Potężne magnesy neodymowe: płytkowe i walcowe

Szukasz potężnej mocy w małym rozmiarze? Mamy w ofercie szeroki wybór magnesów o różnych kształtach i wymiarach. Są one idealne do użytku w domu, warsztatu oraz modelarstwa. Sprawdź naszą ofertę z szybką wysyłką.

poznaj katalog magnesów

Zestawy do magnet fishing (hobbystów)

Odkryj pasję z wyławianiem skarbów! Nasze uchwyty z dwoma uchwytami (F200, F400) to pewność chwytu i potężnej siły. Nierdzewna konstrukcja oraz mocne linki są niezawodne w rzekach i jeziorach.

wybierz zestaw dla siebie

Niezawodne uchwyty z gwintem

Profesjonalne rozwiązania do mocowania bezinwazyjnego. Uchwyty z gwintem (zewnętrznym lub wewnętrznym) gwarantują błyskawiczną organizację pracy na halach produkcyjnych. Idealnie nadają się przy instalacji oświetlenia, sensorów oraz banerów.

sprawdź zastosowania przemysłowe

📦 Szybka wysyłka: kup do 14:00, wyślemy dziś!

Dhit sp. z o.o.
Produkt dostępny Zamów do 14:00 – wyślemy dzisiaj!

MW 20x2 / N38 - magnes neodymowy walcowy

magnes neodymowy walcowy

Numer katalogowy 010041

GTIN/EAN: 5906301810407

5.00

Średnica Ø

20 mm [±0,1 mm]

Wysokość

2 mm [±0,1 mm]

Waga

4.71 g

Kierunek magnesowania

↑ osiowy

Udźwig

1.63 kg / 16.02 N

Indukcja magnetyczna

121.57 mT / 1216 Gs

Powłoka

[NiCuNi] nikiel

2.08 z VAT / szt. + cena za transport

1.690 ZŁ netto + 23% VAT / szt.

upusty ilościowe:

Potrzebujesz więcej?

cena od 1 szt.
1.690 ZŁ
2.08 ZŁ
cena od 400 szt.
1.589 ZŁ
1.954 ZŁ
cena od 1500 szt.
1.487 ZŁ
1.829 ZŁ
Chcesz się targować?

Zadzwoń do nas +48 888 99 98 98 ewentualnie daj znać korzystając z formularz na naszej stronie.
Udźwig a także budowę magnesu neodymowego skontrolujesz w naszym kalkulatorze magnetycznym.

Zamówienia złożone przed 14:00 realizujemy jeszcze dziś!

Karta produktu - MW 20x2 / N38 - magnes neodymowy walcowy

Specyfikacja / charakterystyka - MW 20x2 / N38 - magnes neodymowy walcowy

właściwości
właściwości wartości
Nr kat. 010041
GTIN/EAN 5906301810407
Produkcja/Dystrybucja Dhit sp. z o.o.
ul. Zielona 14 05-850 Ożarów Mazowiecki PL
Kraj pochodzenia Polska / Chiny / Niemcy
Kod celny 85059029
Średnica Ø 20 mm [±0,1 mm]
Wysokość 2 mm [±0,1 mm]
Waga 4.71 g
Kierunek magnesowania ↑ osiowy
Udźwig ~ ? 1.63 kg / 16.02 N
Indukcja magnetyczna ~ ? 121.57 mT / 1216 Gs
Powłoka [NiCuNi] nikiel
Tolerancja wykonania ±0.1 mm

Własności magnetyczne materiału N38

Specyfikacja / charakterystyka MW 20x2 / N38 - magnes neodymowy walcowy
właściwości wartości jednostki
remanencja Br [min. - maks.] ? 12.2-12.6 kGs
remanencja Br [min. - maks.] ? 1220-1260 mT
koercja bHc ? 10.8-11.5 kOe
koercja bHc ? 860-915 kA/m
faktyczna wewnętrzna siła iHc ≥ 12 kOe
faktyczna wewnętrzna siła iHc ≥ 955 kA/m
gęstość energii [min. - maks.] ? 36-38 BH max MGOe
gęstość energii [min. - maks.] ? 287-303 BH max KJ/m
max. temperatura ? ≤ 80 °C

Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C

Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
właściwości wartości jednostki
Twardość Vickersa ≥550 Hv
Gęstość ≥7.4 g/cm3
Temperatura Curie TC 312 - 380 °C
Temperatura Curie TF 593 - 716 °F
Specyficzna oporność 150 μΩ⋅cm
Siła wyginania 250 MPa
Wytrzymałość na ściskanie 1000~1100 MPa
Rozszerzenie termiczne równoległe (∥) do orientacji (M) (3-4) x 10-6 °C-1
Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) -(1-3) x 10-6 °C-1
Moduł Younga 1.7 x 104 kg/mm²

Analiza fizyczna magnesu - raport

Poniższe informacje są wynik analizy matematycznej. Wartości zostały wyliczone na algorytmach dla materiału Nd2Fe14B. Realne osiągi mogą różnić się od wartości teoretycznych. Traktuj te wyliczenia jako punkt odniesienia przy projektowaniu systemów.

Tabela 1: Udźwig statyczny prostopadły (udźwig vs odległość) - wykres oddziaływania
MW 20x2 / N38

Dystans (mm) Indukcja (Gauss) / mT Udźwig (kg)(gram)(Niuton) Status ryzyka
0 mm 1216 Gs
121.6 mT
1.63 kg / 1630.0 g
16.0 N
słaby uchwyt
1 mm 1165 Gs
116.5 mT
1.50 kg / 1496.3 g
14.7 N
słaby uchwyt
2 mm 1087 Gs
108.7 mT
1.30 kg / 1302.7 g
12.8 N
słaby uchwyt
3 mm 991 Gs
99.1 mT
1.08 kg / 1083.7 g
10.6 N
słaby uchwyt
5 mm 783 Gs
78.3 mT
0.68 kg / 675.9 g
6.6 N
słaby uchwyt
10 mm 379 Gs
37.9 mT
0.16 kg / 158.4 g
1.6 N
słaby uchwyt
15 mm 185 Gs
18.5 mT
0.04 kg / 37.9 g
0.4 N
słaby uchwyt
20 mm 99 Gs
9.9 mT
0.01 kg / 10.8 g
0.1 N
słaby uchwyt
30 mm 36 Gs
3.6 mT
0.00 kg / 1.4 g
0.0 N
słaby uchwyt
50 mm 9 Gs
0.9 mT
0.00 kg / 0.1 g
0.0 N
słaby uchwyt

Tabela 2: Siła równoległa zsuwania (ściana)
MW 20x2 / N38

Dystans (mm) Współczynnik tarcia Udźwig (kg)(gram)(Niuton)
0 mm Stal (~0.2) 0.33 kg / 326.0 g
3.2 N
1 mm Stal (~0.2) 0.30 kg / 300.0 g
2.9 N
2 mm Stal (~0.2) 0.26 kg / 260.0 g
2.6 N
3 mm Stal (~0.2) 0.22 kg / 216.0 g
2.1 N
5 mm Stal (~0.2) 0.14 kg / 136.0 g
1.3 N
10 mm Stal (~0.2) 0.03 kg / 32.0 g
0.3 N
15 mm Stal (~0.2) 0.01 kg / 8.0 g
0.1 N
20 mm Stal (~0.2) 0.00 kg / 2.0 g
0.0 N
30 mm Stal (~0.2) 0.00 kg / 0.0 g
0.0 N
50 mm Stal (~0.2) 0.00 kg / 0.0 g
0.0 N

Tabela 3: Montaż pionowy (poślizg) - zachowanie na śliskim podłożu
MW 20x2 / N38

Rodzaj powierzchni Współczynnik tarcia / % Mocy Maks. ciężar (kg)
Stal surowa
µ = 0.3 30% Nominalnej Siły
0.49 kg / 489.0 g
4.8 N
Stal malowana (standard)
µ = 0.2 20% Nominalnej Siły
0.33 kg / 326.0 g
3.2 N
Stal tłusta/śliska
µ = 0.1 10% Nominalnej Siły
0.16 kg / 163.0 g
1.6 N
Magnes z gumą antypoślizgową
µ = 0.5 50% Nominalnej Siły
0.82 kg / 815.0 g
8.0 N

