MW 20x18 / N38 - magnes neodymowy walcowy
magnes neodymowy walcowy
Numer katalogowy 010040
GTIN: 5906301810391
Średnica Ø
20 mm [±0,1 mm]
Wysokość
18 mm [±0,1 mm]
Waga
42.41 g
Kierunek magnesowania
↑ osiowy
Udźwig
13.19 kg / 129.35 N
Indukcja magnetyczna
541.64 mT / 5416 Gs
Powłoka
[NiCuNi] nikiel
23.54 ZŁ z VAT / szt. + cena za transport
19.14 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?Chcesz się targować?
Skontaktuj się z nami telefonicznie
+48 22 499 98 98
ewentualnie zostaw wiadomość za pomocą
formularz zgłoszeniowy
na naszej stronie.
Udźwig a także budowę magnesu skontrolujesz dzięki naszemu
narzędziu online do obliczeń.
Wysyłka tego samego dnia dla zamówień do godz. 14:00.
MW 20x18 / N38 - magnes neodymowy walcowy
Specyfikacja / charakterystyka MW 20x18 / N38 - magnes neodymowy walcowy
| właściwości | wartości |
|---|---|
| Nr kat. | 010040 |
| GTIN | 5906301810391 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Średnica Ø | 20 mm [±0,1 mm] |
| Wysokość | 18 mm [±0,1 mm] |
| Waga | 42.41 g |
| Kierunek magnesowania | ↑ osiowy |
| Udźwig ~ ? | 13.19 kg / 129.35 N |
| Indukcja magnetyczna ~ ? | 541.64 mT / 5416 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [Min. - Max.] ? | 12.2-12.6 | kGs |
| remanencja Br [Min. - Max.] ? | 1220-1260 | T |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [Min. - Max.] ? | 36-38 | BH max MGOe |
| gęstość energii [Min. - Max.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Temperatura Curie TC | 312 - 380 | °C |
| Temperatura Curie TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅Cm |
| Siła wyginania | 250 | Mpa |
| Wytrzymałość na ściskanie | 1000~1100 | Mpa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 106 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Modelowanie fizyczna magnesu - dane
Poniższe wartości są wynik analizy matematycznej. Wyniki zostały wyliczone na algorytmach dla materiału Nd2Fe14B. Realne warunki mogą nieznacznie się różnić. Traktuj te wyliczenia jako punkt odniesienia podczas planowania montażu.
MW 20x18 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg)(gram)(Niuton) | Status ryzyka |
|---|---|---|---|
| 0 mm |
5414 Gs
541.4 mT
|
13.19 kg / 13190.0 g
129.4 N
|
niebezpieczny! |
| 1 mm |
4870 Gs
487.0 mT
|
10.67 kg / 10669.5 g
104.7 N
|
niebezpieczny! |
| 2 mm |
4330 Gs
433.0 mT
|
8.43 kg / 8434.2 g
82.7 N
|
średnie ryzyko |
| 3 mm |
3816 Gs
381.6 mT
|
6.55 kg / 6552.7 g
64.3 N
|
średnie ryzyko |
| 5 mm |
2913 Gs
291.3 mT
|
3.82 kg / 3818.4 g
37.5 N
|
średnie ryzyko |
| 10 mm |
1455 Gs
145.5 mT
|
0.95 kg / 952.2 g
9.3 N
|
słaby uchwyt |
| 15 mm |
775 Gs
77.5 mT
|
0.27 kg / 270.1 g
2.7 N
|
słaby uchwyt |
| 20 mm |
450 Gs
45.0 mT
|
0.09 kg / 91.3 g
0.9 N
|
słaby uchwyt |
| 30 mm |
188 Gs
18.8 mT
|
0.02 kg / 15.9 g
0.2 N
|
słaby uchwyt |
| 50 mm |
54 Gs
5.4 mT
|
0.00 kg / 1.3 g
0.0 N
|
słaby uchwyt |
MW 20x18 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg)(gram)(Niuton) |
|---|---|---|
| 0 mm | Stal (~0.2) |
2.64 kg / 2638.0 g
25.9 N
|
| 1 mm | Stal (~0.2) |
2.13 kg / 2134.0 g
20.9 N
|
| 2 mm | Stal (~0.2) |
1.69 kg / 1686.0 g
16.5 N
|
| 3 mm | Stal (~0.2) |
1.31 kg / 1310.0 g
12.9 N
|
| 5 mm | Stal (~0.2) |
0.76 kg / 764.0 g
7.5 N
|
| 10 mm | Stal (~0.2) |
0.19 kg / 190.0 g
1.9 N
|
| 15 mm | Stal (~0.2) |
0.05 kg / 54.0 g
0.5 N
|
| 20 mm | Stal (~0.2) |
0.02 kg / 18.0 g
0.2 N
|
| 30 mm | Stal (~0.2) |
0.00 kg / 4.0 g
0.0 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
MW 20x18 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
3.96 kg / 3957.0 g
38.8 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
2.64 kg / 2638.0 g
25.9 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
