MW 25x5 / N38AH - magnes neodymowy walcowy
magnes neodymowy walcowy
Numer katalogowy 010501
GTIN/EAN: 5906301814993
Średnica Ø
25 mm [±0,1 mm]
Wysokość
5 mm [±0,1 mm]
Waga
18.41 g
Kierunek magnesowania
↑ osiowy
Udźwig
7.29 kg / 71.47 N
Indukcja magnetyczna
219.99 mT / 2200 Gs
Powłoka
[NiCuNi] nikiel
16.68 ZŁ z VAT / szt. + cena za transport
13.56 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?
Skontaktuj się z nami telefonicznie
+48 888 99 98 98
albo napisz przez
formularz kontaktowy
na stronie kontakt.
Siłę oraz budowę magnesu zweryfikujesz w naszym
kalkulatorze siły.
Zamówienia złożone do godziny 14:00 zostaną wysłane tego samego dnia roboczego.
Parametry techniczne - MW 25x5 / N38AH - magnes neodymowy walcowy
Specyfikacja / charakterystyka - MW 25x5 / N38AH - magnes neodymowy walcowy
| właściwości | wartości |
|---|---|
| Nr kat. | 010501 |
| GTIN/EAN | 5906301814993 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Średnica Ø | 25 mm [±0,1 mm] |
| Wysokość | 5 mm [±0,1 mm] |
| Waga | 18.41 g |
| Kierunek magnesowania | ↑ osiowy |
| Udźwig ~ ? | 7.29 kg / 71.47 N |
| Indukcja magnetyczna ~ ? | 219.99 mT / 2200 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38AH
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [min. - maks.] ? | 12.2-12.5 | kGs |
| remanencja Br [min. - maks.] ? | 1120-1250 | mT |
| koercja bHc ? | ≥ 11.3 | kOe |
| koercja bHc ? | ≥ 899 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 33 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 2624 | kA/m |
| gęstość energii [min. - maks.] ? | 36-39 | BH max MGOe |
| gęstość energii [min. - maks.] ? | 287-310 | BH max KJ/m |
| max. temperatura ? | ≤ 230 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Temperatura Curie TC | 312 - 380 | °C |
| Temperatura Curie TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅cm |
| Siła wyginania | 250 | MPa |
| Wytrzymałość na ściskanie | 1000~1100 | MPa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 10-6 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Analiza inżynierska magnesu - raport
Przedstawione informacje stanowią bezpośredni efekt symulacji inżynierskiej. Wyniki bazują na modelach dla klasy Nd2Fe14B. Realne osiągi mogą różnić się od wartości teoretycznych. Prosimy traktować te dane jako pomoc pomocniczą przy projektowaniu systemów.
Tabela 1: Siła prostopadła statyczna (siła vs dystans) - spadek mocy
MW 25x5 / N38AH
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg)(gram)(Niuton) | Status ryzyka |
|---|---|---|---|
| 0 mm |
2292 Gs
229.2 mT
|
7.29 kg / 7290.0 g
71.5 N
|
średnie ryzyko |
| 1 mm |
2180 Gs
218.0 mT
|
6.59 kg / 6591.0 g
64.7 N
|
średnie ryzyko |
| 2 mm |
2042 Gs
204.2 mT
|
5.78 kg / 5782.0 g
56.7 N
|
średnie ryzyko |
| 3 mm |
1888 Gs
188.8 mT
|
4.94 kg / 4942.8 g
48.5 N
|
średnie ryzyko |
| 5 mm |
1564 Gs
156.4 mT
|
3.39 kg / 3394.1 g
33.3 N
|
średnie ryzyko |
| 10 mm |
886 Gs
88.6 mT
|
1.09 kg / 1089.7 g
10.7 N
|
słaby uchwyt |
| 15 mm |
493 Gs
49.3 mT
|
0.34 kg / 336.7 g
3.3 N
|
słaby uchwyt |
| 20 mm |
287 Gs
28.7 mT
|
0.11 kg / 114.0 g
1.1 N
|
słaby uchwyt |
| 30 mm |
115 Gs
11.5 mT
|
0.02 kg / 18.4 g
0.2 N
|
słaby uchwyt |
| 50 mm |
31 Gs
3.1 mT
