MW 12x4 / N52 - magnes neodymowy walcowy
magnes neodymowy walcowy
Numer katalogowy 010500
GTIN/EAN: 5906301814962
Średnica Ø
12 mm [±0,1 mm]
Wysokość
4 mm [±0,1 mm]
Waga
3.39 g
Kierunek magnesowania
↑ osiowy
Udźwig
4.68 kg / 45.89 N
Indukcja magnetyczna
400.45 mT / 4005 Gs
Powłoka
[NiCuNi] nikiel
2.18 ZŁ z VAT / szt. + cena za transport
1.770 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?
Zadzwoń do nas
+48 22 499 98 98
ewentualnie skontaktuj się poprzez
formularz zgłoszeniowy
na naszej stronie.
Moc i kształt magnesów neodymowych testujesz dzięki naszemu
naszym kalkulatorze magnetycznym.
Realizacja tego samego dnia przy zamówieniu do 14:00.
Szczegóły techniczne - MW 12x4 / N52 - magnes neodymowy walcowy
Specyfikacja / charakterystyka - MW 12x4 / N52 - magnes neodymowy walcowy
| właściwości | wartości |
|---|---|
| Nr kat. | 010500 |
| GTIN/EAN | 5906301814962 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Średnica Ø | 12 mm [±0,1 mm] |
| Wysokość | 4 mm [±0,1 mm] |
| Waga | 3.39 g |
| Kierunek magnesowania | ↑ osiowy |
| Udźwig ~ ? | 4.68 kg / 45.89 N |
| Indukcja magnetyczna ~ ? | 400.45 mT / 4005 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N52
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [min. - maks.] ? | 14.2-14.7 | kGs |
| remanencja Br [min. - maks.] ? | 1420-1470 | mT |
| koercja bHc ? | 10.8-12.5 | kOe |
| koercja bHc ? | 860-995 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [min. - maks.] ? | 48-53 | BH max MGOe |
| gęstość energii [min. - maks.] ? | 380-422 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Temperatura Curie TC | 312 - 380 | °C |
| Temperatura Curie TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅cm |
| Siła wyginania | 250 | MPa |
| Wytrzymałość na ściskanie | 1000~1100 | MPa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 10-6 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Analiza inżynierska magnesu neodymowego - dane
Poniższe dane są wynik analizy fizycznej. Wyniki oparte są na algorytmach dla klasy Nd2Fe14B. Rzeczywiste warunki mogą się różnić. Prosimy traktować te dane jako pomoc pomocniczą przy projektowaniu systemów.
Tabela 1: Siła prostopadła statyczna (udźwig vs dystans) - charakterystyka
MW 12x4 / N52
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg)(gram)(Niuton) | Status ryzyka |
|---|---|---|---|
| 0 mm |
4003 Gs
400.3 mT
|
4.68 kg / 4680.0 g
45.9 N
|
uwaga |
| 1 mm |
3438 Gs
343.8 mT
|
3.45 kg / 3451.9 g
33.9 N
|
uwaga |
| 2 mm |
2824 Gs
282.4 mT
|
2.33 kg / 2329.8 g
22.9 N
|
uwaga |
| 3 mm |
2255 Gs
225.5 mT
|
1.48 kg / 1484.8 g
14.6 N
|
słaby uchwyt |
| 5 mm |
1386 Gs
138.6 mT
|
0.56 kg / 561.3 g
5.5 N
|
słaby uchwyt |
| 10 mm |
445 Gs
44.5 mT
|
0.06 kg / 58.0 g
0.6 N
|
słaby uchwyt |
| 15 mm |
181 Gs
18.1 mT
|
0.01 kg / 9.6 g
0.1 N
|
słaby uchwyt |
| 20 mm |
89 Gs
8.9 mT
|
0.00 kg / 2.3 g
0.0 N
|
słaby uchwyt |
| 30 mm |
30 Gs
3.0 mT
|
0.00 kg / 0.3 g
0.0 N
|
słaby uchwyt |
| 50 mm |
7 Gs
0.7 mT
|
0.00 kg / 0.0 g
0.0 N
|
słaby uchwyt |
Tabela 2: Równoległa siła obsunięcia (ściana)
MW 12x4 / N52
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg)(gram)(Niuton) |
|---|---|---|
| 0 mm | Stal (~0.2) |
0.94 kg / 936.0 g
9.2 N
|
| 1 mm | Stal (~0.2) |
0.69 kg / 690.0 g
6.8 N
|
| 2 mm | Stal (~0.2) |
0.47 kg / 466.0 g
4.6 N
|
| 3 mm | Stal (~0.2) |
0.30 kg / 296.0 g
2.9 N
|
| 5 mm | Stal (~0.2) |
0.11 kg / 112.0 g