1.32 kg / 1319.0 g
12.9 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
6.60 kg / 6595.0 g
64.7 N
|
MW 20x18 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg) |
|---|---|---|
| 0.5 mm |
|
0.66 kg / 659.5 g
6.5 N
|
| 1 mm |
|
1.65 kg / 1648.8 g
16.2 N
|
| 2 mm |
|
3.30 kg / 3297.5 g
32.3 N
|
| 5 mm |
|
8.24 kg / 8243.8 g
80.9 N
|
| 10 mm |
|
13.19 kg / 13190.0 g
129.4 N
|
MW 20x18 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig | Status |
|---|---|---|---|
| 20 °C | 0.0% |
13.19 kg / 13190.0 g
129.4 N
|
OK |
| 40 °C | -2.2% |
12.90 kg / 12899.8 g
126.5 N
|
OK |
| 60 °C | -4.4% |
12.61 kg / 12609.6 g
123.7 N
|
OK |
| 80 °C | -6.6% |
12.32 kg / 12319.5 g
120.9 N
|
|
| 100 °C | -28.8% |
9.39 kg / 9391.3 g
92.1 N
|
MW 20x18 / N38
| Szczelina (mm) | Przyciąganie (kg) (N-S) | Odpychanie (kg) (N-N) |
|---|---|---|
| 0 mm |
56.78 kg / 56776 g
557.0 N
5 968 Gs
|
N/A |
| 1 mm |
51.26 kg / 51260 g
502.9 N
10 289 Gs
|
46.13 kg / 46134 g
452.6 N
~0 Gs
|
| 2 mm |
45.93 kg / 45927 g
450.5 N
9 739 Gs
|
41.33 kg / 41334 g
405.5 N
~0 Gs
|
| 3 mm |
40.93 kg / 40932 g
401.5 N
9 194 Gs
|
36.84 kg / 36839 g
361.4 N
~0 Gs
|
| 5 mm |
32.06 kg / 32062 g
314.5 N
8 137 Gs
|
28.86 kg / 28855 g
283.1 N
~0 Gs
|
| 10 mm |
16.44 kg / 16436 g
161.2 N
5 826 Gs
|
14.79 kg / 14792 g
145.1 N
~0 Gs
|
| 20 mm |
4.10 kg / 4099 g
40.2 N
2 909 Gs
|
3.69 kg / 3689 g
36.2 N
~0 Gs
|
| 50 mm |
0.15 kg / 154 g
1.5 N
565 Gs
|
0.14 kg / 139 g
1.4 N
~0 Gs
|
MW 20x18 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 12.5 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 9.5 cm |
| Zegarek mechaniczny | 20 Gs (2.0 mT) | 7.5 cm |
| Telefon / Smartfon | 40 Gs (4.0 mT) | 6.0 cm |
| Kluczyk samochodowy | 50 Gs (5.0 mT) | 5.5 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 2.5 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 2.0 cm |
MW 20x18 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
18.57 km/h
(5.16 m/s)
|
0.56 J | |
| 30 mm |
30.83 km/h
(8.56 m/s)
|
1.56 J | |
| 50 mm |
39.77 km/h
(11.05 m/s)
|
2.59 J | |
| 100 mm |
56.24 km/h
(15.62 m/s)
|
5.18 J |
MW 20x18 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
MW 20x18 / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 17 374 Mx | 173.7 µWb |
| Współczynnik Pc | 0.85 | Wysoki (Stabilny) |
MW 20x18 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 13.19 kg | Standard |
| Woda (dno rzeki) |
15.10 kg
(+1.91 kg Zysk z wyporności)
|
+14.5% |
1. Ześlizg (ściana)
*Ważne: Na powierzchni pionowej magnes utrzyma jedynie ~20-30% siły oderwania.
2. Nasycenie magnetyczne
*Zbyt cienki metal (np. blacha karoseryjna) wyraźnie osłabia udźwig magnesu.
3. Wytrzymałość temperaturowa
*Dla standardowych magnesów granica bezpieczeństwa to 80°C.
Sprawdź inne produkty
Wady oraz zalety magnesów neodymowych Nd2Fe14B.
Plusy
- Cechują się stabilnością – przez okres ok. 10 lat tracą maksymalnie ~1% swojej mocy (wg danych).
- Są niewrażliwe na wpływ innych pól, co czyni je odpornymi na rozmagnesowanie w trudnych warunkach.
- Wykończenie materiałami takimi jak nikiel czy złoto nadaje im elegancki i lśniący charakter.
- Wyróżniają się bardzo wysoką gęstością pola na powierzchni, co zapewnia silne chwytanie z dużą mocą.
- Wersje specjalistyczne radzą sobie w temperaturach sięgających 230°C, zachowując swoje parametry.
- Dają się łatwo formować do specyficznych wymiarów, co ułatwia ich adaptację w przemyśle.
- Znajdują szerokie zastosowanie w nowoczesnej technice – od napędów HDD i motorów elektrycznych, po zaawansowaną aparaturę medyczną.
- Dzięki kompaktowości, nie wymagają dużej przestrzeni, a jednocześnie zapewniają silne pole.
