MW 25x5 / N38AH - magnes neodymowy walcowy
magnes neodymowy walcowy
Numer katalogowy 010501
GTIN/EAN: 5906301814993
Średnica Ø
25 mm [±0,1 mm]
Wysokość
5 mm [±0,1 mm]
Waga
18.41 g
Kierunek magnesowania
↑ osiowy
Udźwig
7.29 kg / 71.47 N
Indukcja magnetyczna
219.99 mT / 2200 Gs
Powłoka
[NiCuNi] nikiel
16.68 ZŁ z VAT / szt. + cena za transport
13.56 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?
Skontaktuj się z nami telefonicznie
+48 888 99 98 98
lub pisz za pomocą
formularz zapytania
na naszej stronie.
Udźwig a także formę elementów magnetycznych wyliczysz dzięki naszemu
kalkulatorze magnetycznym.
Zamówienia złożone przed 14:00 realizujemy jeszcze dziś!
Szczegóły techniczne - MW 25x5 / N38AH - magnes neodymowy walcowy
Specyfikacja / charakterystyka - MW 25x5 / N38AH - magnes neodymowy walcowy
| właściwości | wartości |
|---|---|
| Nr kat. | 010501 |
| GTIN/EAN | 5906301814993 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Średnica Ø | 25 mm [±0,1 mm] |
| Wysokość | 5 mm [±0,1 mm] |
| Waga | 18.41 g |
| Kierunek magnesowania | ↑ osiowy |
| Udźwig ~ ? | 7.29 kg / 71.47 N |
| Indukcja magnetyczna ~ ? | 219.99 mT / 2200 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38AH
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [min. - maks.] ? | 12.2-12.5 | kGs |
| remanencja Br [min. - maks.] ? | 1120-1250 | mT |
| koercja bHc ? | ≥ 11.3 | kOe |
| koercja bHc ? | ≥ 899 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 33 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 2624 | kA/m |
| gęstość energii [min. - maks.] ? | 36-39 | BH max MGOe |
| gęstość energii [min. - maks.] ? | 287-310 | BH max KJ/m |
| max. temperatura ? | ≤ 230 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Temperatura Curie TC | 312 - 380 | °C |
| Temperatura Curie TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅cm |
| Siła wyginania | 250 | MPa |
| Wytrzymałość na ściskanie | 1000~1100 | MPa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 10-6 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Analiza fizyczna magnesu - parametry techniczne
Niniejsze dane stanowią rezultat analizy inżynierskiej. Wartości zostały wyliczone na modelach dla materiału Nd2Fe14B. Rzeczywiste parametry mogą nieznacznie odbiegać od wyników symulacji. Traktuj te dane jako punkt odniesienia podczas planowania montażu.
Tabela 1: Siła prostopadła statyczna (siła vs odległość) - wykres oddziaływania
MW 25x5 / N38AH
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg/lbs/g/N) | Status ryzyka |
|---|---|---|---|
| 0 mm |
2292 Gs
229.2 mT
|
7.29 kg / 16.07 lbs
7290.0 g / 71.5 N
|
średnie ryzyko |
| 1 mm |
2180 Gs
218.0 mT
|
6.59 kg / 14.53 lbs
6591.0 g / 64.7 N
|
średnie ryzyko |
| 2 mm |
2042 Gs
204.2 mT
|
5.78 kg / 12.75 lbs
5782.0 g / 56.7 N
|
średnie ryzyko |
| 3 mm |
1888 Gs
188.8 mT
|
4.94 kg / 10.90 lbs