Tabela 4: Grubość stali (wpływ podłoża) - dobór blachy
MW 20x2 / N38

Grubość blachy (mm) % mocy Realny udźwig (kg)
0.5 mm
10%
0.16 kg / 163.0 g
1.6 N
1 mm
25%
0.41 kg / 407.5 g
4.0 N
2 mm
50%
0.82 kg / 815.0 g
8.0 N
5 mm
100%
1.63 kg / 1630.0 g
16.0 N
10 mm
100%
1.63 kg / 1630.0 g
16.0 N

Tabela 5: Stabilność termiczna (zachowanie materiału) - limit termiczny
MW 20x2 / N38

Temp. otoczenia (°C) Strata mocy Pozostały udźwig Status
20 °C 0.0% 1.63 kg / 1630.0 g
16.0 N
OK
40 °C -2.2% 1.59 kg / 1594.1 g
15.6 N
OK
60 °C -4.4% 1.56 kg / 1558.3 g
15.3 N
80 °C -6.6% 1.52 kg / 1522.4 g
14.9 N
100 °C -28.8% 1.16 kg / 1160.6 g
11.4 N

Tabela 6: Interakcja magnes-magnes (odpychanie) - kolizja pól
MW 20x2 / N38

Szczelina (mm) Przyciąganie (kg) (N-S) Odpychanie (kg) (N-N)
0 mm 2.86 kg / 2862 g
28.1 N
2 301 Gs
N/A
1 mm 2.76 kg / 2762 g
27.1 N
2 388 Gs
2.49 kg / 2486 g
24.4 N
~0 Gs
2 mm 2.63 kg / 2627 g
25.8 N
2 329 Gs
2.36 kg / 2364 g
23.2 N
~0 Gs
3 mm 2.47 kg / 2466 g
24.2 N
2 257 Gs
2.22 kg / 2220 g
21.8 N
~0 Gs
5 mm 2.10 kg / 2097 g
20.6 N
2 081 Gs
1.89 kg / 1887 g
18.5 N
~0 Gs
10 mm 1.19 kg / 1187 g
11.6 N
1 565 Gs
1.07 kg / 1068 g
10.5 N
~0 Gs
20 mm 0.28 kg / 278 g
2.7 N
758 Gs
0.25 kg / 250 g
2.5 N
~0 Gs
50 mm 0.01 kg / 6 g
0.1 N
115 Gs
0.00 kg / 0 g
0.0 N
~0 Gs

Tabela 7: Bezpieczeństwo (BHP) (implanty) - środki ostrożności
MW 20x2 / N38

Obiekt / Urządzenie Limit (Gauss) / mT Bezpieczny dystans
Rozrusznik serca 5 Gs (0.5 mT) 6.5 cm
Implant słuchowy 10 Gs (1.0 mT) 5.0 cm
Czasomierz 20 Gs (2.0 mT) 4.0 cm
Urządzenie mobilne 40 Gs (4.0 mT) 3.0 cm
Pilot do auta 50 Gs (5.0 mT) 3.0 cm
Karta płatnicza 400 Gs (40.0 mT) 1.0 cm
Dysk twardy HDD 600 Gs (60.0 mT) 1.0 cm

Tabela 8: Energia uderzenia (energia kinetyczna) - skutki zderzenia
MW 20x2 / N38

Start z (mm) Prędkość (km/h) Energia (J) Przewidywany skutek
10 mm 19.87 km/h
(5.52 m/s)
0.07 J
30 mm 32.51 km/h
(9.03 m/s)
0.19 J
50 mm 41.95 km/h
(11.65 m/s)
0.32 J
100 mm 59.33 km/h
(16.48 m/s)
0.64 J

Tabela 9: Trwałość powłoki antykorozyjnej
MW 20x2 / N38

Parametr techniczny Wartość / opis
Rodzaj powłoki [NiCuNi] nikiel
Struktura warstw Nikiel - Miedź - Nikiel
Grubość warstwy 10-20 µm
Test mgły solnej (SST) ? 24 h
Zalecane środowisko Tylko wnętrza (sucho)

