MW 12x3 / N38 - magnes neodymowy walcowy
magnes neodymowy walcowy
Numer katalogowy 010018
GTIN/EAN: 5906301810179
Średnica Ø
12 mm [±0,1 mm]
Wysokość
3 mm [±0,1 mm]
Waga
2.54 g
Kierunek magnesowania
↑ osiowy
Udźwig
2.49 kg / 24.43 N
Indukcja magnetyczna
277.09 mT / 2771 Gs
Powłoka
[NiCuNi] nikiel
1.648 ZŁ z VAT / szt. + cena za transport
1.340 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?
Zadzwoń już teraz
+48 888 99 98 98
ewentualnie daj znać za pomocą
formularz
na stronie kontaktowej.
Moc a także wygląd magnesów skontrolujesz u nas w
kalkulatorze siły.
Zamówienia złożone do godziny 14:00 zostaną wysłane tego samego dnia roboczego.
Dane techniczne - MW 12x3 / N38 - magnes neodymowy walcowy
Specyfikacja / charakterystyka - MW 12x3 / N38 - magnes neodymowy walcowy
| właściwości | wartości |
|---|---|
| Nr kat. | 010018 |
| GTIN/EAN | 5906301810179 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Średnica Ø | 12 mm [±0,1 mm] |
| Wysokość | 3 mm [±0,1 mm] |
| Waga | 2.54 g |
| Kierunek magnesowania | ↑ osiowy |
| Udźwig ~ ? | 2.49 kg / 24.43 N |
| Indukcja magnetyczna ~ ? | 277.09 mT / 2771 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [min. - maks.] ? | 12.2-12.6 | kGs |
| remanencja Br [min. - maks.] ? | 1220-1260 | mT |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [min. - maks.] ? | 36-38 | BH max MGOe |
| gęstość energii [min. - maks.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Temperatura Curie TC | 312 - 380 | °C |
| Temperatura Curie TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅cm |
| Siła wyginania | 250 | MPa |
| Wytrzymałość na ściskanie | 1000~1100 | MPa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 10-6 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Symulacja inżynierska magnesu neodymowego - parametry techniczne
Poniższe informacje stanowią bezpośredni efekt analizy fizycznej. Wartości bazują na algorytmach dla materiału Nd2Fe14B. Realne warunki mogą nieznacznie odbiegać od wyników symulacji. Prosimy traktować te wyliczenia jako pomoc pomocniczą podczas planowania montażu.
Tabela 1: Udźwig statyczny prostopadły (siła vs odległość) - charakterystyka
MW 12x3 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg/lbs/g/N) | Status ryzyka |
|---|---|---|---|
| 0 mm |
2770 Gs
277.0 mT
|
2.49 kg / 5.49 lbs
2490.0 g / 24.4 N
|
średnie ryzyko |
| 1 mm |
2420 Gs
242.0 mT
|
1.90 kg / 4.19 lbs
1900.6 g / 18.6 N
|
słaby uchwyt |
| 2 mm |
2009 Gs
200.9 mT
|
1.31 kg / 2.89 lbs
1309.4 g / 12.8 N
|
słaby uchwyt |
| 3 mm |
1611 Gs
161.1 mT
|
0.84 kg / 1.86 lbs
842.7 g / 8.3 N
|
słaby uchwyt |
| 5 mm |
991 Gs
99.1 mT
|
0.32 kg / 0.70 lbs
318.7 g / 3.1 N
|
słaby uchwyt |
| 10 mm |
313 Gs
31.3 mT
|
0.03 kg / 0.07 lbs
31.8 g / 0.3 N
|
słaby uchwyt |
| 15 mm |
125 Gs
12.5 mT
|
0.01 kg / 0.01 lbs
5.1 g / 0.0 N
|
słaby uchwyt |
| 20 mm |
61 Gs
6.1 mT
|
0.00 kg / 0.00 lbs
1.2 g / 0.0 N
|
słaby uchwyt |
| 30 mm |
20 Gs
2.0 mT
|
0.00 kg / 0.00 lbs
0.1 g / 0.0 N
|
słaby uchwyt |
| 50 mm |
5 Gs
0.5 mT
|
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
słaby uchwyt |
Tabela 2: Siła równoległa zsuwania (pion)
MW 12x3 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg/lbs/g/N) |
|---|---|---|
| 0 mm | Stal (~0.2) |
0.50 kg / 1.10 lbs
498.0 g / 4.9 N
|
| 1 mm | Stal (~0.2) |
0.38 kg / 0.84 lbs
380.0 g / 3.7 N
|
| 2 mm | Stal (~0.2) |
0.26 kg / 0.58 lbs
262.0 g / 2.6 N
|
| 3 mm | Stal (~0.2) |
0.17 kg / 0.37 lbs
168.0 g / 1.6 N
|
| 5 mm | Stal (~0.2) |
0.06 kg / 0.14 lbs
64.0 g / 0.6 N
|
| 10 mm | Stal (~0.2) |
0.01 kg / 0.01 lbs
6.0 g / 0.1 N
|
| 15 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
2.0 g / 0.0 N
|
| 20 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
| 30 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
Tabela 3: Siła na ścianie (poślizg) - zachowanie na śliskim podłożu
MW 12x3 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg/lbs/g/N) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
0.75 kg / 1.65 lbs
