs
568.0 g / 5.6 N
|
| 10 mm | Stal (~0.2) |
0.15 kg / 0.33 lbs
150.0 g / 1.5 N
|
| 15 mm | Stal (~0.2) |
0.05 kg / 0.10 lbs
46.0 g / 0.5 N
|
| 20 mm | Stal (~0.2) |
0.02 kg / 0.04 lbs
16.0 g / 0.2 N
|
| 30 mm | Stal (~0.2) |
0.00 kg / 0.01 lbs
4.0 g / 0.0 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
Tabela 3: Montaż pionowy (ścinanie) - zachowanie na śliskim podłożu
MW 20x35 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg/lbs/g/N) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
2.87 kg / 6.34 lbs
2874.0 g / 28.2 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
1.92 kg / 4.22 lbs
1916.0 g / 18.8 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
0.96 kg / 2.11 lbs
958.0 g / 9.4 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
4.79 kg / 10.56 lbs
4790.0 g / 47.0 N
|
Tabela 4: Grubość stali (nasycenie) - dobór blachy
MW 20x35 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg/lbs/g/N) |
|---|---|---|
| 0.5 mm |
|
0.96 kg / 2.11 lbs
958.0 g / 9.4 N
|
| 1 mm |
|
2.40 kg / 5.28 lbs
2395.0 g / 23.5 N
|
| 2 mm |
|
4.79 kg / 10.56 lbs
4790.0 g / 47.0 N
|
| 3 mm |
|
7.19 kg / 15.84 lbs
7185.0 g / 70.5 N
|
| 5 mm |
|
9.58 kg / 21.12 lbs
9580.0 g / 94.0 N
|
| 10 mm |
|
9.58 kg / 21.12 lbs
9580.0 g / 94.0 N
|
| 11 mm |
|
9.58 kg / 21.12 lbs
9580.0 g / 94.0 N
|
| 12 mm |
|
9.58 kg / 21.12 lbs
9580.0 g / 94.0 N
|
Tabela 5: Stabilność termiczna (zachowanie materiału) - próg odporności
MW 20x35 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig (kg/lbs/g/N) | Status |
|---|---|---|---|
| 20 °C | 0.0% |
9.58 kg / 21.12 lbs
9580.0 g / 94.0 N
|
OK |
| 40 °C | -2.2% |
9.37 kg / 20.66 lbs
9369.2 g / 91.9 N
|
OK |
| 60 °C | -4.4% |
9.16 kg / 20.19 lbs
9158.5 g / 89.8 N
|
OK |
| 80 °C | -6.6% |
8.95 kg / 19.73 lbs
8947.7 g / 87.8 N
|
|
| 100 °C | -28.8% |
6.82 kg / 15.04 lbs
6821.0 g / 66.9 N
|
Tabela 6: Interakcja magnes-magnes (odpychanie) - siły w układzie
MW 20x35 / N38
| Szczelina (mm) | Przyciąganie (kg/lbs) (N-S) | Opór ścinania (kg/lbs/g/N) | Odpychanie (kg/lbs) (N-N) |
|---|---|---|---|
| 0 mm |
68.69 kg / 151.44 lbs
6 132 Gs
|
10.30 kg / 22.72 lbs
10304 g / 101.1 N
|
N/A |
| 1 mm |
62.01 kg / 136.70 lbs
11 316 Gs
|
9.30 kg / 20.50 lbs
9301 g / 91.2 N
|
55.81 kg / 123.03 lbs
~0 Gs
|
| 2 mm |
55.58 kg / 122.53 lbs
10 714 Gs
|
8.34 kg / 18.38 lbs
8337 g / 81.8 N
|
50.02 kg / 110.28 lbs
~0 Gs
|
| 3 mm |
49.59 kg / 109.32 lbs
10 120 Gs
|
7.44 kg / 16.40 lbs
7438 g / 73.0 N
|
44.63 kg / 98.39 lbs
~0 Gs
|
| 5 mm |
38.99 kg / 85.96 lbs
8 974 Gs
|
5.85 kg / 12.89 lbs
5849 g / 57.4 N
|
35.09 kg / 77.37 lbs
~0 Gs
|
| 10 mm |
20.36 kg / 44.88 lbs
6 484 Gs
|
3.05 kg / 6.73 lbs
3054 g / 30.0 N
|
18.32 kg / 40.40 lbs
~0 Gs
|
| 20 mm |
5.39 kg / 11.88 lbs
3 337 Gs
|
0.81 kg / 1.78 lbs
809 g / 7.9 N
|
4.85 kg / 10.70 lbs
~0 Gs
|
| 50 mm |
0.25 kg / 0.55 lbs
718 Gs
|
0.04 kg / 0.08 lbs
37 g / 0.4 N
|
0.22 kg / 0.50 lbs
~0 Gs
|
| 60 mm |
0.12 kg / 0.26 lbs
492 Gs
|
0.02 kg / 0.04 lbs
18 g / 0.2 N
|
0.11 kg / 0.23 lbs
~0 Gs
|
| 70 mm |
0.06 kg / 0.13 lbs
352 Gs
|
0.01 kg / 0.02 lbs
9 g / 0.1 N
|
0.05 kg / 0.12 lbs
~0 Gs
|
| 80 mm |
0.03 kg / 0.07 lbs
261 Gs
|
0.00 kg / 0.01 lbs
5 g / 0.0 N
|
0.03 kg / 0.07 lbs
~0 Gs
|
| 90 mm |
0.02 kg / 0.04 lbs
200 Gs
|
0.00 kg / 0.01 lbs
3 g / 0.0 N
|
0.02 kg / 0.04 lbs
