MW 20x2 / N38 - magnes neodymowy walcowy
magnes neodymowy walcowy
Numer katalogowy 010041
GTIN/EAN: 5906301810407
Średnica Ø
20 mm [±0,1 mm]
Wysokość
2 mm [±0,1 mm]
Waga
4.71 g
Kierunek magnesowania
↑ osiowy
Udźwig
1.63 kg / 16.02 N
Indukcja magnetyczna
121.57 mT / 1216 Gs
Powłoka
[NiCuNi] nikiel
2.08 ZŁ z VAT / szt. + cena za transport
1.690 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?
Zadzwoń już teraz
+48 888 99 98 98
alternatywnie napisz przez
formularz kontaktowy
przez naszą stronę.
Masę a także budowę elementów magnetycznych skontrolujesz w naszym
modułowym kalkulatorze.
Zamów do 14:00, a wyślemy dziś!
Dane techniczne - MW 20x2 / N38 - magnes neodymowy walcowy
Specyfikacja / charakterystyka - MW 20x2 / N38 - magnes neodymowy walcowy
| właściwości | wartości |
|---|---|
| Nr kat. | 010041 |
| GTIN/EAN | 5906301810407 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Średnica Ø | 20 mm [±0,1 mm] |
| Wysokość | 2 mm [±0,1 mm] |
| Waga | 4.71 g |
| Kierunek magnesowania | ↑ osiowy |
| Udźwig ~ ? | 1.63 kg / 16.02 N |
| Indukcja magnetyczna ~ ? | 121.57 mT / 1216 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [min. - maks.] ? | 12.2-12.6 | kGs |
| remanencja Br [min. - maks.] ? | 1220-1260 | mT |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [min. - maks.] ? | 36-38 | BH max MGOe |
| gęstość energii [min. - maks.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Temperatura Curie TC | 312 - 380 | °C |
| Temperatura Curie TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅cm |
| Siła wyginania | 250 | MPa |
| Wytrzymałość na ściskanie | 1000~1100 | MPa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 10-6 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Symulacja inżynierska magnesu neodymowego - dane
Poniższe dane są wynik kalkulacji fizycznej. Wartości zostały wyliczone na modelach dla materiału Nd2Fe14B. Realne osiągi mogą nieznacznie się różnić. Prosimy traktować te dane jako wstępny drogowskaz dla projektantów.
Tabela 1: Siła prostopadła statyczna (siła vs odległość) - charakterystyka
MW 20x2 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg/lbs/g/N) | Status ryzyka |
|---|---|---|---|
| 0 mm |
1216 Gs
121.6 mT
|
1.63 kg / 3.59 lbs
1630.0 g / 16.0 N
|
słaby uchwyt |
| 1 mm |
1165 Gs
116.5 mT
|
1.50 kg / 3.30 lbs
1496.3 g / 14.7 N
|
słaby uchwyt |
| 2 mm |
1087 Gs
108.7 mT
|
1.30 kg / 2.87 lbs
1302.7 g / 12.8 N
|
słaby uchwyt |
| 3 mm |
991 Gs
99.1 mT
|
1.08 kg / 2.39 lbs
1083.7 g / 10.6 N
|
słaby uchwyt |
| 5 mm |
783 Gs
78.3 mT
|
0.68 kg / 1.49 lbs
675.9 g / 6.6 N
|
słaby uchwyt |
| 10 mm |
379 Gs
37.9 mT
|
0.16 kg / 0.35 lbs
158.4 g / 1.6 N
|
słaby uchwyt |
| 15 mm |
185 Gs
18.5 mT
|
0.04 kg / 0.08 lbs
37.9 g / 0.4 N
|
słaby uchwyt |
| 20 mm |
99 Gs
9.9 mT
|
0.01 kg / 0.02 lbs
10.8 g / 0.1 N
|
słaby uchwyt |
| 30 mm |
36 Gs
3.6 mT
|
0.00 kg / 0.00 lbs
1.4 g / 0.0 N
|
słaby uchwyt |
| 50 mm |
9 Gs
0.9 mT
|
0.00 kg / 0.00 lbs
0.1 g / 0.0 N
|
słaby uchwyt |
Tabela 2: Równoległa siła ześlizgu (ściana)
MW 20x2 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg/lbs/g/N) |
|---|---|---|
| 0 mm | Stal (~0.2) |
0.33 kg / 0.72 lbs
326.0 g / 3.2 N
|
| 1 mm | Stal (~0.2) |
0.30 kg / 0.66 lbs
300.0 g / 2.9 N
|
| 2 mm | Stal (~0.2) |
0.26 kg / 0.57 lbs
260.0 g / 2.6 N
|
| 3 mm | Stal (~0.2) |
0.22 kg / 0.48 lbs
216.0 g / 2.1 N
|
