MPL 20x10x2 / N38 - magnes neodymowy płytkowy
magnes neodymowy płytkowy
Numer katalogowy 020127
GTIN/EAN: 5906301811336
Długość
20 mm [±0,1 mm]
Szerokość
10 mm [±0,1 mm]
Wysokość
2 mm [±0,1 mm]
Waga
3 g
Kierunek magnesowania
↑ osiowy
Udźwig
1.88 kg / 18.44 N
Indukcja magnetyczna
168.24 mT / 1682 Gs
Powłoka
[NiCuNi] nikiel
1.538 ZŁ z VAT / szt. + cena za transport
1.250 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?Chcesz skonsultować wybór?
Skontaktuj się z nami telefonicznie
+48 22 499 98 98
ewentualnie skontaktuj się za pomocą
formularz kontaktowy
na stronie kontakt.
Właściwości oraz kształt elementów magnetycznych obliczysz w naszym
kalkulatorze siły.
Wysyłka tego samego dnia dla zamówień do godz. 14:00.
MPL 20x10x2 / N38 - magnes neodymowy płytkowy
Specyfikacja / charakterystyka MPL 20x10x2 / N38 - magnes neodymowy płytkowy
| właściwości | wartości |
|---|---|
| Nr kat. | 020127 |
| GTIN/EAN | 5906301811336 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Długość | 20 mm [±0,1 mm] |
| Szerokość | 10 mm [±0,1 mm] |
| Wysokość | 2 mm [±0,1 mm] |
| Waga | 3 g |
| Kierunek magnesowania | ↑ osiowy |
| Udźwig ~ ? | 1.88 kg / 18.44 N |
| Indukcja magnetyczna ~ ? | 168.24 mT / 1682 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [min. - maks.] ? | 12.2-12.6 | kGs |
| remanencja Br [min. - maks.] ? | 1220-1260 | mT |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [min. - maks.] ? | 36-38 | BH max MGOe |
| gęstość energii [min. - maks.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Temperatura Curie TC | 312 - 380 | °C |
| Temperatura Curie TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅cm |
| Siła wyginania | 250 | MPa |
| Wytrzymałość na ściskanie | 1000~1100 | MPa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 10-6 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Modelowanie fizyczna magnesu neodymowego - parametry techniczne
Poniższe wartości są wynik symulacji fizycznej. Wartości zostały wyliczone na modelach dla klasy Nd2Fe14B. Realne osiągi mogą nieznacznie odbiegać od wyników symulacji. Prosimy traktować te wyliczenia jako punkt odniesienia dla projektantów.
MPL 20x10x2 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg)(gram)(Niuton) | Status ryzyka |
|---|---|---|---|
| 0 mm |
1682 Gs
168.2 mT
|
1.88 kg / 1880.0 g
18.4 N
|
bezpieczny |
| 1 mm |
1524 Gs
152.4 mT
|
1.54 kg / 1544.3 g
15.1 N
|
bezpieczny |
| 2 mm |
1316 Gs
131.6 mT
|
1.15 kg / 1150.1 g
11.3 N
|
bezpieczny |
| 3 mm |
1101 Gs
110.1 mT
|
0.81 kg / 806.0 g
7.9 N
|
bezpieczny |
| 5 mm |
744 Gs
74.4 mT
|
0.37 kg / 367.6 g
3.6 N
|
bezpieczny |
| 10 mm |
288 Gs
28.8 mT
|
0.06 kg / 55.1 g
0.5 N
|
bezpieczny |
| 15 mm |
129 Gs
12.9 mT
|
0.01 kg / 11.1 g
0.1 N
|
bezpieczny |
| 20 mm |
66 Gs
6.6 mT
|
0.00 kg / 2.9 g
0.0 N
|
bezpieczny |
| 30 mm |
23 Gs
2.3 mT
|
0.00 kg / 0.4 g
0.0 N
|
bezpieczny |
| 50 mm |
6 Gs
0.6 mT
|
0.00 kg / 0.0 g
0.0 N
|
bezpieczny |
MPL 20x10x2 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg)(gram)(Niuton) |
|---|---|---|
| 0 mm | Stal (~0.2) |
0.38 kg / 376.0 g
3.7 N
|
| 1 mm | Stal (~0.2) |