~0 Gs
|
| 100 mm |
0.01 kg / 0.03 lbs
156 Gs
|
0.00 kg / 0.00 lbs
2 g / 0.0 N
|
0.01 kg / 0.02 lbs
~0 Gs
|
Tabela 7: Strefy ochronne (elektronika) - ostrzeżenia
MW 20x35 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 15.0 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 11.5 cm |
| Zegarek mechaniczny | 20 Gs (2.0 mT) | 9.0 cm |
| Telefon / Smartfon | 40 Gs (4.0 mT) | 7.0 cm |
| Pilot do auta | 50 Gs (5.0 mT) | 6.5 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 2.5 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 2.0 cm |
Tabela 8: Energia uderzenia (energia kinetyczna) - ostrzeżenie
MW 20x35 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
11.39 km/h
(3.16 m/s)
|
0.41 J | |
| 30 mm |
18.85 km/h
(5.24 m/s)
|
1.13 J | |
| 50 mm |
24.31 km/h
(6.75 m/s)
|
1.88 J | |
| 100 mm |
34.37 km/h
(9.55 m/s)
|
3.76 J |
Tabela 9: Parametry powłoki (trwałość)
MW 20x35 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
Tabela 10: Dane konstrukcyjne (Pc)
MW 20x35 / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 20 408 Mx | 204.1 µWb |
| Współczynnik Pc | 1.16 | Wysoki (Stabilny) |
Tabela 11: Zastosowanie podwodne
MW 20x35 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 9.58 kg | Standard |
| Woda (dno rzeki) |
10.97 kg
(+1.39 kg zysk z wyporności)
|
+14.5% |
1. Montaż na ścianie (ześlizg)
*Pamiętaj: Na powierzchni pionowej magnes zachowa zaledwie ułamek siły prostopadłej.
2. Efektywność, a grubość stali
*Zbyt cienki metal (np. obudowa PC 0.5mm) wyraźnie ogranicza siłę trzymania.
3. Praca w cieple
*Dla materiału N38 krytyczny próg to 80°C.
4. Krzywa odmagnesowania i punkt pracy (B-H)
wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 1.16
Powyższy wykres prezentuje charakterystykę magnetyczną materiału w drugim kwadrancie pętli histerezy. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.
Specyfikacja materiałowa
| żelazo (Fe) | 64% – 68% |
| neodym (Nd) | 29% – 32% |
| bor (B) | 1.1% – 1.2% |
| dysproz (Dy) | 0.5% – 2.0% |
| powłoka (Ni-Cu-Ni) | < 0.05% |
Zrównoważony rozwój
| recyklowalność (EoL) | 100% |
| surowce z recyklingu | ~10% (pre-cons) |
| ślad węglowy | low / zredukowany |
| kod odpadu (EWC) | 16 02 16 |
Inne oferty
Wady oraz zalety magnesów z neodymu Nd2Fe14B.
Korzyści
- Cechują się stabilnością – przez okres ok. 10 lat gubią nie więcej niż ~1% swojej mocy (pomiary wskazują na taką wartość).
- Charakteryzują się niezwykłą odpornością na demagnetyzację, nawet w obecności innych silnych magnesów.
- Dzięki powłoce (nikiel, złoto, Ag) mają nowoczesny, metaliczny wygląd.
- Wytwarzają niezwykle silne pole magnetyczne przy biegunach, co jest ich kluczową cechą.
- Dzięki zaawansowanej technologii funkcjonują w temperaturach sięgających 230°C, zachowując swoje właściwości.
- Wszechstronność kształtowania – można je produkować w dowolnych formach, dopasowanych do konkretnego projektu.
- Znajdują powszechne zastosowanie w przemyśle high-tech – od dysków twardych i silników, po zaawansowaną diagnostykę.
- Mały rozmiar, wielka moc – przy niewielkich gabarytach oferują ogromną siłę, co jest kluczowe przy miniaturyzacji.
Wady
- Ze względu na brak elastyczności, trzeba się z nimi obchodzić delikatnie. Silne uderzenie może je zniszczyć, stąd zalecenie stosowania osłon.