Tabela 10: Dane elektryczne (Strumień)
MW 20x2 / N38

Parametr Wartość Jedn. SI / Opis
Strumień (Flux) 5 038 Mx 50.4 µWb
Współczynnik Pc 0.16 Niski (Płaski)

Tabela 11: Fizyka poszukiwań podwodnych
MW 20x2 / N38

Środowisko Efektywny udźwig stali Efekt
Powietrze (ląd) 1.63 kg Standard
Woda (dno rzeki) 1.87 kg
(+0.24 kg Zysk z wyporności)
+14.5%
Ryzyko rdzy: Standardowy nikiel wymaga osuszenia po każdym kontakcie z wilgocią; brak konserwacji doprowadzi do powstania ognisk rdzy.
1. Siła zsuwająca

*Pamiętaj: Na pionowej ścianie magnes zachowa jedynie ok. 20-30% siły prostopadłej.

2. Grubość podłoża

*Zbyt cienki metal (np. blacha karoseryjna) znacząco ogranicza siłę trzymania.

3. Stabilność termiczna

*Dla standardowych magnesów granica bezpieczeństwa to 80°C.

4. Krzywa odmagnesowania i punkt pracy (B-H)

wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 0.16

Powyższy wykres prezentuje charakterystykę magnetyczną materiału w drugim kwadrancie pętli histerezy. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.

Parametry inżynierskie i GPSR
Analiza pierwiastkowa
żelazo (Fe) 64% – 68%
neodym (Nd) 29% – 32%
bor (B) 1.1% – 1.2%
dysproz (Dy) 0.5% – 2.0%
powłoka (Ni-Cu-Ni) < 0.05%
Ekologia i recykling (GPSR)
recyklowalność (EoL) 100%
surowce z recyklingu ~10% (pre-cons)
ślad węglowy low / zredukowany
kod odpadu (EWC) 16 02 16
Karta bezpieczeństwa (GPSR)
podmiot odpowiedzialny
Dhit sp. z o.o.
ul. Kościuszki 6A, 05-850 Ożarów Mazowiecki
tel: +48 22 499 98 98 | e-mail: bok@dhit.pl
numer partii/typ
id: 010041-2025
Przelicznik magnesów
Udźwig magnesu

Pole magnetyczne

Zobacz też inne oferty

Prezentowany produkt to wyjątkowo silny magnes w kształcie walca, który został wykonany z nowoczesnego materiału NdFeB, co przy wymiarach Ø20x2 mm gwarantuje optymalną moc. Model MW 20x2 / N38 cechuje się tolerancją ±0,1mm oraz profesjonalną jakością wykonania, dzięki czemu jest to rozwiązanie idealne dla najbardziej wymagających inżynierów i konstruktorów. Jako walec magnetyczny o imponującej sile (ok. 1.63 kg), produkt ten jest dostępny od ręki z naszego polskiego centrum logistycznego, co zapewnia szybką realizację zamówienia. Ponadto, jego trójwarstwowa powłoka Ni-Cu-Ni chroni go przed korozją w standardowych warunkach pracy, zapewniając estetyczny wygląd i trwałość przez lata.
Ten model jest stworzony do budowy prądnic, zaawansowanych czujników oraz wydajnych separatorów magnetycznych, gdzie liczy się maksymalna indukcja na małej powierzchni. Dzięki dużej mocy 16.02 N przy wadze zaledwie 4.71 g, ten magnes cylindryczny jest niezastąpiony w miniaturowych urządzeniach oraz wszędzie tam, gdzie kluczowa jest niska waga.
Ze względu na kruchość materiału NdFeB, absolutnie odradzamy wbijania magnesów na siłę (tzw. montaż na wcisk), gdyż grozi to odpryśnięciem powłoki tego profesjonalnego komponentu. Dla zapewnienia długotrwałej wytrzymałości w przemyśle, stosuje się specjalistyczne kleje przemysłowe, które są bezpieczne dla niklu i wypełniają szczelinę, gwarantując trwałość połączenia.
Klasa N38 to najpopularniejszy standard dla przemysłowych magnesów neodymowych, oferujący optymalny stosunek ceny do mocy oraz stabilność pracy. Jeśli potrzebujesz jeszcze mocniejszych magnesów w tej samej objętości (Ø20x2), skontaktuj się z nami w sprawie wyższych klas (np. N50, N52), jednak N38 jest standardem dostępnym od ręki w naszym magazynie.
Model ten charakteryzuje się wymiarami Ø20x2 mm, co przy wadze 4.71 g czyni go elementem o wysokiej gęstości energii magnetycznej. Wartość 16.02 N oznacza, że magnes jest w stanie utrzymać ciężar wielokrotnie przewyższający jego masę własną 4.71 g. Produkt posiada powłokę [NiCuNi], która zabezpiecza go przed utlenianiem, nadając mu estetyczny, srebrzysty połysk.
Standardowo oś magnetyczna przebiega przez środek walca, sprawiając, że największa siła przyciągania występuje na podstawach o średnicy 20 mm. Taki układ jest najbardziej pożądany przy łączeniu magnesów w stosy (np. w filtrach) lub przy montażu w gniazdach na dnie otworu. Na zamówienie możemy wykonać również wersje magnesowane po średnicy, jeśli Twój projekt tego wymaga.