1.1 N
|
| 10 mm | Stal (~0.2) |
0.01 kg / 12.0 g
0.1 N
|
| 15 mm | Stal (~0.2) |
0.00 kg / 2.0 g
0.0 N
|
| 20 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
| 30 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
Tabela 3: Siła na ścianie (poślizg) - zachowanie na śliskim podłożu
MW 12x4 / N52
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
1.40 kg / 1404.0 g
13.8 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
0.94 kg / 936.0 g
9.2 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
0.47 kg / 468.0 g
4.6 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
2.34 kg / 2340.0 g
23.0 N
|
Tabela 4: Grubość stali (wpływ podłoża) - straty mocy
MW 12x4 / N52
| Grubość blachy (mm) | % mocy | Realny udźwig (kg) |
|---|---|---|
| 0.5 mm |
|
0.47 kg / 468.0 g
4.6 N
|
| 1 mm |
|
1.17 kg / 1170.0 g
11.5 N
|
| 2 mm |
|
2.34 kg / 2340.0 g
23.0 N
|
| 5 mm |
|
4.68 kg / 4680.0 g
45.9 N
|
| 10 mm |
|
4.68 kg / 4680.0 g
45.9 N
|
Tabela 5: Praca w cieple (zachowanie materiału) - spadek mocy
MW 12x4 / N52
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig | Status |
|---|---|---|---|
| 20 °C | 0.0% |
4.68 kg / 4680.0 g
45.9 N
|
OK |
| 40 °C | -2.2% |
4.58 kg / 4577.0 g
44.9 N
|
OK |
| 60 °C | -4.4% |
4.47 kg / 4474.1 g
43.9 N
|
|
| 80 °C | -6.6% |
4.37 kg / 4371.1 g
42.9 N
|
|
| 100 °C | -28.8% |
3.33 kg / 3332.2 g
32.7 N
|
Tabela 6: Interakcja magnes-magnes (odpychanie) - siły w układzie
MW 12x4 / N52
| Szczelina (mm) | Przyciąganie (kg) (N-S) | Odpychanie (kg) (N-N) |
|---|---|---|
| 0 mm |
11.17 kg / 11170 g
109.6 N
5 771 Gs
|
N/A |
| 1 mm |
9.73 kg / 9727 g
95.4 N
7 470 Gs
|
8.75 kg / 8754 g
85.9 N
~0 Gs
|
| 2 mm |
8.24 kg / 8239 g
80.8 N
6 875 Gs
|
7.42 kg / 7415 g
72.7 N
~0 Gs
|
| 3 mm |
6.83 kg / 6830 g
67.0 N
6 260 Gs
|
6.15 kg / 6147 g
60.3 N
~0 Gs
|
| 5 mm |
4.46 kg / 4463 g
43.8 N
5 060 Gs
|
4.02 kg / 4017 g
39.4 N
~0 Gs
|
| 10 mm |
1.34 kg / 1340 g
13.1 N
2 772 Gs
|
1.21 kg / 1206 g
11.8 N
~0 Gs
|
| 20 mm |
0.14 kg / 138 g
1.4 N
891 Gs
|
0.12 kg / 125 g
1.2 N
~0 Gs
|
| 50 mm |
0.00 kg / 2 g
0.0 N
99 Gs
|
0.00 kg / 0 g
0.0 N
~0 Gs
|
Tabela 7: Strefy ochronne (implanty) - środki ostrożności
MW 12x4 / N52
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 6.0 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 4.5 cm |
| Czasomierz | 20 Gs (2.0 mT) | 3.5 cm |
| Urządzenie mobilne | 40 Gs (4.0 mT) | 3.0 cm |
| Pilot do auta | 50 Gs (5.0 mT) | 2.5 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 1.5 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 1.0 cm |
Tabela 8: Energia uderzenia (ryzyko pęknięcia) - ostrzeżenie
MW 12x4 / N52
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
37.76 km/h
(10.49 m/s)
|
0.19 J | |
| 30 mm |
64.91 km/h
(18.03 m/s)
|
0.55 J | |
| 50 mm |
83.79 km/h
(23.27 m/s)
|
0.92 J | |
| 100 mm |
118.50 km/h
(32.92 m/s)
|
1.84 J |
Tabela 9: Odporność na korozję
MW 12x4 / N52
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
Tabela 10: Dane konstrukcyjne (Pc)
MW 12x4 / N52
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 4 794 Mx | 47.9 µWb |
| Współczynnik Pc | 0.44 | Niski (Płaski) |
Tabela 11: Zastosowanie podwodne
MW 12x4 / N52
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 4.68 kg | Standard |
| Woda (dno rzeki) |
5.36 kg
(+0.68 kg Zysk z wyporności)
|
+14.5% |
1. Ześlizg (ściana)
*Ważne: Na pionowej ścianie magnes zachowa tylko ułamek siły oderwania.
