MW 12x3 / N38 - magnes neodymowy walcowy
magnes neodymowy walcowy
Numer katalogowy 010018
GTIN/EAN: 5906301810179
Średnica Ø
12 mm [±0,1 mm]
Wysokość
3 mm [±0,1 mm]
Waga
2.54 g
Kierunek magnesowania
↑ osiowy
Udźwig
2.49 kg / 24.43 N
Indukcja magnetyczna
277.09 mT / 2771 Gs
Powłoka
[NiCuNi] nikiel
1.648 ZŁ z VAT / szt. + cena za transport
1.340 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?
Dzwoń do nas
+48 22 499 98 98
ewentualnie skontaktuj się korzystając z
nasz formularz online
przez naszą stronę.
Właściwości oraz kształt magnesu wyliczysz w naszym
kalkulatorze magnetycznym.
Zamów do 14:00, a wyślemy dziś!
Specyfikacja - MW 12x3 / N38 - magnes neodymowy walcowy
Specyfikacja / charakterystyka - MW 12x3 / N38 - magnes neodymowy walcowy
| właściwości | wartości |
|---|---|
| Nr kat. | 010018 |
| GTIN/EAN | 5906301810179 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Średnica Ø | 12 mm [±0,1 mm] |
| Wysokość | 3 mm [±0,1 mm] |
| Waga | 2.54 g |
| Kierunek magnesowania | ↑ osiowy |
| Udźwig ~ ? | 2.49 kg / 24.43 N |
| Indukcja magnetyczna ~ ? | 277.09 mT / 2771 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [min. - maks.] ? | 12.2-12.6 | kGs |
| remanencja Br [min. - maks.] ? | 1220-1260 | mT |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [min. - maks.] ? | 36-38 | BH max MGOe |
| gęstość energii [min. - maks.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Temperatura Curie TC | 312 - 380 | °C |
| Temperatura Curie TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅cm |
| Siła wyginania | 250 | MPa |
| Wytrzymałość na ściskanie | 1000~1100 | MPa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 10-6 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Analiza inżynierska magnesu neodymowego - dane
Przedstawione wartości stanowią rezultat symulacji matematycznej. Wartości bazują na modelach dla materiału Nd2Fe14B. Realne warunki mogą odbiegać od wyników symulacji. Prosimy traktować te dane jako pomoc pomocniczą dla projektantów.
Tabela 1: Udźwig statyczny prostopadły (udźwig vs odległość) - spadek mocy
MW 12x3 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg)(gram)(Niuton) | Status ryzyka |
|---|---|---|---|
| 0 mm |
2770 Gs
277.0 mT
|
2.49 kg / 2490.0 g
24.4 N
|
średnie ryzyko |
| 1 mm |
2420 Gs
242.0 mT
|
1.90 kg / 1900.6 g
18.6 N
|
słaby uchwyt |
| 2 mm |
2009 Gs
200.9 mT
|
1.31 kg / 1309.4 g
12.8 N
|
słaby uchwyt |
| 3 mm |
1611 Gs
161.1 mT
|
0.84 kg / 842.7 g
8.3 N
|
słaby uchwyt |
| 5 mm |
991 Gs
99.1 mT
|
0.32 kg / 318.7 g
3.1 N
|
słaby uchwyt |
| 10 mm |
313 Gs
31.3 mT
|
0.03 kg / 31.8 g
0.3 N
|
słaby uchwyt |
| 15 mm |
125 Gs
12.5 mT
|
0.01 kg / 5.1 g
0.0 N
|
słaby uchwyt |
| 20 mm |
61 Gs
6.1 mT
|
0.00 kg / 1.2 g
0.0 N
|
słaby uchwyt |
| 30 mm |
20 Gs
2.0 mT
|
0.00 kg / 0.1 g
0.0 N
|
słaby uchwyt |
| 50 mm |
5 Gs
0.5 mT
|
0.00 kg / 0.0 g
0.0 N
|
słaby uchwyt |
Tabela 2: Siła równoległa obsunięcia (ściana)
MW 12x3 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg)(gram)(Niuton) |
|---|---|---|
| 0 mm | Stal (~0.2) |
0.50 kg / 498.0 g
4.9 N
|
| 1 mm | Stal (~0.2) |
0.38 kg / 380.0 g
3.7 N
|
| 2 mm | Stal (~0.2) |
0.26 kg / 262.0 g
2.6 N
|
| 3 mm | Stal (~0.2) |
0.17 kg / 168.0 g
1.6 N
|
| 5 mm | Stal (~0.2) |
0.06 kg / 64.0 g
0.6 N
|
| 10 mm | Stal (~0.2) |
0.01 kg / 6.0 g
0.1 N
|