4942.8 g / 48.5 N
|
średnie ryzyko |
| 5 mm |
1564 Gs
156.4 mT
|
3.39 kg / 7.48 lbs
3394.1 g / 33.3 N
|
średnie ryzyko |
| 10 mm |
886 Gs
88.6 mT
|
1.09 kg / 2.40 lbs
1089.7 g / 10.7 N
|
bezpieczny |
| 15 mm |
493 Gs
49.3 mT
|
0.34 kg / 0.74 lbs
336.7 g / 3.3 N
|
bezpieczny |
| 20 mm |
287 Gs
28.7 mT
|
0.11 kg / 0.25 lbs
114.0 g / 1.1 N
|
bezpieczny |
| 30 mm |
115 Gs
11.5 mT
|
0.02 kg / 0.04 lbs
18.4 g / 0.2 N
|
bezpieczny |
| 50 mm |
31 Gs
3.1 mT
|
0.00 kg / 0.00 lbs
1.3 g / 0.0 N
|
bezpieczny |
Tabela 2: Równoległa siła obsunięcia (pion)
MW 25x5 / N38AH
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg/lbs/g/N) |
|---|---|---|
| 0 mm | Stal (~0.2) |
1.46 kg / 3.21 lbs
1458.0 g / 14.3 N
|
| 1 mm | Stal (~0.2) |
1.32 kg / 2.91 lbs
1318.0 g / 12.9 N
|
| 2 mm | Stal (~0.2) |
1.16 kg / 2.55 lbs
1156.0 g / 11.3 N
|
| 3 mm | Stal (~0.2) |
0.99 kg / 2.18 lbs
988.0 g / 9.7 N
|
| 5 mm | Stal (~0.2) |
0.68 kg / 1.49 lbs
678.0 g / 6.7 N
|
| 10 mm | Stal (~0.2) |
0.22 kg / 0.48 lbs
218.0 g / 2.1 N
|
| 15 mm | Stal (~0.2) |
0.07 kg / 0.15 lbs
68.0 g / 0.7 N
|
| 20 mm | Stal (~0.2) |
0.02 kg / 0.05 lbs
22.0 g / 0.2 N
|
| 30 mm | Stal (~0.2) |
0.00 kg / 0.01 lbs
4.0 g / 0.0 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
Tabela 3: Siła na ścianie (poślizg) - udźwig wertykalny
MW 25x5 / N38AH
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg/lbs/g/N) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
2.19 kg / 4.82 lbs
2187.0 g / 21.5 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
1.46 kg / 3.21 lbs
1458.0 g / 14.3 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
0.73 kg / 1.61 lbs
729.0 g / 7.2 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
3.65 kg / 8.04 lbs
3645.0 g / 35.8 N
|
Tabela 4: Grubość stali (nasycenie) - straty mocy
MW 25x5 / N38AH
| Grubość blachy (mm) | % mocy | Realny udźwig (kg/lbs/g/N) |
|---|---|---|
| 0.5 mm |
|
0.73 kg / 1.61 lbs
729.0 g / 7.2 N
|
| 1 mm |
|
1.82 kg / 4.02 lbs
1822.5 g / 17.9 N
|
| 2 mm |
|
3.65 kg / 8.04 lbs
3645.0 g / 35.8 N
|
| 3 mm |
|
5.47 kg / 12.05 lbs
5467.5 g / 53.6 N
|
| 5 mm |
|
7.29 kg / 16.07 lbs
7290.0 g / 71.5 N
|
| 10 mm |
|
7.29 kg / 16.07 lbs
7290.0 g / 71.5 N
|
| 11 mm |
|
7.29 kg / 16.07 lbs
7290.0 g / 71.5 N
|
| 12 mm |
|
7.29 kg / 16.07 lbs
7290.0 g / 71.5 N
|
Tabela 5: Wytrzymałość temperaturowa (stabilność) - limit termiczny
MW 25x5 / N38AH
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig (kg/lbs/g/N) | Status |
|---|---|---|---|
| 20 °C | 0.0% |
7.29 kg / 16.07 lbs
7290.0 g / 71.5 N
|
OK |
| 80 °C | -6.6% |
6.81 kg / 15.01 lbs
6808.9 g / 66.8 N
|
|
| 150 °C | -14.3% |
6.25 kg / 13.77 lbs
6247.5 g / 61.3 N
|
|
| 200 °C | -19.8% |
5.85 kg / 12.89 lbs
5846.6 g / 57.4 N
|
|
| 230 °C | -23.1% |
5.61 kg / 12.36 lbs
5606.0 g / 55.0 N
|
|
| 250 °C | -45.3% |
3.99 kg / 8.79 lbs
3987.6 g / 39.1 N
|