Wady i zalety magnesów z neodymu Nd2Fe14B.

Zalety

Oprócz potężną energią, te produkty gwarantują wiele innych atutów::
  • Praktycznie nie ulegają osłabieniu w czasie; po 10 latach eksploatacji zmniejszenie udźwigu to marginalne ~1%.
  • Są niewrażliwe na zewnętrzne zakłócenia, co czyni je odpornymi na rozmagnesowanie w wymagającym środowisku.
  • Powłoka ochronna (np. niklowa) zapewnia im metaliczny połysk, co ma znaczenie estetyczne.
  • Wyróżniają się bardzo wysoką gęstością pola na powierzchni, co umożliwia silne chwytanie z dużą mocą.
  • Odpowiedni skład sprawia, że wykazują odporność na wysokie temperatury (zależnie od kształtu, nawet do 230°C).
  • Elastyczność kształtowania – można je wykonać w rozmaitych formach, dopasowanych do konkretnego projektu.
  • Są niezbędne w technologiach przyszłości, zasilając silniki, urządzenia medyczne czy komputery.
  • Potęga w małej formie – ich niewielka objętość nie przeszkadza w generowaniu dużej siły przyciągania.

Wady

Mimo zalet, posiadają też wady:
  • Są wrażliwe na uderzenia – materiał jest kruchy i może odprysnąć. Zabezpieczenie w postaci obudowy jest kluczowa.
  • Standardowe magnesy tracą moc powyżej 80°C. Jeśli wymagasz pracy w wyższych temperaturach, wybierz serię [AH] (odporną do 230°C).
  • Ryzyko korozji: bez osłony magnes zardzewieje na deszczu. Wybierz wersje powlekane tworzywem do zastosowań zewnętrznych.
  • Nie należy ich nawiercać – do montażu śrubowego przeznaczone są specjalne uchwyty magnetyczne z wbudowanym gwintem.
  • Drobne magnesy to ryzyko – połknięcie wymaga interwencji chirurga. Mogą też być problemem przy diagnostyce MRI.
  • Za jakość trzeba płacić – magnesy neodymowe są droższe od ceramicznych, co wpływa na ekonomię rozwiązania.

Charakterystyka udźwigu

Udźwig maksymalny dla magnesu neodymowego – co się na to składa?