0.31 kg / 308.0 g
3.0 N
|
| 2 mm | Stal (~0.2) |
0.23 kg / 230.0 g
2.3 N
|
| 3 mm | Stal (~0.2) |
0.16 kg / 162.0 g
1.6 N
|
| 5 mm | Stal (~0.2) |
0.07 kg / 74.0 g
0.7 N
|
| 10 mm | Stal (~0.2) |
0.01 kg / 12.0 g
0.1 N
|
| 15 mm | Stal (~0.2) |
0.00 kg / 2.0 g
0.0 N
|
| 20 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
| 30 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
MPL 20x10x2 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
0.56 kg / 564.0 g
5.5 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
0.38 kg / 376.0 g
3.7 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
0.19 kg / 188.0 g
1.8 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
0.94 kg / 940.0 g
9.2 N
|
MPL 20x10x2 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg) |
|---|---|---|
| 0.5 mm |
|
0.19 kg / 188.0 g
1.8 N
|
| 1 mm |
|
0.47 kg / 470.0 g
4.6 N
|
| 2 mm |
|
0.94 kg / 940.0 g
9.2 N
|
| 5 mm |
|
1.88 kg / 1880.0 g
18.4 N
|
| 10 mm |
|
1.88 kg / 1880.0 g
18.4 N
|
MPL 20x10x2 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig | Status |
|---|---|---|---|
| 20 °C | 0.0% |
1.88 kg / 1880.0 g
18.4 N
|
OK |
| 40 °C | -2.2% |
1.84 kg / 1838.6 g
18.0 N
|
OK |
| 60 °C | -4.4% |
1.80 kg / 1797.3 g
17.6 N
|
|
| 80 °C | -6.6% |
1.76 kg / 1755.9 g
17.2 N
|
|
| 100 °C | -28.8% |
1.34 kg / 1338.6 g
13.1 N
|
MPL 20x10x2 / N38
| Szczelina (mm) | Przyciąganie (kg) (N-S) | Odpychanie (kg) (N-N) |
|---|---|---|
| 0 mm |
3.49 kg / 3488 g
34.2 N
2 995 Gs
|
N/A |
| 1 mm |
3.21 kg / 3209 g
31.5 N
3 227 Gs
|
2.89 kg / 2888 g
28.3 N
~0 Gs
|
| 2 mm |
2.87 kg / 2865 g
28.1 N
3 049 Gs
|
2.58 kg / 2579 g
25.3 N
~0 Gs
|
| 3 mm |
2.50 kg / 2497 g
24.5 N
2 846 Gs
|
2.25 kg / 2247 g
22.0 N
~0 Gs
|
| 5 mm |
1.80 kg / 1796 g
17.6 N
2 414 Gs
|
1.62 kg / 1617 g
15.9 N
~0 Gs
|
| 10 mm |
0.68 kg / 682 g
6.7 N
1 487 Gs
|
0.61 kg / 614 g
6.0 N
~0 Gs
|
| 20 mm |
0.10 kg / 102 g
1.0 N
576 Gs
|
0.09 kg / 92 g
0.9 N
~0 Gs
|
| 50 mm |
0.00 kg / 2 g
0.0 N
76 Gs
|
0.00 kg / 0 g
0.0 N
~0 Gs
|
MPL 20x10x2 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 5.5 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 4.5 cm |
| Zegarek mechaniczny | 20 Gs (2.0 mT) | 3.5 cm |
| Telefon / Smartfon | 40 Gs (4.0 mT) | 2.5 cm |
| Kluczyk samochodowy | 50 Gs (5.0 mT) | 2.5 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 1.0 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 1.0 cm |
MPL 20x10x2 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
25.70 km/h
(7.14 m/s)
|
0.08 J | |
| 30 mm |
43.73 km/h
(12.15 m/s)
|
0.22 J | |
| 50 mm |
56.45 km/h
(15.68 m/s)
|
0.37 J | |
| 100 mm |
79.84 km/h
(22.18 m/s)
|
0.74 J |
MPL 20x10x2 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
MPL 20x10x2 / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 3 825 Mx | 38.2 µWb |
| Współczynnik Pc | 0.19 | Niski (Płaski) |
MPL 20x10x2 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 1.88 kg | Standard |
| Woda (dno rzeki) |
2.15 kg
(+0.27 kg Zysk z wyporności)
|
+14.5% |
1. Udźwig w pionie
*Uwaga: Na powierzchni pionowej magnes utrzyma zaledwie ułamek siły oderwania.