Słabe strony
- Uwaga na uszkodzenia mechaniczne – bez odpowiedniej obudowy mogą pękać przy upadku na twarde podłoże.
- Wysoka temperatura to wróg neodymów – powyżej 80°C tracą właściwości. Do zadań specjalnych polecamy wersje odporne [AH], działającą stabilnie aż do 230°C.
- Nie lubią wody – szybko rdzewieją. Jeśli planujesz montaż na dworze, jedynym słusznym wyborem są magnesy w gumowej otulinie.
- Ze względu na twardość, nie zaleca się gwintowania magnesu. Prościej użyć magnesu wklejonego w gniazdo z gwintem.
- Produkt niebezpieczny po połknięciu. Bezwzględnie chronić przed dziećmi. Wewnątrz ciała magnesy mogą się połączyć, powodując uszkodzenia jelit.
- Cena – są droższe niż magnesy ferrytowe, co przy wielkich nakładach może być barierą.
Parametry udźwigu
Maksymalny udźwig magnesu – od czego zależy?
- z zastosowaniem płyty ze stali o wysokiej przenikalności, która służy jako element zamykający obwód
- o grubości nie mniejszej niż 10 mm
- charakteryzującej się równą strukturą
- bez najmniejszej szczeliny pomiędzy magnesem a stalą
- podczas odrywania w kierunku pionowym do płaszczyzny mocowania
- przy temperaturze otoczenia pokojowej
Wpływ czynników na nośność magnesu w praktyce
- Szczelina między powierzchniami – nawet ułamek milimetra dystansu (spowodowany np. lakierem lub nierównością) drastycznie redukuje siłę przyciągania, często o połowę przy zaledwie 0,5 mm.
- Kierunek siły – deklarowany udźwig dotyczy ciągnięcia w pionie. Przy próbie przesunięcia, magnes trzyma dużo słabiej (często ok. 20-30% siły maksymalnej).
- Grubość metalu – im cieńsza blacha, tym słabsze trzymanie. Część pola magnetycznego przechodzi przez materiał, zamiast generować siłę.
- Skład materiału – nie każda stal reaguje tak samo. Dodatki stopowe pogarszają efekt przyciągania.
- Gładkość podłoża – im gładsza i bardziej polerowana blacha, tym lepsze przyleganie i silniejsze trzymanie. Chropowatość tworzą dystans powietrzny.
- Czynnik termiczny – wysoka temperatura zmniejsza siłę przyciągania. Przekroczenie temperatury granicznej może trwale uszkodzić magnes.
Udźwig wyznaczano stosując gładkiej blachy o optymalnej grubości (min. 20 mm), przy prostopadłym działaniu siły odrywającej, natomiast przy działaniu siły na zsuwanie nośność jest mniejsza nawet pięć razy. Ponadto, nawet niewielka szczelina pomiędzy powierzchnią magnesu, a blachą obniża siłę trzymania.
Zakaz zabawy
Sprzedaż wyłącznie dla dorosłych. Drobne magnesy mogą zostać połknięte, co prowadzi do perforacji jelit. Przechowuj poza zasięgiem niepowołanych osób.
Ryzyko uczulenia
Powszechnie wiadomo, że powłoka niklowa (standardowe zabezpieczenie magnesów) jest częstą przyczyną uczuleń. Jeśli masz uczulenie, unikaj trzymania magnesów gołą dłonią lub wybierz magnesy powlekane tworzywem.
Ryzyko zmiażdżenia
Ryzyko obrażeń: Siła przyciągania jest tak duża, że może spowodować rany, zgniecenia, a nawet otwarte złamania. Stosuj solidne rękawice ochronne.
Wrażliwość na ciepło
Kontroluj ciepło. Podgrzanie magnesu powyżej 80 stopni Celsjusza trwale osłabi jego strukturę magnetyczną i udźwig.
Ryzyko pęknięcia
Mimo metalicznego wyglądu, neodym jest kruchy i nieodporny na uderzenia. Nie rzucaj, gdyż magnes może się pokruszyć na ostre, niebezpieczne kawałki.
Interferencja medyczna
Pacjenci z kardiowerterem muszą zachować bezwzględny dystans od magnesów. Pole magnetyczne może rozregulować pracę implantu.
Smartfony i tablety
Urządzenia nawigacyjne są niezwykle podatne na pole magnetyczne. Bezpośredni kontakt z silnym magnesem może zniszczyć czujniki w Twoim telefonie.
Pył jest łatwopalny
Uwaga na ogień: Pył neodymowy jest skrajnie łatwopalny. Nie modyfikuj mechanicznie magnesów amatorsko, gdyż grozi to zapłonem.
Ochrona urządzeń
Nie zbliżaj magnesów do portfela, komputera czy ekranu. Magnes może nieodwracalnie zepsuć te urządzenia oraz skasować dane z kart.
Moc przyciągania
Postępuj ostrożnie. Magnesy neodymowe działają z dużej odległości i zwierają z impetem, często szybciej niż zdążysz zareagować.