| 5 mm | Stal (~0.2) |
0.14 kg / 0.30 lbs
136.0 g / 1.3 N
|
| 10 mm | Stal (~0.2) |
0.03 kg / 0.07 lbs
32.0 g / 0.3 N
|
| 15 mm | Stal (~0.2) |
0.01 kg / 0.02 lbs
8.0 g / 0.1 N
|
| 20 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
2.0 g / 0.0 N
|
| 30 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
Tabela 3: Siła na ścianie (ścinanie) - udźwig wertykalny
MW 20x2 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg/lbs/g/N) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
0.49 kg / 1.08 lbs
489.0 g / 4.8 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
0.33 kg / 0.72 lbs
326.0 g / 3.2 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
0.16 kg / 0.36 lbs
163.0 g / 1.6 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
0.82 kg / 1.80 lbs
815.0 g / 8.0 N
|
Tabela 4: Efektywność materiałowa (wpływ podłoża) - straty mocy
MW 20x2 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg/lbs/g/N) |
|---|---|---|
| 0.5 mm |
|
0.16 kg / 0.36 lbs
163.0 g / 1.6 N
|
| 1 mm |
|
0.41 kg / 0.90 lbs
407.5 g / 4.0 N
|
| 2 mm |
|
0.82 kg / 1.80 lbs
815.0 g / 8.0 N
|
| 3 mm |
|
1.22 kg / 2.70 lbs
1222.5 g / 12.0 N
|
| 5 mm |
|
1.63 kg / 3.59 lbs
1630.0 g / 16.0 N
|
| 10 mm |
|
1.63 kg / 3.59 lbs
1630.0 g / 16.0 N
|
| 11 mm |
|
1.63 kg / 3.59 lbs
1630.0 g / 16.0 N
|
| 12 mm |
|
1.63 kg / 3.59 lbs
1630.0 g / 16.0 N
|
Tabela 5: Wytrzymałość temperaturowa (zachowanie materiału) - limit termiczny
MW 20x2 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig (kg/lbs/g/N) | Status |
|---|---|---|---|
| 20 °C | 0.0% |
1.63 kg / 3.59 lbs
1630.0 g / 16.0 N
|
OK |
| 40 °C | -2.2% |
1.59 kg / 3.51 lbs
1594.1 g / 15.6 N
|
OK |
| 60 °C | -4.4% |
1.56 kg / 3.44 lbs
1558.3 g / 15.3 N
|
|
| 80 °C | -6.6% |
1.52 kg / 3.36 lbs
1522.4 g / 14.9 N
|
|
| 100 °C | -28.8% |
1.16 kg / 2.56 lbs
1160.6 g / 11.4 N
|
Tabela 6: Dwa magnesy (przyciąganie) - zasięg pola
MW 20x2 / N38
| Szczelina (mm) | Przyciąganie (kg/lbs) (N-S) | Siła ścinająca (kg/lbs/g/N) | Odpychanie (kg/lbs) (N-N) |
|---|---|---|---|
| 0 mm |
2.86 kg / 6.31 lbs
2 301 Gs
|
0.43 kg / 0.95 lbs
429 g / 4.2 N
|
N/A |
| 1 mm |
2.76 kg / 6.09 lbs
2 388 Gs
|
0.41 kg / 0.91 lbs
414 g / 4.1 N
|
2.49 kg / 5.48 lbs
~0 Gs
|
| 2 mm |
2.63 kg / 5.79 lbs
2 329 Gs
|
0.39 kg / 0.87 lbs
394 g / 3.9 N
|
2.36 kg / 5.21 lbs
~0 Gs
|
| 3 mm |
2.47 kg / 5.44 lbs
2 257 Gs
|
0.37 kg / 0.82 lbs
370 g / 3.6 N
|
2.22 kg / 4.89 lbs
~0 Gs
|
| 5 mm |
2.10 kg / 4.62 lbs
2 081 Gs
|
0.31 kg / 0.69 lbs
315 g / 3.1 N
|
1.89 kg / 4.16 lbs
~0 Gs
|
| 10 mm |
1.19 kg / 2.62 lbs
1 565 Gs
|
0.18 kg / 0.39 lbs
178 g / 1.7 N
|
1.07 kg / 2.35 lbs
~0 Gs
|
| 20 mm |
0.28 kg / 0.61 lbs
758 Gs
|
0.04 kg / 0.09 lbs
42 g / 0.4 N
|
0.25 kg / 0.55 lbs
~0 Gs
|
| 50 mm |
0.01 kg / 0.01 lbs
115 Gs
|
0.00 kg / 0.00 lbs
1 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 60 mm |
0.00 kg / 0.01 lbs
72 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 70 mm |
0.00 kg / 0.00 lbs
48 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 80 mm |
0.00 kg / 0.00 lbs
33 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 90 mm |
0.00 kg / 0.00 lbs
24 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 100 mm |
0.00 kg / 0.00 lbs
18 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
Tabela 7: Zagrożenia (implanty) - ostrzeżenia
