MW 12x4 / N38 - magnes neodymowy walcowy
magnes neodymowy walcowy
Numer katalogowy 010019
GTIN/EAN: 5906301810186
Średnica Ø
12 mm [±0,1 mm]
Wysokość
4 mm [±0,1 mm]
Waga
3.39 g
Kierunek magnesowania
↑ osiowy
Udźwig
3.45 kg / 33.81 N
Indukcja magnetyczna
343.64 mT / 3436 Gs
Powłoka
[NiCuNi] nikiel
1.353 ZŁ z VAT / szt. + cena za transport
1.100 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?
Zadzwoń do nas
+48 22 499 98 98
albo daj znać za pomocą
nasz formularz online
przez naszą stronę.
Udźwig oraz budowę elementów magnetycznych obliczysz u nas w
kalkulatorze magnetycznym.
Zamówienia złożone do godziny 14:00 zostaną wysłane tego samego dnia roboczego.
Szczegółowa specyfikacja MW 12x4 / N38 - magnes neodymowy walcowy
Specyfikacja / charakterystyka - MW 12x4 / N38 - magnes neodymowy walcowy
| właściwości | wartości |
|---|---|
| Nr kat. | 010019 |
| GTIN/EAN | 5906301810186 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Średnica Ø | 12 mm [±0,1 mm] |
| Wysokość | 4 mm [±0,1 mm] |
| Waga | 3.39 g |
| Kierunek magnesowania | ↑ osiowy |
| Udźwig ~ ? | 3.45 kg / 33.81 N |
| Indukcja magnetyczna ~ ? | 343.64 mT / 3436 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [min. - maks.] ? | 12.2-12.6 | kGs |
| remanencja Br [min. - maks.] ? | 1220-1260 | mT |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [min. - maks.] ? | 36-38 | BH max MGOe |
| gęstość energii [min. - maks.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Temperatura Curie TC | 312 - 380 | °C |
| Temperatura Curie TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅cm |
| Siła wyginania | 250 | MPa |
| Wytrzymałość na ściskanie | 1000~1100 | MPa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 10-6 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Symulacja inżynierska magnesu - dane
Przedstawione wartości są bezpośredni efekt symulacji inżynierskiej. Wartości bazują na algorytmach dla materiału Nd2Fe14B. Rzeczywiste osiągi mogą różnić się od wartości teoretycznych. Traktuj te wyliczenia jako punkt odniesienia przy projektowaniu systemów.
Tabela 1: Siła prostopadła statyczna (siła vs dystans) - wykres oddziaływania
MW 12x4 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg/lbs/g/N) | Status ryzyka |
|---|---|---|---|
| 0 mm |
3435 Gs
343.5 mT
|
3.45 kg / 7.61 lbs
3450.0 g / 33.8 N
|
średnie ryzyko |
| 1 mm |
2950 Gs
295.0 mT
|
2.54 kg / 5.61 lbs
2544.7 g / 25.0 N
|
średnie ryzyko |
| 2 mm |
2423 Gs
242.3 mT
|
1.72 kg / 3.79 lbs
1717.5 g / 16.8 N
|
niskie ryzyko |
| 3 mm |
1935 Gs
193.5 mT
|
1.09 kg / 2.41 lbs
1094.6 g / 10.7 N
|
niskie ryzyko |
| 5 mm |
1190 Gs
119.0 mT
|
0.41 kg / 0.91 lbs
413.8 g / 4.1 N
|
niskie ryzyko |
| 10 mm |
382 Gs
38.2 mT
|
0.04 kg / 0.09 lbs
42.7 g / 0.4 N
|
niskie ryzyko |
| 15 mm |
156 Gs
15.6 mT
|
0.01 kg / 0.02 lbs
7.1 g / 0.1 N
|
niskie ryzyko |
| 20 mm |
76 Gs
7.6 mT
|
0.00 kg / 0.00 lbs
1.7 g / 0.0 N
|
niskie ryzyko |
| 30 mm |
26 Gs
2.6 mT
|
0.00 kg / 0.00 lbs
0.2 g / 0.0 N
|
niskie ryzyko |
| 50 mm |
6 Gs
0.6 mT
|
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
niskie ryzyko |
Tabela 2: Siła równoległa obsunięcia (ściana)
MW 12x4 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg/lbs/g/N) |
|---|---|---|
| 0 mm | Stal (~0.2) |
0.69 kg / 1.52 lbs
690.0 g / 6.8 N
|
| 1 mm | Stal (~0.2) |
0.51 kg / 1.12 lbs
508.0 g / 5.0 N
|
| 2 mm | Stal (~0.2) |
0.34 kg / 0.76 lbs