2. Grubość podłoża
*Zbyt cienki metal (np. blacha karoseryjna) znacząco ogranicza siłę trzymania.
3. Stabilność termiczna
*W klasie N38 granica bezpieczeństwa to 80°C.
4. Krzywa odmagnesowania i punkt pracy (B-H)
wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 0.19
Niniejsza symulacja obrazuje stabilność magnetyczną wybranego magnesu w konkretnych warunkach geometrycznych. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.
Skład chemiczny materiału
| żelazo (Fe) | 64% – 68% |
| neodym (Nd) | 29% – 32% |
| bor (B) | 1.1% – 1.2% |
| dysproz (Dy) | 0.5% – 2.0% |
| powłoka (Ni-Cu-Ni) | < 0.05% |
Dane środowiskowe
| recyklowalność (EoL) | 100% |
| surowce z recyklingu | ~10% (pre-cons) |
| ślad węglowy | low / zredukowany |
| kod odpadu (EWC) | 16 02 16 |
Sprawdź inne oferty
Wady oraz zalety magnesów z neodymu Nd2Fe14B.
Plusy
- Długowieczność to ich atut – po upływie 10 lat utrata siły magnetycznej wynosi jedynie ~1% (wg testów).
- Pozostają niewrażliwe na wpływ innych pól, co czyni je odpornymi na rozmagnesowanie w wymagającym środowisku.
- Pokrycie materiałami takimi jak nikiel, srebro lub złoto nadaje im profesjonalny i lśniący charakter.
- Oferują maksymalną indukcję magnetyczną w punkcie styku, co gwarantuje skuteczność.
- Dzięki zaawansowanej technologii funkcjonują w temperaturach sięgających 230°C, zachowując swoje właściwości.
- Możliwość uzyskania skomplikowanych kształtów sprawia, że są doskonałe do nietypowych zastosowań.
- Pełnią kluczową rolę w rozwoju technologii, będąc sercem generatorów, dysków i urządzeń ratujących życie.
- Dzięki kompaktowości, nie wymagają dużej przestrzeni, a jednocześnie zapewniają wysoką skuteczność.
Minusy
- Kruchość to ich mankament. Łatwo ulegają uszkodzeniu przy zderzeniu, dlatego zalecamy osłony lub montaż w stali.
- Wrażliwość na ciepło: przekroczenie 80°C może trwale osłabić magnes (zależnie od bryły). Rozwiązaniem są nasze magnesy wysokotemperaturowe [AH].
- Brak odporności na wodę skutkuje utlenianiem. Do zadań zewnętrznych rekomendujemy wyłącznie magnesy zabezpieczone antykorozyjnie (plastik/guma).
- Ze względu na twardość, nie zaleca się gwintowania magnesu. Bezpieczniej użyć magnesu wklejonego w gniazdo z gwintem.
- Uważaj na małe części – połknięcie wymaga interwencji chirurga. Mogą też być problemem przy diagnostyce MRI.
- Cena – są bardziej kosztowne niż magnesy ferrytowe, co przy produkcji masowej może być barierą.
Charakterystyka udźwigu
Optymalny udźwig magnesu neodymowego – co się na to składa?