|
0.00 kg / 1.3 g
0.0 N
|
słaby uchwyt |
Tabela 2: Równoległa siła zsuwania (ściana)
MW 25x5 / N38AH
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg)(gram)(Niuton) |
|---|---|---|
| 0 mm | Stal (~0.2) |
1.46 kg / 1458.0 g
14.3 N
|
| 1 mm | Stal (~0.2) |
1.32 kg / 1318.0 g
12.9 N
|
| 2 mm | Stal (~0.2) |
1.16 kg / 1156.0 g
11.3 N
|
| 3 mm | Stal (~0.2) |
0.99 kg / 988.0 g
9.7 N
|
| 5 mm | Stal (~0.2) |
0.68 kg / 678.0 g
6.7 N
|
| 10 mm | Stal (~0.2) |
0.22 kg / 218.0 g
2.1 N
|
| 15 mm | Stal (~0.2) |
0.07 kg / 68.0 g
0.7 N
|
| 20 mm | Stal (~0.2) |
0.02 kg / 22.0 g
0.2 N
|
| 30 mm | Stal (~0.2) |
0.00 kg / 4.0 g
0.0 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
Tabela 3: Siła na ścianie (ścinanie) - udźwig wertykalny
MW 25x5 / N38AH
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
2.19 kg / 2187.0 g
21.5 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
1.46 kg / 1458.0 g
14.3 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
0.73 kg / 729.0 g
7.2 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
3.65 kg / 3645.0 g
35.8 N
|
Tabela 4: Efektywność materiałowa (nasycenie) - dobór blachy
MW 25x5 / N38AH
| Grubość blachy (mm) | % mocy | Realny udźwig (kg) |
|---|---|---|
| 0.5 mm |
|
0.73 kg / 729.0 g
7.2 N
|
| 1 mm |
|
1.82 kg / 1822.5 g
17.9 N
|
| 2 mm |
|
3.65 kg / 3645.0 g
35.8 N
|
| 5 mm |
|
7.29 kg / 7290.0 g
71.5 N
|
| 10 mm |
|
7.29 kg / 7290.0 g
71.5 N
|
Tabela 5: Stabilność termiczna (zachowanie materiału) - limit termiczny
MW 25x5 / N38AH
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig | Status |
|---|---|---|---|
| 20 °C | 0.0% |
7.29 kg / 7290.0 g
71.5 N
|
OK |
| 80 °C | -6.6% |
6.81 kg / 6808.9 g
66.8 N
|
|
| 150 °C | -14.3% |
6.25 kg / 6247.5 g
61.3 N
|
|
| 200 °C | -19.8% |
5.85 kg / 5846.6 g
57.4 N
|
|
| 230 °C | -23.1% |
5.61 kg / 5606.0 g
55.0 N
|
|
| 250 °C | -45.3% |
3.99 kg / 3987.6 g
39.1 N
|
Tabela 6: Interakcja magnes-magnes (odpychanie) - siły w układzie
MW 25x5 / N38AH
| Szczelina (mm) | Przyciąganie (kg) (N-S) | Odpychanie (kg) (N-N) |
|---|---|---|
| 0 mm |
15.90 kg / 15903 g
156.0 N
3 855 Gs
|
N/A |
| 1 mm |
15.19 kg / 15186 g
149.0 N
4 480 Gs
|
13.67 kg / 13667 g
134.1 N
~0 Gs
|
| 2 mm |
14.38 kg / 14378 g
141.0 N
4 359 Gs
|
12.94 kg / 12940 g
126.9 N
~0 Gs
|
| 3 mm |
13.51 kg / 13513 g
132.6 N
4 226 Gs
|
12.16 kg / 12162 g
119.3 N
~0 Gs
|
| 5 mm |
11.70 kg / 11697 g
114.7 N
3 932 Gs
|
10.53 kg / 10527 g
103.3 N
~0 Gs
|
| 10 mm |
7.40 kg / 7404 g
72.6 N
3 128 Gs
|
6.66 kg / 6664 g
65.4 N
~0 Gs
|
| 20 mm |
2.38 kg / 2377 g
23.3 N
1 773 Gs
|
2.14 kg / 2139 g
21.0 N
~0 Gs
|
| 50 mm |
0.09 kg / 95 g
0.9 N
354 Gs
|
0.09 kg / 85 g
0.8 N
~0 Gs
|
Tabela 7: Strefy ochronne (implanty) - środki ostrożności
MW 25x5 / N38AH
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 10.0 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 7.5 cm |
| Zegarek mechaniczny | 20 Gs (2.0 mT) | 6.0 cm |
| Telefon / Smartfon | 40 Gs (4.0 mT) | 5.0 cm |
| Pilot do auta | 50 Gs (5.0 mT) | 4.5 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 2.0 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 1.5 cm |
Tabela 8: Zderzenia (ryzyko pęknięcia) - ostrzeżenie
MW 25x5 / N38AH