344.0 g / 3.4 N
|
| 3 mm | Stal (~0.2) |
0.22 kg / 0.48 lbs
218.0 g / 2.1 N
|
| 5 mm | Stal (~0.2) |
0.08 kg / 0.18 lbs
82.0 g / 0.8 N
|
| 10 mm | Stal (~0.2) |
0.01 kg / 0.02 lbs
8.0 g / 0.1 N
|
| 15 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
2.0 g / 0.0 N
|
| 20 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
| 30 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
Tabela 3: Siła na ścianie (ścinanie) - zachowanie na śliskim podłożu
MW 12x4 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg/lbs/g/N) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
1.04 kg / 2.28 lbs
1035.0 g / 10.2 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
0.69 kg / 1.52 lbs
690.0 g / 6.8 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
0.35 kg / 0.76 lbs
345.0 g / 3.4 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
1.73 kg / 3.80 lbs
1725.0 g / 16.9 N
|
Tabela 4: Grubość stali (wpływ podłoża) - straty mocy
MW 12x4 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg/lbs/g/N) |
|---|---|---|
| 0.5 mm |
|
0.35 kg / 0.76 lbs
345.0 g / 3.4 N
|
| 1 mm |
|
0.86 kg / 1.90 lbs
862.5 g / 8.5 N
|
| 2 mm |
|
1.73 kg / 3.80 lbs
1725.0 g / 16.9 N
|
| 3 mm |
|
2.59 kg / 5.70 lbs
2587.5 g / 25.4 N
|
| 5 mm |
|
3.45 kg / 7.61 lbs
3450.0 g / 33.8 N
|
| 10 mm |
|
3.45 kg / 7.61 lbs
3450.0 g / 33.8 N
|
| 11 mm |
|
3.45 kg / 7.61 lbs
3450.0 g / 33.8 N
|
| 12 mm |
|
3.45 kg / 7.61 lbs
3450.0 g / 33.8 N
|
Tabela 5: Wytrzymałość temperaturowa (zachowanie materiału) - spadek mocy
MW 12x4 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig (kg/lbs/g/N) | Status |
|---|---|---|---|
| 20 °C | 0.0% |
3.45 kg / 7.61 lbs
3450.0 g / 33.8 N
|
OK |
| 40 °C | -2.2% |
3.37 kg / 7.44 lbs
3374.1 g / 33.1 N
|
OK |
| 60 °C | -4.4% |
3.30 kg / 7.27 lbs
3298.2 g / 32.4 N
|
|
| 80 °C | -6.6% |
3.22 kg / 7.10 lbs
3222.3 g / 31.6 N
|
|
| 100 °C | -28.8% |
2.46 kg / 5.42 lbs
2456.4 g / 24.1 N
|
Tabela 6: Dwa magnesy (przyciąganie) - kolizja pól
MW 12x4 / N38
| Szczelina (mm) | Przyciąganie (kg/lbs) (N-S) | Opór ścinania (kg/lbs/g/N) | Odpychanie (kg/lbs) (N-N) |
|---|---|---|---|
| 0 mm |
8.23 kg / 18.13 lbs
4 952 Gs
|
1.23 kg / 2.72 lbs
1234 g / 12.1 N
|
N/A |
| 1 mm |
7.16 kg / 15.79 lbs
6 410 Gs
|
1.07 kg / 2.37 lbs
1074 g / 10.5 N
|
6.45 kg / 14.21 lbs
~0 Gs
|
| 2 mm |
6.07 kg / 13.38 lbs
5 900 Gs
|
0.91 kg / 2.01 lbs
910 g / 8.9 N
|
5.46 kg / 12.04 lbs
~0 Gs
|
| 3 mm |
5.03 kg / 11.09 lbs
5 372 Gs
|
0.75 kg / 1.66 lbs
754 g / 7.4 N
|
4.53 kg / 9.98 lbs
~0 Gs
|
| 5 mm |
3.29 kg / 7.25 lbs
4 342 Gs
|
0.49 kg / 1.09 lbs
493 g / 4.8 N
|
2.96 kg / 6.52 lbs
~0 Gs
|
| 10 mm |
0.99 kg / 2.18 lbs
2 379 Gs
|
0.15 kg / 0.33 lbs
148 g / 1.5 N
|
0.89 kg / 1.96 lbs
~0 Gs
|
| 20 mm |
0.10 kg / 0.22 lbs
764 Gs
|
0.02 kg / 0.03 lbs
15 g / 0.1 N
|
0.09 kg / 0.20 lbs
~0 Gs
|
| 50 mm |
0.00 kg / 0.00 lbs
85 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 60 mm |
0.00 kg / 0.00 lbs
52 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 70 mm |
0.00 kg / 0.00 lbs
34 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 80 mm |
0.00 kg / 0.00 lbs
23 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 90 mm |
0.00 kg / 0.00 lbs
17 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 100 mm |
0.00 kg / 0.00 lbs
12 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
Tabela 7: Bezpieczeństwo (BHP) (elektronika) - środki ostrożności