Parametr siły jest wartością teoretyczną maksymalną wykonanego w następującej konfiguracji:
  • przy zastosowaniu zwory ze specjalnej stali pomiarowej, zapewniającej pełne nasycenie magnetyczne
  • której grubość sięga przynajmniej 10 mm
  • charakteryzującej się równą strukturą
  • w warunkach braku dystansu (powierzchnia do powierzchni)
  • dla siły działającej pod kątem prostym (na odrywanie, nie zsuwanie)
  • przy temperaturze ok. 20 stopni Celsjusza

Praktyczny udźwig: czynniki wpływające

Podczas codziennego użytkowania, realna moc jest determinowana przez wielu zmiennych, które przedstawiamy od kluczowych:
  • Szczelina powietrzna (pomiędzy magnesem a metalem), bowiem nawet bardzo mała odległość (np. 0,5 mm) powoduje redukcję udźwigu nawet o 50% (dotyczy to także lakieru, rdzy czy zanieczyszczeń).
  • Kierunek siły – pamiętaj, że magnes najmocniej trzyma prostopadle. Przy działaniu sił bocznych, udźwig spada znacząco, często do poziomu 20-30% wartości maksymalnej.
  • Grubość elementu – dla pełnej efektywności, stal musi być odpowiednio gruba. Cienka blacha ogranicza udźwig (magnes „przebija” ją na wylot).
  • Rodzaj materiału – najlepszym wyborem jest czysta stal żelazna. Stale hartowane mogą generować mniejszy udźwig.
  • Stan powierzchni – szlifowane elementy zapewniają maksymalny styk, co zwiększa siłę. Powierzchnie chropowate osłabiają chwyt.
  • Wpływ temperatury – wysoka temperatura osłabia pole magnetyczne. Zbyt wysoka temperatura może trwale uszkodzić magnes.

Udźwig określano z wykorzystaniem wypolerowanej blachy o optymalnej grubości (min. 20 mm), przy działaniu siły prostopadłej, natomiast przy siłach działających równolegle siła trzymania jest mniejsza nawet 75%. Ponadto, nawet minimalna przerwa pomiędzy powierzchnią magnesu, a blachą obniża siłę trzymania.

Bezpieczna praca z magnesami neodymowymi
Utrata mocy w cieple

Typowe magnesy neodymowe (klasa N) ulegają rozmagnesowaniu po przekroczeniu temperatury 80°C. Strata siły jest trwała i nieodwracalna.

Uszkodzenia czujników

Intensywne promieniowanie magnetyczne zakłóca działanie magnetometrów w smartfonach i nawigacjach GPS. Nie zbliżaj magnesów do smartfona, aby uniknąć awarii czujników.

Zagrożenie życia

Dla posiadaczy implantów: Silne pole magnetyczne zakłóca urządzenia medyczne. Zachowaj co najmniej 30 cm odstępu lub poproś inną osobę pracę z magnesów.

Urazy ciała

Silne magnesy mogą zdruzgotać palce w ułamku sekundy. Absolutnie nie umieszczaj dłoni między dwa silne magnesy.

Świadome użytkowanie

Bądź ostrożny. Magnesy neodymowe przyciągają z daleka i zwierają z impetem, często szybciej niż zdążysz zareagować.

Uwaga na odpryski

Ryzyko skaleczenia. Magnesy mogą eksplodować przy niekontrolowanym uderzeniu, wyrzucając ostre odłamki w powietrze. Noś okulary.

Obróbka mechaniczna

Wiercenie i cięcie magnesów neodymowych grozi pożarem. Proszek magnetyczny reaguje gwałtownie z tlenem i jest niebezpieczny.

Ryzyko uczulenia

Część populacji posiada alergię kontaktową na pierwiastek nikiel, którym powlekane są standardowo magnesy neodymowe. Dłuższy kontakt może skutkować silną reakcję alergiczną. Zalecamy używanie rękawiczek ochronnych.

Nie zbliżaj do komputera

Unikaj zbliżania magnesów do dokumentów, komputera czy ekranu. Pole magnetyczne może trwale uszkodzić te urządzenia oraz skasować dane z kart.

Ryzyko połknięcia

Sprzedaż wyłącznie dla dorosłych. Małe elementy mogą zostać aspirrowane, co prowadzi do poważnych obrażeń. Trzymaj z dala od dzieci i zwierząt.

Ostrzeżenie! Dowiedz się więcej o ryzyku w artykule: Bezpieczeństwo pracy z magnesami.
Dhit sp. z o.o.

e-mail: bok@dhit.pl

tel: +48 888 99 98 98