- na bloku wykonanej ze stali miękkiej, optymalnie przewodzącej strumień magnetyczny
- o grubości nie mniejszej niż 10 mm
- z płaszczyzną oczyszczoną i gładką
- przy zerowej szczelinie (bez powłok)
- dla siły przyłożonej pod kątem prostym (w osi magnesu)
- przy temperaturze ok. 20 stopni Celsjusza
Kluczowe elementy wpływające na udźwig
- Szczelina – obecność ciała obcego (farba, taśma, powietrze) działa jak izolator, co obniża udźwig lawinowo (nawet o 50% przy 0,5 mm).
- Sposób obciążenia – deklarowany udźwig dotyczy ciągnięcia w pionie. Przy ześlizgiwaniu, magnes trzyma dużo słabiej (często ok. 20-30% siły maksymalnej).
- Grubość ścianki – cienki materiał nie pozwala na pełne wykorzystanie magnesu. Strumień magnetyczny przenika na wylot, zamiast generować siłę.
- Rodzaj stali – stal miękka przyciąga najlepiej. Stale stopowe obniżają właściwości magnetyczne i udźwig.
- Gładkość – idealny styk uzyskamy tylko na gładkiej stali. Chropowata faktura tworzą poduszki powietrzne, redukując siłę.
- Temperatura – wzrost temperatury powoduje tymczasowy spadek indukcji. Należy pamiętać o limit termiczny dla danego modelu.
Udźwig mierzono z wykorzystaniem wypolerowanej blachy o optymalnej grubości (min. 20 mm), przy siłach działających pionowo, natomiast przy siłach działających równolegle udźwig jest mniejszy nawet pięć razy. Ponadto, nawet minimalna przerwa między powierzchnią magnesu, a blachą zmniejsza nośność.
Uszkodzenia ciała
Duże magnesy mogą połamać palce błyskawicznie. Pod żadnym pozorem wkładaj dłoni między dwa przyciągające się elementy.
Obróbka mechaniczna
Pył powstający podczas cięcia magnesów jest wybuchowy. Unikaj wiercenia w magnesach bez odpowiedniego chłodzenia i wiedzy.
Trwała utrata siły
Typowe magnesy neodymowe (typ N) ulegają rozmagnesowaniu po przekroczeniu temperatury 80°C. Proces ten jest nieodwracalny.
Niklowa powłoka a alergia
Pewna grupa użytkowników ma nadwrażliwość na nikiel, którym powlekane są standardowo magnesy neodymowe. Długotrwała ekspozycja może powodować zaczerwienienie skóry. Zalecamy stosowanie rękawiczek ochronnych.
Bezpieczny dystans
Ochrona danych: Magnesy neodymowe mogą zdegradować nośniki danych oraz urządzenia precyzyjne (implanty, aparaty słuchowe, zegarki mechaniczne).
Ochrona oczu
Spieki NdFeB to spiek proszkowy, co oznacza, że są łamliwe jak szkło. Upadek dwóch magnesów wywoła ich rozpryśnięcie na drobne kawałki.
Zagrożenie dla nawigacji
Urządzenia nawigacyjne są niezwykle podatne na pole magnetyczne. Bliskie sąsiedztwo z silnym magnesem może rozalibrować czujniki w Twoim telefonie.
Nie dawać dzieciom
Bezwzględnie zabezpiecz magnesy przed dostępem dzieci. Ryzyko zadławienia jest wysokie, a konsekwencje zwarcia magnesów wewnątrz organizmu są nieodwracalne.
Niebezpieczeństwo dla rozruszników
Osoby z rozrusznikiem serca muszą utrzymać bezpieczną odległość od magnesów. Silny magnes może zatrzymać działanie urządzenia ratującego życie.
Świadome użytkowanie
Postępuj ostrożnie. Magnesy neodymowe działają z daleka i łączą się z ogromną siłą, często szybciej niż jesteś w stanie przewidzieć.