Tabela 6: Interakcja magnes-magnes (przyciąganie) - siły w układzie
MW 25x5 / N38AH
| Szczelina (mm) | Przyciąganie (kg/lbs) (N-S) | Siła zsuwania (kg/lbs/g/N) | Odpychanie (kg/lbs) (N-N) |
|---|---|---|---|
| 0 mm |
15.90 kg / 35.06 lbs
3 855 Gs
|
2.39 kg / 5.26 lbs
2385 g / 23.4 N
|
N/A |
| 1 mm |
15.19 kg / 33.48 lbs
4 480 Gs
|
2.28 kg / 5.02 lbs
2278 g / 22.3 N
|
13.67 kg / 30.13 lbs
~0 Gs
|
| 2 mm |
14.38 kg / 31.70 lbs
4 359 Gs
|
2.16 kg / 4.75 lbs
2157 g / 21.2 N
|
12.94 kg / 28.53 lbs
~0 Gs
|
| 3 mm |
13.51 kg / 29.79 lbs
4 226 Gs
|
2.03 kg / 4.47 lbs
2027 g / 19.9 N
|
12.16 kg / 26.81 lbs
~0 Gs
|
| 5 mm |
11.70 kg / 25.79 lbs
3 932 Gs
|
1.75 kg / 3.87 lbs
1755 g / 17.2 N
|
10.53 kg / 23.21 lbs
~0 Gs
|
| 10 mm |
7.40 kg / 16.32 lbs
3 128 Gs
|
1.11 kg / 2.45 lbs
1111 g / 10.9 N
|
6.66 kg / 14.69 lbs
~0 Gs
|
| 20 mm |
2.38 kg / 5.24 lbs
1 773 Gs
|
0.36 kg / 0.79 lbs
357 g / 3.5 N
|
2.14 kg / 4.72 lbs
~0 Gs
|
| 50 mm |
0.09 kg / 0.21 lbs
354 Gs
|
0.01 kg / 0.03 lbs
14 g / 0.1 N
|
0.09 kg / 0.19 lbs
~0 Gs
|
| 60 mm |
0.04 kg / 0.09 lbs
231 Gs
|
0.01 kg / 0.01 lbs
6 g / 0.1 N
|
0.04 kg / 0.08 lbs
~0 Gs
|
| 70 mm |
0.02 kg / 0.04 lbs
157 Gs
|
0.00 kg / 0.01 lbs
3 g / 0.0 N
|
0.02 kg / 0.04 lbs
~0 Gs
|
| 80 mm |
0.01 kg / 0.02 lbs
112 Gs
|
0.00 kg / 0.00 lbs
1 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 90 mm |
0.01 kg / 0.01 lbs
82 Gs
|
0.00 kg / 0.00 lbs
1 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 100 mm |
0.00 kg / 0.01 lbs
62 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
Tabela 7: Strefy ochronne (elektronika) - ostrzeżenia
MW 25x5 / N38AH
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 10.0 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 7.5 cm |
| Zegarek mechaniczny | 20 Gs (2.0 mT) | 6.0 cm |
| Telefon / Smartfon | 40 Gs (4.0 mT) | 5.0 cm |
| Immobilizer | 50 Gs (5.0 mT) | 4.5 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 2.0 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 1.5 cm |
Tabela 8: Zderzenia (ryzyko pęknięcia) - skutki zderzenia
MW 25x5 / N38AH
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
21.86 km/h
(6.07 m/s)
|
0.34 J | |
| 30 mm |
34.81 km/h
(9.67 m/s)
|
0.86 J | |
| 50 mm |
44.88 km/h
(12.47 m/s)
|
1.43 J | |
| 100 mm |
63.46 km/h
(17.63 m/s)
|
2.86 J |
Tabela 9: Specyfikacja ochrony powierzchni
MW 25x5 / N38AH
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
Tabela 10: Dane elektryczne (Strumień)
MW 25x5 / N38AH
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 13 054 Mx | 130.5 µWb |
| Współczynnik Pc | 0.29 | Niski (Płaski) |
Tabela 11: Zastosowanie podwodne
MW 25x5 / N38AH
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 7.29 kg | Standard |
| Woda (dno rzeki) |
8.35 kg
(+1.06 kg zysk z wyporności)
|
+14.5% |
1. Montaż na ścianie (ześlizg)
*Uwaga: Na powierzchni pionowej magnes zachowa tylko ~20-30% siły prostopadłej.