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
21.86 km/h
(6.07 m/s)
|
0.34 J | |
| 30 mm |
34.81 km/h
(9.67 m/s)
|
0.86 J | |
| 50 mm |
44.88 km/h
(12.47 m/s)
|
1.43 J | |
| 100 mm |
63.46 km/h
(17.63 m/s)
|
2.86 J |
Tabela 9: Odporność na korozję
MW 25x5 / N38AH
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
Tabela 10: Dane konstrukcyjne (Pc)
MW 25x5 / N38AH
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 13 054 Mx | 130.5 µWb |
| Współczynnik Pc | 0.29 | Niski (Płaski) |
Tabela 11: Praca w wodzie (Magnet Fishing)
MW 25x5 / N38AH
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 7.29 kg | Standard |
| Woda (dno rzeki) |
8.35 kg
(+1.06 kg Zysk z wyporności)
|
+14.5% |
1. Montaż na ścianie (ześlizg)
*Ważne: Na powierzchni pionowej magnes utrzyma jedynie ułamek nominalnego udźwigu.
2. Wpływ grubości blachy
*Cienka blacha (np. blacha karoseryjna) drastycznie redukuje udźwig magnesu.
3. Stabilność termiczna
*Dla materiału N38 granica bezpieczeństwa to 80°C.
4. Krzywa odmagnesowania i punkt pracy (B-H)
wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 0.29
Niniejsza symulacja obrazuje stabilność magnetyczną wybranego magnesu w konkretnych warunkach geometrycznych. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.
Skład chemiczny materiału
| żelazo (Fe) | 64% – 68% |
| neodym (Nd) | 29% – 32% |
| bor (B) | 1.1% – 1.2% |
| dysproz (Dy) | 0.5% – 2.0% |
| powłoka (Ni-Cu-Ni) | < 0.05% |
Dane środowiskowe
| recyklowalność (EoL) | 100% |
| surowce z recyklingu | ~10% (pre-cons) |
| ślad węglowy | low / zredukowany |
| kod odpadu (EWC) | 16 02 16 |
Sprawdź inne produkty
Wady oraz zalety neodymowych magnesów Nd2Fe14B.
Mocne strony
- Cechują się stabilnością – przez okres ok. 10 lat gubią nie więcej niż ~1% swojej mocy (wg danych).
- Pozostają niewrażliwe na wpływ innych pól, co czyni je odpornymi na rozmagnesowanie w wymagającym środowisku.
- Łączą moc z estetyką – dzięki powłokom ich powierzchnia jest błyszcząca i prezentuje się elegancko.
- Oferują najwyższą indukcję magnetyczną w punkcie styku, co przekłada się na ogromną siłę.
- Dzięki zaawansowanej technologii funkcjonują w temperaturach sięgających 230°C, zachowując swoje właściwości.
- Można je precyzyjnie obrabiać do niestandardowych wymiarów, co ułatwia ich adaptację w skomplikowanych urządzeniach.
- Występują wszędzie tam, gdzie liczy się precyzja: w automatyce, medycynie oraz przemyśle komputerowym.
- Potęga w małej formie – ich niewielka objętość nie przeszkadza w generowaniu dużej siły przyciągania.
Ograniczenia
- Ze względu na brak elastyczności, wymagają ostrożności. Gwałtowne złączenie może je zniszczyć, stąd rekomendacja stosowania osłon.
- Uwaga na temperaturę – dla zwykłych magnesów limit to 80°C. W gorącym środowisku (do 230°C) należy używać modele z oznaczeniem [AH].
- Są podatne na rdzewienie w kontakcie z wodą. Na zewnątrz zalecamy użycie magnesów wodoszczelnych (np. w gumie).
- Trudności montażowe: zamiast próbować gwintować kruchy magnes, skorzystaj z uchwytów w stalowej obudowie, które posiadają gotowe mocowania.
- Drobne magnesy to ryzyko – połknięcie wymaga interwencji chirurga. Mogą też być problemem przy badaniach lekarskich.