MW 20x2 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 6.5 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 5.0 cm |
| Zegarek mechaniczny | 20 Gs (2.0 mT) | 4.0 cm |
| Telefon / Smartfon | 40 Gs (4.0 mT) | 3.0 cm |
| Kluczyk samochodowy | 50 Gs (5.0 mT) | 3.0 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 1.0 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 1.0 cm |
Tabela 8: Energia uderzenia (ryzyko pęknięcia) - ostrzeżenie
MW 20x2 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
19.87 km/h
(5.52 m/s)
|
0.07 J | |
| 30 mm |
32.51 km/h
(9.03 m/s)
|
0.19 J | |
| 50 mm |
41.95 km/h
(11.65 m/s)
|
0.32 J | |
| 100 mm |
59.33 km/h
(16.48 m/s)
|
0.64 J |
Tabela 9: Trwałość powłoki antykorozyjnej
MW 20x2 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
Tabela 10: Dane konstrukcyjne (Strumień)
MW 20x2 / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 5 038 Mx | 50.4 µWb |
| Współczynnik Pc | 0.16 | Niski (Płaski) |
Tabela 11: Praca w wodzie (Magnet Fishing)
MW 20x2 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 1.63 kg | Standard |
| Woda (dno rzeki) |
1.87 kg
(+0.24 kg zysk z wyporności)
|
+14.5% |
1. Siła zsuwająca
*Ważne: Na pionowej ścianie magnes zachowa zaledwie ok. 20-30% siły oderwania.
2. Wpływ grubości blachy
*Cienka blacha (np. blacha karoseryjna) znacząco osłabia udźwig magnesu.
3. Wytrzymałość temperaturowa
*Dla materiału N38 granica bezpieczeństwa to 80°C.
4. Krzywa odmagnesowania i punkt pracy (B-H)
wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 0.16
Niniejsza symulacja obrazuje stabilność magnetyczną wybranego magnesu w konkretnych warunkach geometrycznych. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.
Analiza pierwiastkowa
| żelazo (Fe) | 64% – 68% |
| neodym (Nd) | 29% – 32% |
| bor (B) | 1.1% – 1.2% |
| dysproz (Dy) | 0.5% – 2.0% |
| powłoka (Ni-Cu-Ni) | < 0.05% |
Zrównoważony rozwój
| recyklowalność (EoL) | 100% |
| surowce z recyklingu | ~10% (pre-cons) |
| ślad węglowy | low / zredukowany |
| kod odpadu (EWC) | 16 02 16 |
Inne oferty
Wady oraz zalety magnesów z neodymu Nd2Fe14B.
Korzyści
- Ich parametry są stabilne w czasie; po 10 latach użytkowania zmniejszenie udźwigu to marginalne ~1%.
- Są niewrażliwe na zewnętrzne zakłócenia, co czyni je odpornymi na rozmagnesowanie w wymagającym środowisku.
- Powłoka ochronna (np. niklowa) zapewnia im metaliczny połysk, co podnosi ich walory wizualne.
- Generują niezwykle silne pole magnetyczne na swojej powierzchni, co jest ich znakiem rozpoznawczym.
- Wersje specjalistyczne funkcjonują w temperaturach sięgających 230°C, zachowując swoje właściwości.
- Dają się łatwo formować do niestandardowych wymiarów, co pozwala na ich adaptację w skomplikowanych urządzeniach.
- Stanowią kluczowy element w technologiach przyszłości, zasilając silniki, urządzenia medyczne czy elektronikę użytkową.
- Doskonała relacja wielkości do siły – są małe, ale bardzo silne, co pozwala na ich montaż w ciasnych przestrzeniach.
Ograniczenia
- Ze względu na brak elastyczności, trzeba się z nimi obchodzić delikatnie. Gwałtowne złączenie może je zniszczyć, stąd zalecenie stosowania osłon.
- Uwaga na temperaturę – dla zwykłych magnesów limit to 80°C. W gorącym środowisku (do 230°C) należy używać modele z oznaczeniem [AH].
- Ryzyko korozji: bez osłony magnes zardzewieje na deszczu. Rozważ wersje w obudowie z tworzywa do zastosowań zewnętrznych.