2. Efektywność, a grubość stali
*Cienka blacha (np. blacha karoseryjna) znacząco redukuje siłę trzymania.
3. Praca w cieple
*W klasie N38 krytyczny próg to 80°C.
4. Krzywa odmagnesowania i punkt pracy (B-H)
wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 0.29
Powyższy wykres prezentuje charakterystykę magnetyczną materiału w drugim kwadrancie pętli histerezy. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.
Analiza pierwiastkowa
| żelazo (Fe) | 64% – 68% |
| neodym (Nd) | 29% – 32% |
| bor (B) | 1.1% – 1.2% |
| dysproz (Dy) | 0.5% – 2.0% |
| powłoka (Ni-Cu-Ni) | < 0.05% |
Dane środowiskowe
| recyklowalność (EoL) | 100% |
| surowce z recyklingu | ~10% (pre-cons) |
| ślad węglowy | low / zredukowany |
| kod odpadu (EWC) | 16 02 16 |
Sprawdź inne propozycje
Wady i zalety neodymowych magnesów Nd2Fe14B.
Korzyści
- Cechują się stabilnością – przez okres ok. 10 lat gubią nie więcej niż ~1% swojej mocy (pomiary wskazują na taką wartość).
- Wyróżniają się ogromną odpornością na demagnetyzację, nawet w silnych polach zewnętrznych.
- Są nie tylko silne, ale i ładne – poprzez niklowanie lub złocenie ich powierzchnia jest błyszcząca i prezentuje się elegancko.
- Generują niezwykle silne pole magnetyczne na swojej powierzchni, co jest ich kluczową cechą.
- Wykazują imponującą wytrzymałość termiczną, co pozwala na ich użycie w warunkach do 230°C (dotyczy odpowiednich serii).
- Dają się łatwo formować do niestandardowych wymiarów, co pozwala na ich adaptację w skomplikowanych urządzeniach.
- Pełnią kluczową rolę w przemyśle, będąc sercem generatorów, dysków i urządzeń ratujących życie.
- Dzięki kompaktowości, nie wymagają dużej przestrzeni, a jednocześnie zapewniają wysoką skuteczność.
Słabe strony
- Uwaga na uszkodzenia mechaniczne – bez odpowiedniej obudowy mogą pękać przy gwałtownym zwarciu.
- Wrażliwość na ciepło: przekroczenie 80°C może trwale osłabić magnes (zależnie od bryły). Rozwiązaniem są nasze magnesy wysokotemperaturowe [AH].
- Brak odporności na wodę skutkuje utlenianiem. Do zadań zewnętrznych sugerujemy wyłącznie magnesy zabezpieczone antykorozyjnie (plastik/guma).
- Magnesy ciężko się obrabia – do montażu śrubowego służą specjalne uchwyty magnetyczne z wbudowanym gwintem.
- Produkt niebezpieczny po połknięciu. Bezwzględnie chronić przed dziećmi. Wewnątrz ciała magnesy mogą się połączyć, powodując uszkodzenia jelit.
- Wyższa cena w porównaniu do tańszych zamienników to ich minus, szczególnie przy dużych ilościach.
Parametry udźwigu
Wytrzymałość na oderwanie magnesu w warunkach idealnych – od czego zależy?