2. Efektywność, a grubość stali
*Cienka blacha (np. blacha karoseryjna) znacząco osłabia udźwig magnesu.
3. Praca w cieple
*Dla materiału N38 krytyczny próg to 80°C.
4. Krzywa odmagnesowania i punkt pracy (B-H)
wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 0.44
Niniejsza symulacja obrazuje stabilność magnetyczną wybranego magnesu w konkretnych warunkach geometrycznych. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.
Skład chemiczny materiału
| żelazo (Fe) | 64% – 68% |
| neodym (Nd) | 29% – 32% |
| bor (B) | 1.1% – 1.2% |
| dysproz (Dy) | 0.5% – 2.0% |
| powłoka (Ni-Cu-Ni) | < 0.05% |
Zrównoważony rozwój
| recyklowalność (EoL) | 100% |
| surowce z recyklingu | ~10% (pre-cons) |
| ślad węglowy | low / zredukowany |
| kod odpadu (EWC) | 16 02 16 |
Zobacz też inne oferty
Wady oraz zalety magnesów z neodymu Nd2Fe14B.
Korzyści
- Długowieczność to ich atut – po upływie dekady utrata mocy wynosi jedynie ~1% (teoretycznie).
- Charakteryzują się ogromną odpornością na rozmagnesowanie, nawet w silnych polach zewnętrznych.
- Dzięki warstwie ochronnej (nikiel, złoto, Ag) zyskują nowoczesny, błyszczący wygląd.
- Indukcja magnetyczna na powierzchni tych magnesów jest bardzo wysoka, co czyni je najwydajniejszymi w swojej klasie.
- Wersje specjalistyczne radzą sobie w temperaturach sięgających 230°C, zachowując swoje właściwości.
- Duża swoboda w projektowaniu kształtu i wymiaru to ich wielka zaleta w inżynierii.
- Spotkasz je wszędzie tam, gdzie liczy się precyzja: w napędach, rezonansach oraz przemyśle komputerowym.
- Dzięki kompaktowości, nie wymagają dużej przestrzeni, a jednocześnie gwarantują silne pole.
Słabe strony
- Delikatność mechaniczna to ich słaba strona. Mogą pęknąć przy upadku, dlatego warto stosować osłony lub montaż w stali.
- Klasyczne neodymy tracą moc powyżej 80°C. Jeśli wymagasz pracy w wyższych temperaturach, wybierz serię [AH] (odporną do 230°C).
- Są podatne na rdzewienie w mokrym otoczeniu. Na zewnątrz zalecamy użycie magnesów wodoszczelnych (np. w gumie).
- Ze względu na twardość, nie zaleca się obróbki mechanicznej magnesu. Prościej użyć magnesu wklejonego w gniazdo z gwintem.
- Drobne magnesy to ryzyko – połknięcie wymaga interwencji chirurga. Mogą też być problemem przy badaniach lekarskich.
- Za jakość trzeba płacić – magnesy neodymowe są droższe od ceramicznych, co wpływa na ekonomię rozwiązania.
Analiza siły trzymania
Siła oderwania magnesu w optymalnych warunkach – od czego zależy?