- Nie należy ich nawiercać – do montażu śrubowego przeznaczone są specjalne uchwyty magnetyczne z wbudowanym gwintem.
- Produkt niebezpieczny po połknięciu. Bezwzględnie chronić przed dziećmi. Wewnątrz ciała magnesy mogą się połączyć, powodując uszkodzenia jelit.
- Cena – są droższe niż magnesy ferrytowe, co przy produkcji masowej może być istotnym kosztem.
Analiza siły trzymania
Udźwig maksymalny dla magnesu neodymowego – co ma na to wpływ?
- z zastosowaniem płyty ze stali o wysokiej przenikalności, działającej jako zwora magnetyczna
- której wymiar poprzeczny wynosi ok. 10 mm
- o szlifowanej powierzchni kontaktu
- przy bezpośrednim styku (brak zanieczyszczeń)
- dla siły działającej pod kątem prostym (w osi magnesu)
- w warunkach ok. 20°C
Wpływ czynników na nośność magnesu w praktyce
- Szczelina – występowanie ciała obcego (farba, taśma, szczelina) działa jak izolator, co redukuje udźwig lawinowo (nawet o 50% przy 0,5 mm).
- Kierunek siły – parametr katalogowy dotyczy ciągnięcia w pionie. Przy ześlizgiwaniu, magnes trzyma dużo słabiej (zazwyczaj ok. 20-30% siły nominalnej).
- Grubość blachy – zbyt cienka płyta powoduje nasycenie magnetyczne, przez co część mocy marnuje się w powietrzu.
- Materiał blachy – stal miękka daje najlepsze rezultaty. Większa zawartość węgla redukują przenikalność magnetyczną i udźwig.
- Gładkość – idealny styk uzyskamy tylko na gładkiej stali. Chropowata faktura zmniejszają realną powierzchnię styku, osłabiając magnes.
- Czynnik termiczny – wysoka temperatura osłabia siłę przyciągania. Przekroczenie temperatury granicznej może trwale uszkodzić magnes.
Siłę trzymania sprawdzano na powierzchni blachy o grubości 20 mm, kiedy przyłożono siłę prostopadłą, jednak przy działaniu siły na zsuwanie nośność jest mniejsza nawet pięć razy. Co więcej, nawet drobny odstęp pomiędzy magnesem, a blachą redukuje nośność.
Bezpieczna praca przy magnesach neodymowych
Ochrona dłoni
Ryzyko obrażeń: Siła przyciągania jest tak duża, że może wywołać rany, zmiażdżenia, a nawet otwarte złamania. Używaj grubych rękawic.
Ostrzeżenie dla alergików
Część populacji wykazuje uczulenie na pierwiastek nikiel, którym zabezpieczane są nasze produkty. Częste dotykanie może powodować silną reakcję alergiczną. Wskazane jest noszenie rękawic bezlateksowych.
Smartfony i tablety
Uwaga: magnesy neodymowe wytwarzają pole, które mylą systemy nawigacji. Utrzymuj bezpieczny dystans od telefonu, tabletu i nawigacji.
Zakaz zabawy
Te produkty magnetyczne to nie zabawki. Przypadkowe zjedzenie kilku magnesów może skutkować ich przyciągnięciem przez ścianki jelit, co stwarza śmiertelne niebezpieczeństwo i wymaga natychmiastowej operacji.
Moc przyciągania
Zanim zaczniesz, przeczytaj instrukcję. Niekontrolowane przyciągnięcie może zniszczyć magnes lub zranić dłoń. Myśl o krok do przodu.
Karty i dyski
Ochrona danych: Magnesy neodymowe mogą zdegradować karty bankomatowe oraz urządzenia precyzyjne (rozruszniki serca, aparaty słuchowe, czasomierze).
Rozprysk materiału
Spieki NdFeB to spiek proszkowy, co oznacza, że są podatne na pęknięcia. Upadek dwóch magnesów spowoduje ich pęknięcie na ostre odłamki.
Rozruszniki serca
Ostrzeżenie medyczne: Magnesy neodymowe mogą wyłączyć rozruszniki serca i defibrylatory. Unikaj kontaktu, jeśli posiadasz urządzenia wspomagające.
Zagrożenie wybuchem pyłu
Zagrożenie pożarowe: Pył neodymowy jest wysoce łatwopalny. Nie modyfikuj mechanicznie magnesów amatorsko, gdyż może to wywołać pożar.
Przegrzanie magnesu
Monitoruj warunki termiczne. Podgrzanie magnesu powyżej 80 stopni Celsjusza zniszczy jego domenę magnetyczną i siłę przyciągania.