| 15 mm | Stal (~0.2) |
0.00 kg / 2.0 g
0.0 N
|
| 20 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
| 30 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
Tabela 3: Montaż pionowy (ścinanie) - udźwig wertykalny
MW 12x3 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
0.75 kg / 747.0 g
7.3 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
0.50 kg / 498.0 g
4.9 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
0.25 kg / 249.0 g
2.4 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
1.25 kg / 1245.0 g
12.2 N
|
Tabela 4: Grubość stali (wpływ podłoża) - straty mocy
MW 12x3 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg) |
|---|---|---|
| 0.5 mm |
|
0.25 kg / 249.0 g
2.4 N
|
| 1 mm |
|
0.62 kg / 622.5 g
6.1 N
|
| 2 mm |
|
1.25 kg / 1245.0 g
12.2 N
|
| 5 mm |
|
2.49 kg / 2490.0 g
24.4 N
|
| 10 mm |
|
2.49 kg / 2490.0 g
24.4 N
|
Tabela 5: Wytrzymałość temperaturowa (zachowanie materiału) - spadek mocy
MW 12x3 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig | Status |
|---|---|---|---|
| 20 °C | 0.0% |
2.49 kg / 2490.0 g
24.4 N
|
OK |
| 40 °C | -2.2% |
2.44 kg / 2435.2 g
23.9 N
|
OK |
| 60 °C | -4.4% |
2.38 kg / 2380.4 g
23.4 N
|
|
| 80 °C | -6.6% |
2.33 kg / 2325.7 g
22.8 N
|
|
| 100 °C | -28.8% |
1.77 kg / 1772.9 g
17.4 N
|
Tabela 6: Interakcja magnes-magnes (przyciąganie) - siły w układzie
MW 12x3 / N38
| Szczelina (mm) | Przyciąganie (kg) (N-S) | Odpychanie (kg) (N-N) |
|---|---|---|
| 0 mm |
5.35 kg / 5349 g
52.5 N
4 377 Gs
|
N/A |
| 1 mm |
4.75 kg / 4747 g
46.6 N
5 218 Gs
|
4.27 kg / 4272 g
41.9 N
~0 Gs
|
| 2 mm |
4.08 kg / 4083 g
40.1 N
4 840 Gs
|
3.67 kg / 3675 g
36.0 N
~0 Gs
|
| 3 mm |
3.42 kg / 3425 g
33.6 N
4 433 Gs
|
3.08 kg / 3082 g
30.2 N
~0 Gs
|
| 5 mm |
2.27 kg / 2271 g
22.3 N
3 610 Gs
|
2.04 kg / 2044 g
20.1 N
~0 Gs
|
| 10 mm |
0.68 kg / 685 g
6.7 N
1 982 Gs
|
0.62 kg / 616 g
6.0 N
~0 Gs
|
| 20 mm |
0.07 kg / 68 g
0.7 N
626 Gs
|
0.06 kg / 61 g
0.6 N
~0 Gs
|
| 50 mm |
0.00 kg / 1 g
0.0 N
67 Gs
|
0.00 kg / 0 g
0.0 N
~0 Gs
|
Tabela 7: Bezpieczeństwo (BHP) (elektronika) - ostrzeżenia
MW 12x3 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 5.0 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 4.0 cm |
| Czasomierz | 20 Gs (2.0 mT) | 3.5 cm |
| Urządzenie mobilne | 40 Gs (4.0 mT) | 2.5 cm |
| Kluczyk samochodowy | 50 Gs (5.0 mT) | 2.5 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 1.0 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 1.0 cm |
Tabela 8: Energia uderzenia (energia kinetyczna) - ostrzeżenie
MW 12x3 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
31.83 km/h
(8.84 m/s)
|
0.10 J | |
| 30 mm |
54.69 km/h
(15.19 m/s)
|
0.29 J | |
| 50 mm |
70.61 km/h
(19.61 m/s)
|
0.49 J | |
| 100 mm |
99.85 km/h
(27.74 m/s)
|
0.98 J |
Tabela 9: Specyfikacja ochrony powierzchni
MW 12x3 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
Tabela 10: Dane konstrukcyjne (Pc)
MW 12x3 / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 3 483 Mx | 34.8 µWb |
| Współczynnik Pc | 0.35 | Niski (Płaski) |
Tabela 11: Zastosowanie podwodne
MW 12x3 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 2.49 kg | Standard |
| Woda (dno rzeki) |
2.85 kg
(+0.36 kg Zysk z wyporności)
|
+14.5% |
1. Ześlizg (ściana)
*Ważne: Na powierzchni pionowej magnes utrzyma jedynie ~20-30% siły prostopadłej.