MW 12x4 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 5.5 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 4.5 cm |
| Zegarek mechaniczny | 20 Gs (2.0 mT) | 3.5 cm |
| Telefon / Smartfon | 40 Gs (4.0 mT) | 3.0 cm |
| Immobilizer | 50 Gs (5.0 mT) | 2.5 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 1.0 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 1.0 cm |
Tabela 8: Energia uderzenia (ryzyko pęknięcia) - ostrzeżenie
MW 12x4 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
32.42 km/h
(9.01 m/s)
|
0.14 J | |
| 30 mm |
55.73 km/h
(15.48 m/s)
|
0.41 J | |
| 50 mm |
71.94 km/h
(19.98 m/s)
|
0.68 J | |
| 100 mm |
101.74 km/h
(28.26 m/s)
|
1.35 J |
Tabela 9: Odporność na korozję
MW 12x4 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
Tabela 10: Dane elektryczne (Pc)
MW 12x4 / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 4 114 Mx | 41.1 µWb |
| Współczynnik Pc | 0.44 | Niski (Płaski) |
Tabela 11: Hydrostatyka i wyporność
MW 12x4 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 3.45 kg | Standard |
| Woda (dno rzeki) |
3.95 kg
(+0.50 kg zysk z wyporności)
|
+14.5% |
1. Montaż na ścianie (ześlizg)
*Ważne: Na pionowej ścianie magnes utrzyma zaledwie ułamek siły oderwania.
2. Efektywność, a grubość stali
*Cienka blacha (np. blacha karoseryjna) drastycznie redukuje udźwig magnesu.
3. Stabilność termiczna
*W klasie N38 granica bezpieczeństwa to 80°C.
4. Krzywa odmagnesowania i punkt pracy (B-H)
wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 0.44
Powyższy wykres prezentuje charakterystykę magnetyczną materiału w drugim kwadrancie pętli histerezy. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.
Analiza pierwiastkowa
| żelazo (Fe) | 64% – 68% |
| neodym (Nd) | 29% – 32% |
| bor (B) | 1.1% – 1.2% |
| dysproz (Dy) | 0.5% – 2.0% |
| powłoka (Ni-Cu-Ni) | < 0.05% |
Ekologia i recykling (GPSR)
| recyklowalność (EoL) | 100% |
| surowce z recyklingu | ~10% (pre-cons) |
| ślad węglowy | low / zredukowany |
| kod odpadu (EWC) | 16 02 16 |
Sprawdź inne propozycje
Wady oraz zalety magnesów z neodymu Nd2Fe14B.
Mocne strony
- Cechują się stabilnością – przez okres blisko 10 lat tracą nie więcej niż ~1% swojej pierwotnej siły (pomiary wskazują na taką wartość).
- Są stabilne magnetycznie, gdyż wykazują wysoką odporność na zewnętrzne czynniki.
- Łączą moc z estetyką – poprzez niklowanie lub złocenie ich powierzchnia jest błyszcząca i prezentuje się elegancko.
- Indukcja magnetyczna na powierzchni tych magnesów jest bardzo wysoka, co czyni je najwydajniejszymi w swojej klasie.
- Odpowiedni skład sprawia, że są odporne na wysokie temperatury (zależnie od kształtu, nawet do 230°C).
- Wszechstronność kształtowania – można je produkować w rozmaitych formach, idealnych do wymagań klienta.
- Są niezbędne w technologiach przyszłości, zasilając układy napędowe, sprzęt szpitalny czy komputery.
- Doskonała relacja wielkości do siły – są małe, ale bardzo silne, co pozwala na ich montaż w ciasnych przestrzeniach.
Słabe strony
- Należy uważać na wstrząsy – materiał jest kruchy i może odprysnąć. Zabezpieczenie w postaci obudowy jest kluczowa.
- Standardowe magnesy tracą moc powyżej 80°C. Jeśli wymagasz pracy w wyższych temperaturach, wybierz serię [AH] (odporną do 230°C).
- Podatność na wilgoć skutkuje utlenianiem. Do zadań zewnętrznych sugerujemy wyłącznie magnesy zabezpieczone antykorozyjnie (plastik/guma).