- Cena – są droższe niż magnesy ferrytowe, co przy wielkich nakładach może być barierą.
Charakterystyka udźwigu
Siła oderwania magnesu w optymalnych warunkach – co się na to składa?
- z zastosowaniem płyty ze miękkiej stali, pełniącej rolę zwora magnetyczna
- której wymiar poprzeczny sięga przynajmniej 10 mm
- o wypolerowanej powierzchni kontaktu
- przy bezpośrednim styku (bez powłok)
- dla siły przyłożonej pod kątem prostym (w osi magnesu)
- przy temperaturze ok. 20 stopni Celsjusza
Wpływ czynników na nośność magnesu w praktyce
- Przerwa między powierzchniami – każdy milimetr odległości (spowodowany np. okleiną lub nierównością) zmniejsza efektywność magnesu, często o połowę przy zaledwie 0,5 mm.
- Kąt przyłożenia siły – maksymalny parametr osiągamy tylko przy prostopadłym odrywaniu. Siła potrzebna do przesunięcia magnesu po blasze jest standardowo wielokrotnie niższa (ok. 1/5 udźwigu).
- Grubość elementu – dla pełnej efektywności, stal musi być wystarczająco masywna. Cienka blacha ogranicza udźwig (magnes „przebija” ją na wylot).
- Materiał blachy – stal miękka daje najlepsze rezultaty. Większa zawartość węgla obniżają właściwości magnetyczne i udźwig.
- Gładkość podłoża – im gładsza i bardziej polerowana blacha, tym większa strefa kontaktu i silniejsze trzymanie. Chropowatość tworzą dystans powietrzny.
- Czynnik termiczny – gorące środowisko zmniejsza pole magnetyczne. Zbyt wysoka temperatura może trwale uszkodzić magnes.
Pomiar udźwigu realizowano na gładkiej blaszce o optymalnej grubości, przy prostopadłym działaniu siły, jednak przy próbie przesunięcia magnesu nośność jest mniejsza nawet pięciokrotnie. Co więcej, nawet niewielka szczelina między powierzchnią magnesu, a blachą zmniejsza nośność.
Zasady bezpieczeństwa pracy z magnesami neodymowymi
Zagrożenie dla elektroniki
Bardzo silne oddziaływanie może skasować dane na kartach płatniczych, dyskach twardych i innych pamięciach. Zachowaj odstęp min. 10 cm.
Zakaz zabawy
Magnesy neodymowe nie są przeznaczone dla dzieci. Połknięcie kilku magnesów może doprowadzić do ich złączeniem się w jelitach, co stwarza śmiertelne niebezpieczeństwo i wiąże się z koniecznością pilnej interwencji chirurgicznej.
Uwaga na odpryski
Magnesy neodymowe to spiek proszkowy, co oznacza, że są łamliwe jak szkło. Gwałtowne złączenie dwóch magnesów spowoduje ich rozpryśnięcie na ostre odłamki.
Interferencja medyczna
Uwaga zdrowotna: Magnesy neodymowe mogą wyłączyć stymulatory i defibrylatory. Nie zbliżaj się, jeśli posiadasz urządzenia wspomagające.
Nie wierć w magnesach
Zagrożenie pożarowe: Pył neodymowy jest skrajnie łatwopalny. Nie modyfikuj mechanicznie magnesów w warunkach domowych, gdyż grozi to zapłonem.
Zagrożenie dla nawigacji
Ważna informacja: magnesy neodymowe generują pole, które dezorientują elektronikę precyzyjną. Zachowaj bezpieczny dystans od komórki, tabletu i urządzeń GPS.
Nadwrażliwość na metale
Informacja alergiczna: powłoka Ni-Cu-Ni zawiera nikiel. W przypadku pojawienia się reakcji alergicznej, należy natychmiast zakończyć pracę z magnesami i użyć środków ochronnych.
Ochrona dłoni
Chroń dłonie. Dwa duże magnesy zderzą z ogromną prędkością z siłą wielu ton, niszcząc wszystko na swojej drodze. Bądź ostrożny!
Trwała utrata siły
Uważaj na temperaturę. Podgrzanie magnesu na wysoką temperaturę zniszczy jego domenę magnetyczną i siłę przyciągania.
Ostrożność wymagana
Postępuj ostrożnie. Magnesy neodymowe działają z dużej odległości i zwierają z impetem, często szybciej niż jesteś w stanie przewidzieć.