2. Grubość podłoża
*Zbyt cienki metal (np. obudowa PC 0.5mm) wyraźnie osłabia udźwig magnesu.
3. Spadek mocy w temperaturze
*Dla materiału N38 krytyczny próg to 80°C.
4. Krzywa odmagnesowania i punkt pracy (B-H)
wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 0.35
Powyższy wykres prezentuje charakterystykę magnetyczną materiału w drugim kwadrancie pętli histerezy. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.
Skład chemiczny materiału
| żelazo (Fe) | 64% – 68% |
| neodym (Nd) | 29% – 32% |
| bor (B) | 1.1% – 1.2% |
| dysproz (Dy) | 0.5% – 2.0% |
| powłoka (Ni-Cu-Ni) | < 0.05% |
Dane środowiskowe
| recyklowalność (EoL) | 100% |
| surowce z recyklingu | ~10% (pre-cons) |
| ślad węglowy | low / zredukowany |
| kod odpadu (EWC) | 16 02 16 |
Inne produkty
Wady i zalety magnesów z neodymu Nd2Fe14B.
Zalety
- Są niezwykle trwałe – przez okres blisko 10 lat tracą nie więcej niż ~1% swojej mocy (wg danych).
- Trudno je rozmagnesować, gdyż wykazują potężną odporność na pola rozmagnesowujące.
- Powłoka ochronna (np. niklowa) zapewnia im metaliczny połysk, co ma znaczenie estetyczne.
- Cechują się bardzo wysoką gęstością pola na powierzchni, co umożliwia silne chwytanie z dużą mocą.
- Wykazują imponującą wytrzymałość termiczną, co umożliwia ich użycie w warunkach do 230°C (dotyczy odpowiednich serii).
- Możliwość uzyskania złożonych kształtów sprawia, że są doskonałe do nietypowych zastosowań.
- Występują wszędzie tam, gdzie liczy się precyzja: w automatyce, medycynie oraz systemach IT.
- Dzięki kompaktowości, nie wymagają dużej przestrzeni, a jednocześnie gwarantują wysoką skuteczność.
Minusy
- Ze względu na kruchość, trzeba się z nimi obchodzić delikatnie. Gwałtowne złączenie może je zniszczyć, stąd zalecenie stosowania osłon.
- Wrażliwość na ciepło: przekroczenie 80°C może trwale osłabić magnes (zależnie od wymiarów). Rozwiązaniem są nasze magnesy wysokotemperaturowe [AH].
- Ryzyko korozji: bez osłony magnes ulegnie utlenieniu na deszczu. Rozważ wersje powlekane tworzywem do zastosowań zewnętrznych.
- Obróbka jest trudna – wiercenie otworów w samym magnesie jest ryzykowne. Lepiej wybrać gotowe uchwyty magnetyczne (magnes w obudowie).
- Ryzyko połknięcia – małe elementy są niebezpieczne dla dzieci. Połknięcie kilku sztuk grozi poważnymi obrażeniami. Dodatkowo mogą zakłócać badania (np. rezonans).
- Cena – są bardziej kosztowne niż magnesy ferrytowe, co przy wielkich nakładach może być barierą.
Charakterystyka udźwigu
Siła oderwania magnesu w optymalnych warunkach – co się na to składa?