- przy kontakcie z zwory ze stali niskowęglowej, gwarantującej pełne nasycenie magnetyczne
- posiadającej masywność co najmniej 10 mm aby uniknąć nasycenia
- z płaszczyzną wolną od rys
- w warunkach bezszczelinowych (metal do metalu)
- dla siły działającej pod kątem prostym (w osi magnesu)
- w temp. ok. 20°C
Kluczowe elementy wpływające na udźwig
- Dystans (między magnesem a blachą), ponieważ nawet mikroskopijna przerwa (np. 0,5 mm) powoduje redukcję siły nawet o 50% (dotyczy to także farby, rdzy czy brudu).
- Kąt przyłożenia siły – największą siłę osiągamy tylko przy prostopadłym odrywaniu. Opór przy zsuwaniu magnesu po powierzchni jest standardowo kilkukrotnie mniejsza (ok. 1/5 udźwigu).
- Grubość stali – za chuda płyta nie przyjmuje całego pola, przez co część mocy marnuje się w powietrzu.
- Typ metalu – nie każda stal przyciąga się identycznie. Wysoka zawartość węgla osłabiają interakcję z magnesem.
- Stan powierzchni – powierzchnie gładkie zapewniają maksymalny styk, co zwiększa siłę. Nierówny metal osłabiają chwyt.
- Czynnik termiczny – gorące środowisko osłabia pole magnetyczne. Przekroczenie temperatury granicznej może trwale rozmagnesować magnes.
Siłę trzymania testowano na gładkiej blasze o grubości 20 mm, kiedy działała siła prostopadła, z kolei przy próbie przesunięcia magnesu siła trzymania jest mniejsza nawet pięć razy. Co więcej, nawet minimalna przerwa pomiędzy powierzchnią magnesu, a blachą zmniejsza udźwig.
Zasady BHP dla użytkowników magnesów
Nie zbliżaj do komputera
Bezpieczeństwo sprzętu: Magnesy neodymowe mogą uszkodzić karty bankomatowe oraz urządzenia precyzyjne (implanty, protezy słuchu, czasomierze).
Moc przyciągania
Używaj magnesy odpowiedzialnie. Ich gigantyczny udźwig może zaskoczyć nawet profesjonalistów. Bądź skupiony i nie lekceważ ich siły.
Uszkodzenia czujników
Pamiętaj: magnesy neodymowe wytwarzają pole, które zakłócają systemy nawigacji. Zachowaj odpowiednią odległość od telefonu, tabletu i urządzeń GPS.
Ostrzeżenie dla sercowców
Osoby z stymulatorem serca muszą utrzymać duży odstęp od magnesów. Pole magnetyczne może rozregulować działanie implantu.
Ryzyko pęknięcia
Uwaga na odpryski. Magnesy mogą eksplodować przy niekontrolowanym uderzeniu, wyrzucając ostre odłamki w powietrze. Zalecamy okulary ochronne.
To nie jest zabawka
Produkt przeznaczony dla dorosłych. Drobne magnesy mogą zostać połknięte, co prowadzi do martwicy tkanek. Przechowuj poza zasięgiem niepowołanych osób.
Dla uczulonych
Badania wskazują, że nikiel (typowe wykończenie magnesów) jest silnym alergenem. Jeśli masz uczulenie, wystrzegaj się trzymania magnesów gołą dłonią lub zakup magnesy powlekane tworzywem.
Nie przegrzewaj magnesów
Standardowe magnesy neodymowe (typ N) tracą właściwości po przekroczeniu temperatury 80°C. Uszkodzenie jest permanentne.
Ryzyko złamań
Niebezpieczeństwo urazu: Siła przyciągania jest tak duża, że może spowodować rany, zmiażdżenia, a nawet złamania kości. Używaj grubych rękawic.
Obróbka mechaniczna
Proszek generowany podczas cięcia magnesów jest łatwopalny. Unikaj wiercenia w magnesach w warunkach domowych.