- Wrażliwość na ciepło: przekroczenie 80°C może trwale osłabić magnes (zależnie od bryły). Rozwiązaniem są nasze magnesy wysokotemperaturowe [AH].
- Są podatne na rdzewienie w mokrym otoczeniu. Na zewnątrz zalecamy użycie magnesów wodoszczelnych (np. w gumie).
- Obróbka jest trudna – wykonanie gwintu w samym magnesie jest ryzykowne. Lepiej wybrać gotowe uchwyty magnetyczne (magnes w obudowie).
- Drobne magnesy to ryzyko – połknięcie wymaga interwencji chirurga. Mogą też być problemem przy badaniach lekarskich.
- Nie należą do tanich – ich cena jest wyższa niż ferrytów, co należy uwzględnić przy planowaniu kosztów.
Charakterystyka udźwigu
Siła oderwania magnesu w optymalnych warunkach – co ma na to wpływ?
- z wykorzystaniem blachy ze stali niskowęglowej, która służy jako idealny przewodnik strumienia
- o grubości wynoszącej minimum 10 mm
- charakteryzującej się równą strukturą
- w warunkach idealnego przylegania (powierzchnia do powierzchni)
- dla siły przyłożonej pod kątem prostym (w osi magnesu)
- w standardowej temperaturze otoczenia
Czynniki determinujące udźwig w warunkach realnych
- Szczelina między magnesem a stalą – każdy milimetr odległości (spowodowany np. okleiną lub nierównością) zmniejsza siłę przyciągania, często o połowę przy zaledwie 0,5 mm.
- Sposób obciążenia – deklarowany udźwig dotyczy odrywania w pionie. Przy próbie przesunięcia, magnes wykazuje dużo słabiej (często ok. 20-30% siły nominalnej).
- Grubość stali – za chuda płyta powoduje nasycenie magnetyczne, przez co część mocy ucieka na drugą stronę.
- Materiał blachy – stal niskowęglowa daje najlepsze rezultaty. Stale stopowe obniżają właściwości magnetyczne i udźwig.
- Gładkość – idealny styk jest możliwy tylko na gładkiej stali. Chropowata faktura tworzą poduszki powietrzne, osłabiając magnes.
- Temperatura pracy – spieki NdFeB posiadają wrażliwość na temperaturę. W wyższych temperaturach tracą moc, a w niskich zyskują na sile (do pewnej granicy).
Udźwig określano stosując blachy o gładkiej powierzchni o optymalnej grubości (min. 20 mm), przy prostopadłym działaniu siły odrywającej, jednak przy działaniu siły na zsuwanie nośność jest mniejsza nawet pięciokrotnie. Ponadto, nawet drobny odstęp między magnesem, a blachą redukuje udźwig.
Instrukcja bezpiecznej obsługi magnesów
Elektronika precyzyjna
Intensywne promieniowanie magnetyczne destabilizuje funkcjonowanie czujników w telefonach i nawigacjach GPS. Nie zbliżaj magnesów od telefonu, aby uniknąć awarii czujników.
Urazy ciała
Chroń dłonie. Dwa duże magnesy zderzą błyskawicznie z siłą kilkuset kilogramów, miażdżąc wszystko na swojej drodze. Zachowaj ekstremalną uwagę!
Nie zbliżaj do komputera
Ochrona danych: Magnesy neodymowe mogą zdegradować karty bankomatowe oraz delikatną elektronikę (rozruszniki serca, aparaty słuchowe, czasomierze).
Zagrożenie życia
Uwaga zdrowotna: Magnesy neodymowe mogą wyłączyć stymulatory i defibrylatory. Nie zbliżaj się, jeśli posiadasz implanty elektroniczne.
Samozapłon
Wiercenie i cięcie magnesów neodymowych grozi pożarem. Pył neodymowy utlenia się błyskawicznie z tlenem i jest trudny do gaszenia.
Świadome użytkowanie
Zanim zaczniesz, zapoznaj się z zasadami. Gwałtowne złączenie może zniszczyć magnes lub zranić dłoń. Bądź przewidujący.
Podatność na pękanie
Uwaga na odpryski. Magnesy mogą pęknąć przy niekontrolowanym uderzeniu, rozrzucając ostre odłamki w powietrze. Zalecamy okulary ochronne.
To nie jest zabawka
Bezwzględnie zabezpiecz magnesy przed dostępem dzieci. Niebezpieczeństwo połknięcia jest bardzo duże, a skutki zwarcia magnesów wewnątrz organizmu są nieodwracalne.
Dla uczulonych
Uwaga na nikiel: powłoka Ni-Cu-Ni zawiera nikiel. W przypadku pojawienia się reakcji alergicznej, należy natychmiast zakończyć pracę z magnesami i zabezpieczyć dłonie.
Przegrzanie magnesu
Nie przegrzewaj. Magnesy neodymowe są nieodporne na ciepło. Jeśli wymagasz odporności powyżej 80°C, wybierz magnesy odporne na ciepło (H, SH, UH).