- na bloku wykonanej ze stali miękkiej, doskonale skupiającej strumień magnetyczny
- której grubość sięga przynajmniej 10 mm
- z powierzchnią idealnie równą
- bez najmniejszej warstwy izolującej pomiędzy magnesem a stalą
- przy prostopadłym przyłożeniu siły odrywającej (kąt 90 stopni)
- przy temperaturze otoczenia pokojowej
Udźwig w praktyce – czynniki wpływu
- Przerwa między magnesem a stalą – każdy milimetr odległości (spowodowany np. okleiną lub brudem) drastycznie redukuje siłę przyciągania, często o połowę przy zaledwie 0,5 mm.
- Kąt odrywania – pamiętaj, że magnes ma największą siłę prostopadle. Przy działaniu sił bocznych, udźwig spada znacząco, często do poziomu 20-30% wartości nominalnej.
- Grubość blachy – za chuda blacha nie przyjmuje całego pola, przez co część mocy jest tracona w powietrzu.
- Materiał blachy – stal niskowęglowa przyciąga najlepiej. Stale stopowe redukują właściwości magnetyczne i udźwig.
- Gładkość – pełny kontakt jest możliwy tylko na gładkiej stali. Wszelkie rysy i nierówności zmniejszają realną powierzchnię styku, osłabiając magnes.
- Temperatura pracy – magnesy neodymowe posiadają wrażliwość na temperaturę. W wyższych temperaturach tracą moc, a w niskich mogą być silniejsze (do pewnej granicy).
Pomiar udźwigu realizowano na blachach o gładkiej powierzchni o optymalnej grubości, przy prostopadłym działaniu siły, jednak przy działaniu siły na zsuwanie siła trzymania jest mniejsza nawet pięć razy. Ponadto, nawet drobny odstęp pomiędzy powierzchnią magnesu, a blachą redukuje siłę trzymania.
Środki ostrożności podczas pracy przy magnesach neodymowych
Zagrożenie dla elektroniki
Bardzo silne oddziaływanie może usunąć informacje na kartach kredytowych, nośnikach HDD i innych pamięciach. Trzymaj dystans min. 10 cm.
Niebezpieczeństwo przytrzaśnięcia
Niebezpieczeństwo urazu: Siła przyciągania jest tak duża, że może spowodować rany, zgniecenia, a nawet otwarte złamania. Używaj grubych rękawic.
Zakaz zabawy
Zawsze zabezpiecz magnesy przed dostępem dzieci. Niebezpieczeństwo połknięcia jest bardzo duże, a konsekwencje połączenia się magnesów wewnątrz organizmu są dramatyczne.
Zagrożenie dla nawigacji
Silne pole magnetyczne zakłóca funkcjonowanie magnetometrów w telefonach i urządzeniach lokalizacyjnych. Trzymaj z dala magnesów od telefonu, aby nie uszkodzić czujników.
Magnesy są kruche
Mimo niklowej powłoki, neodym jest delikatny i nieodporny na uderzenia. Unikaj uderzeń, gdyż magnes może się rozpaść na ostre, niebezpieczne kawałki.
Ryzyko pożaru
Obróbka mechaniczna magnesów neodymowych stwarza ryzyko zapłonu. Proszek magnetyczny reaguje gwałtownie z tlenem i jest trudny do gaszenia.
Unikaj kontaktu w przypadku alergii
Badania wskazują, że powłoka niklowa (standardowe zabezpieczenie magnesów) jest częstą przyczyną uczuleń. Jeśli Twoja skóra źle reaguje na metale, unikaj trzymania magnesów gołą dłonią lub wybierz wersje w obudowie plastikowej.
Ostrzeżenie dla sercowców
Ostrzeżenie dla sercowców: Silne pole magnetyczne zakłóca urządzenia medyczne. Utrzymuj co najmniej 30 cm odstępu lub zleć komuś innemu pracę z magnesów.
Trwała utrata siły
Standardowe magnesy neodymowe (klasa N) ulegają rozmagnesowaniu po przekroczeniu temperatury 80°C. Proces ten jest nieodwracalny.
Nie lekceważ mocy
Przed przystąpieniem do pracy, przeczytaj instrukcję. Gwałtowne złączenie może połamać magnes lub zranić dłoń. Myśl o krok do przodu.