747.0 g / 7.3 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
0.50 kg / 1.10 lbs
498.0 g / 4.9 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
0.25 kg / 0.55 lbs
249.0 g / 2.4 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
1.25 kg / 2.74 lbs
1245.0 g / 12.2 N
|
Tabela 4: Efektywność materiałowa (wpływ podłoża) - straty mocy
MW 12x3 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg/lbs/g/N) |
|---|---|---|
| 0.5 mm |
|
0.25 kg / 0.55 lbs
249.0 g / 2.4 N
|
| 1 mm |
|
0.62 kg / 1.37 lbs
622.5 g / 6.1 N
|
| 2 mm |
|
1.25 kg / 2.74 lbs
1245.0 g / 12.2 N
|
| 3 mm |
|
1.87 kg / 4.12 lbs
1867.5 g / 18.3 N
|
| 5 mm |
|
2.49 kg / 5.49 lbs
2490.0 g / 24.4 N
|
| 10 mm |
|
2.49 kg / 5.49 lbs
2490.0 g / 24.4 N
|
| 11 mm |
|
2.49 kg / 5.49 lbs
2490.0 g / 24.4 N
|
| 12 mm |
|
2.49 kg / 5.49 lbs
2490.0 g / 24.4 N
|
Tabela 5: Wytrzymałość temperaturowa (stabilność) - limit termiczny
MW 12x3 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig (kg/lbs/g/N) | Status |
|---|---|---|---|
| 20 °C | 0.0% |
2.49 kg / 5.49 lbs
2490.0 g / 24.4 N
|
OK |
| 40 °C | -2.2% |
2.44 kg / 5.37 lbs
2435.2 g / 23.9 N
|
OK |
| 60 °C | -4.4% |
2.38 kg / 5.25 lbs
2380.4 g / 23.4 N
|
|
| 80 °C | -6.6% |
2.33 kg / 5.13 lbs
2325.7 g / 22.8 N
|
|
| 100 °C | -28.8% |
1.77 kg / 3.91 lbs
1772.9 g / 17.4 N
|
Tabela 6: Dwa magnesy (przyciąganie) - siły w układzie
MW 12x3 / N38
| Szczelina (mm) | Przyciąganie (kg/lbs) (N-S) | Siła ścinająca (kg/lbs/g/N) | Odpychanie (kg/lbs) (N-N) |
|---|---|---|---|
| 0 mm |
5.35 kg / 11.79 lbs
4 377 Gs
|
0.80 kg / 1.77 lbs
802 g / 7.9 N
|
N/A |
| 1 mm |
4.75 kg / 10.46 lbs
5 218 Gs
|
0.71 kg / 1.57 lbs
712 g / 7.0 N
|
4.27 kg / 9.42 lbs
~0 Gs
|
| 2 mm |
4.08 kg / 9.00 lbs
4 840 Gs
|
0.61 kg / 1.35 lbs
612 g / 6.0 N
|
3.67 kg / 8.10 lbs
~0 Gs
|
| 3 mm |
3.42 kg / 7.55 lbs
4 433 Gs
|
0.51 kg / 1.13 lbs
514 g / 5.0 N
|
3.08 kg / 6.80 lbs
~0 Gs
|
| 5 mm |
2.27 kg / 5.01 lbs
3 610 Gs
|
0.34 kg / 0.75 lbs
341 g / 3.3 N
|
2.04 kg / 4.51 lbs
~0 Gs
|
| 10 mm |
0.68 kg / 1.51 lbs
1 982 Gs
|
0.10 kg / 0.23 lbs
103 g / 1.0 N
|
0.62 kg / 1.36 lbs
~0 Gs
|
| 20 mm |
0.07 kg / 0.15 lbs
626 Gs
|
0.01 kg / 0.02 lbs
10 g / 0.1 N
|
0.06 kg / 0.14 lbs
~0 Gs
|
| 50 mm |
0.00 kg / 0.00 lbs
67 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 60 mm |
0.00 kg / 0.00 lbs
41 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 70 mm |
0.00 kg / 0.00 lbs
27 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 80 mm |
0.00 kg / 0.00 lbs
18 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 90 mm |
0.00 kg / 0.00 lbs
13 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 100 mm |
0.00 kg / 0.00 lbs
10 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
Tabela 7: Zagrożenia (implanty) - ostrzeżenia
MW 12x3 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 5.0 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 4.0 cm |
| Zegarek mechaniczny | 20 Gs (2.0 mT) | 3.5 cm |
| Telefon / Smartfon | 40 Gs (4.0 mT) | 2.5 cm |
| Immobilizer | 50 Gs (5.0 mT) | 2.5 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 1.0 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 1.0 cm |
Tabela 8: Zderzenia (energia kinetyczna) - skutki zderzenia
MW 12x3 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
31.83 km/h
(8.84 m/s)
|
0.10 J | |
| 30 mm |
54.69 km/h
(15.19 m/s)
|
0.29 J | |
| 50 mm |
70.61 km/h
(19.61 m/s)
|
0.49 J | |
| 100 mm |
99.85 km/h
(27.74 m/s)
|
0.98 J |
Tabela 9: Odporność na korozję
MW 12x3 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
Tabela 10: Dane elektryczne (Strumień)
MW 12x3 / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 3 483 Mx | 34.8 µWb |
| Współczynnik Pc | 0.35 | Niski (Płaski) |
Tabela 11: Praca w wodzie (Magnet Fishing)
MW 12x3 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 2.49 kg | Standard |
| Woda (dno rzeki) |
2.85 kg
(+0.36 kg zysk z wyporności)
|
+14.5% |
1. Ześlizg (ściana)
*Ważne: Na pionowej ścianie magnes utrzyma jedynie ok. 20-30% siły oderwania.