- Magnesy ciężko się obrabia – do montażu śrubowego służą specjalne uchwyty magnetyczne z wbudowanym gwintem.
- Ryzyko połknięcia – drobne magnesy są groźne dla najmłodszych. Połknięcie kilku sztuk grozi poważnymi obrażeniami. Dodatkowo mogą utrudniać badania (np. rezonans).
- Cena – są droższe niż magnesy ferrytowe, co przy wielkich nakładach może być barierą.
Charakterystyka udźwigu
Najwyższa nośność magnesu – co ma na to wpływ?
- na podłożu wykonanej ze stali miękkiej, efektywnie zamykającej pole magnetyczne
- której grubość sięga przynajmniej 10 mm
- z powierzchnią idealnie równą
- przy bezpośrednim styku (brak zanieczyszczeń)
- dla siły działającej pod kątem prostym (w osi magnesu)
- w neutralnych warunkach termicznych
Kluczowe elementy wpływające na udźwig
- Szczelina między powierzchniami – każdy milimetr dystansu (spowodowany np. okleiną lub brudem) drastycznie redukuje siłę przyciągania, często o połowę przy zaledwie 0,5 mm.
- Sposób obciążenia – deklarowany udźwig dotyczy odrywania w pionie. Przy ześlizgiwaniu, magnes trzyma znacznie mniejszą moc (zazwyczaj ok. 20-30% siły maksymalnej).
- Grubość stali – za chuda płyta nie zamyka strumienia, przez co część mocy jest tracona na drugą stronę.
- Skład chemiczny podłoża – stal miękka przyciąga najlepiej. Domieszki stopowe redukują przenikalność magnetyczną i siłę trzymania.
- Faktura blachy – szlifowane elementy gwarantują idealne doleganie, co zwiększa nasycenie pola. Nierówny metal osłabiają chwyt.
- Otoczenie termiczne – wzrost temperatury powoduje tymczasowy spadek indukcji. Warto sprawdzić maksymalną temperaturę pracy dla danego modelu.
Pomiar udźwigu wykonywano na gładkiej blaszce o odpowiedniej grubości, przy prostopadłym działaniu siły, z kolei przy próbie przesunięcia magnesu nośność jest mniejsza nawet 75%. Co więcej, nawet drobny odstęp między powierzchnią magnesu, a blachą zmniejsza udźwig.
Środki ostrożności podczas pracy z magnesami neodymowymi
Niklowa powłoka a alergia
Uwaga na nikiel: warstwa ochronna Ni-Cu-Ni zawiera nikiel. W przypadku pojawienia się reakcji alergicznej, należy bezzwłocznie zakończyć pracę z magnesami i zabezpieczyć dłonie.
Trwała utrata siły
Uważaj na temperaturę. Podgrzanie magnesu powyżej 80 stopni Celsjusza trwale osłabi jego strukturę magnetyczną i siłę przyciągania.
Łamliwość magnesów
Magnesy neodymowe to spiek proszkowy, co oznacza, że są podatne na pęknięcia. Zderzenie dwóch magnesów spowoduje ich pęknięcie na ostre odłamki.
Chronić przed dziećmi
Magnesy neodymowe to nie zabawki. Inhalacja kilku magnesów może skutkować ich zaciśnięciem jelit, co stanowi bezpośrednie zagrożenie życia i wymaga natychmiastowej operacji.
Implanty kardiologiczne
Dla posiadaczy implantów: Promieniowanie magnetyczne wpływa na elektronikę medyczną. Utrzymuj co najmniej 30 cm odstępu lub zleć komuś innemu obsługę magnesów.
Urządzenia elektroniczne
Bezpieczeństwo sprzętu: Magnesy neodymowe mogą uszkodzić karty bankomatowe oraz urządzenia precyzyjne (rozruszniki serca, protezy słuchu, zegarki mechaniczne).
Moc przyciągania
Zachowaj rozwagę. Magnesy neodymowe przyciągają z daleka i łączą się z impetem, często szybciej niż jesteś w stanie przewidzieć.
Trzymaj z dala od elektroniki
Urządzenia nawigacyjne są niezwykle podatne na wpływ magnesów. Bliskie sąsiedztwo z silnym magnesem może rozalibrować sensory w Twoim telefonie.
Zagrożenie zapłonem
Proszek generowany podczas obróbki magnesów jest wybuchowy. Unikaj wiercenia w magnesach bez odpowiedniego chłodzenia i wiedzy.
Poważne obrażenia
Duże magnesy mogą zdruzgotać palce błyskawicznie. Pod żadnym pozorem wkładaj dłoni między dwa silne magnesy.