- przy kontakcie z blachy ze stali niskowęglowej, zapewniającej maksymalne skupienie pola
- posiadającej masywność co najmniej 10 mm dla pełnego zamknięcia strumienia
- z powierzchnią oczyszczoną i gładką
- bez najmniejszej warstwy izolującej pomiędzy magnesem a stalą
- dla siły przyłożonej pod kątem prostym (w osi magnesu)
- w standardowej temperaturze otoczenia
Wpływ czynników na nośność magnesu w praktyce
- Szczelina – obecność ciała obcego (farba, brud, powietrze) przerywa obwód magnetyczny, co obniża moc lawinowo (nawet o 50% przy 0,5 mm).
- Wektor obciążenia – maksymalny parametr mamy tylko przy prostopadłym odrywaniu. Opór przy zsuwaniu magnesu po powierzchni jest zazwyczaj kilkukrotnie niższa (ok. 1/5 udźwigu).
- Grubość metalu – cienki materiał nie pozwala na pełne wykorzystanie magnesu. Część pola magnetycznego przechodzi przez materiał, zamiast generować siłę.
- Typ metalu – nie każda stal reaguje tak samo. Wysoka zawartość węgla osłabiają efekt przyciągania.
- Gładkość podłoża – im gładsza i bardziej polerowana blacha, tym lepsze przyleganie i wyższy udźwig. Nierówności działają jak mikroszczeliny.
- Warunki termiczne – magnesy neodymowe posiadają ujemny współczynnik temperaturowy. Gdy jest gorąco tracą moc, a na mrozie mogą być silniejsze (do pewnej granicy).
Udźwig określano stosując blachy o gładkiej powierzchni o właściwej grubości (min. 20 mm), przy działaniu siły prostopadłej, z kolei przy próbie przesunięcia magnesu nośność jest mniejsza nawet pięć razy. Ponadto, nawet niewielka szczelina pomiędzy powierzchnią magnesu, a blachą redukuje siłę trzymania.
Ostrzeżenia
Łamliwość magnesów
Chroń oczy. Magnesy mogą eksplodować przy niekontrolowanym uderzeniu, rozrzucając kawałki metalu w powietrze. Noś okulary.
Urządzenia elektroniczne
Bezpieczeństwo sprzętu: Magnesy neodymowe mogą uszkodzić karty bankomatowe oraz urządzenia precyzyjne (rozruszniki serca, protezy słuchu, zegarki mechaniczne).
Ostrzeżenie dla alergików
Ostrzeżenie dla alergików: powłoka Ni-Cu-Ni ma w składzie nikiel. W przypadku wystąpienia świądu lub podrażnienia, należy bezzwłocznie zakończyć pracę z magnesami i użyć środków ochronnych.
Niebezpieczeństwo przytrzaśnięcia
Duże magnesy mogą zdruzgotać palce błyskawicznie. Pod żadnym pozorem umieszczaj dłoni między dwa silne magnesy.
Nie wierć w magnesach
Ryzyko wybuchu: Pył neodymowy jest skrajnie łatwopalny. Nie modyfikuj mechanicznie magnesów amatorsko, gdyż grozi to zapłonem.
Uwaga: zadławienie
Produkt przeznaczony dla dorosłych. Drobne magnesy mogą zostać aspirrowane, co prowadzi do poważnych obrażeń. Trzymaj poza zasięgiem niepowołanych osób.
Temperatura pracy
Uważaj na temperaturę. Podgrzanie magnesu powyżej 80 stopni Celsjusza trwale osłabi jego domenę magnetyczną i udźwig.
Moc przyciągania
Przed użyciem, zapoznaj się z zasadami. Niekontrolowane przyciągnięcie może połamać magnes lub zranić dłoń. Bądź przewidujący.
Implanty medyczne
Dla posiadaczy implantów: Promieniowanie magnetyczne wpływa na elektronikę medyczną. Utrzymuj co najmniej 30 cm odstępu lub poproś inną osobę pracę z magnesów.
Zakłócenia GPS i telefonów
Intensywne promieniowanie magnetyczne wpływa negatywnie na działanie czujników w telefonach i nawigacjach GPS. Trzymaj z dala magnesów do smartfona, aby uniknąć awarii czujników.