2. Nasycenie magnetyczne
*Zbyt cienki metal (np. obudowa PC 0.5mm) wyraźnie redukuje siłę trzymania.
3. Spadek mocy w temperaturze
*Dla materiału N38 granica bezpieczeństwa to 80°C.
4. Krzywa odmagnesowania i punkt pracy (B-H)
wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 0.35
Powyższy wykres prezentuje charakterystykę magnetyczną materiału w drugim kwadrancie pętli histerezy. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.
Skład chemiczny materiału
| żelazo (Fe) | 64% – 68% |
| neodym (Nd) | 29% – 32% |
| bor (B) | 1.1% – 1.2% |
| dysproz (Dy) | 0.5% – 2.0% |
| powłoka (Ni-Cu-Ni) | < 0.05% |
Zrównoważony rozwój
| recyklowalność (EoL) | 100% |
| surowce z recyklingu | ~10% (pre-cons) |
| ślad węglowy | low / zredukowany |
| kod odpadu (EWC) | 16 02 16 |
Inne oferty
Zalety i wady magnesów z neodymu Nd2Fe14B.
Korzyści
- Długowieczność to ich atut – po upływie 10 lat spadek mocy wynosi jedynie ~1% (wg testów).
- Pozostają niewrażliwe na zewnętrzne zakłócenia, co czyni je odpornymi na rozmagnesowanie w wymagającym środowisku.
- Dzięki powłoce (nikiel, złoto, srebro) mają estetyczny, błyszczący wygląd.
- Indukcja magnetyczna na powierzchni tych magnesów jest imponująca, co czyni je najwydajniejszymi w swojej klasie.
- Posiadają imponującą wytrzymałość termiczną, co pozwala na ich stosowanie w warunkach do 230°C (dotyczy odpowiednich serii).
- Dają się łatwo formować do specyficznych wymiarów, co ułatwia ich adaptację w przemyśle.
- Znajdują powszechne zastosowanie w nowoczesnej technice – od dysków twardych i motorów elektrycznych, po zaawansowaną diagnostykę.
- Mały rozmiar, wielka moc – przy kompaktowej budowie oferują ogromną siłę, co jest kluczowe przy budowie małych urządzeń.
Ograniczenia
- Uwaga na uszkodzenia mechaniczne – bez odpowiedniej obudowy mogą pękać przy upadku na twarde podłoże.
- Uwaga na temperaturę – dla zwykłych magnesów limit to 80°C. W gorącym środowisku (do 230°C) należy używać modele z oznaczeniem [AH].
- Są podatne na rdzewienie w kontakcie z wodą. Na zewnątrz konieczne jest użycie magnesów hermetycznych (np. w gumie).
- Z uwagi na specyfikę materiału, nie zaleca się obróbki mechanicznej magnesu. Prościej użyć magnesu wklejonego w stalowy kubek z gwintem.
- Ryzyko połknięcia – małe elementy są groźne dla najmłodszych. Połknięcie kilku sztuk grozi poważnymi obrażeniami. Dodatkowo mogą utrudniać badania (np. rezonans).
- Wyższa cena w porównaniu do tańszych zamienników to ich minus, szczególnie przy dużych ilościach.
Analiza siły trzymania
Wytrzymałość na oderwanie magnesu w warunkach idealnych – co ma na to wpływ?
- na bloku wykonanej ze stali miękkiej, optymalnie przewodzącej strumień magnetyczny
- posiadającej grubość minimum 10 mm dla pełnego zamknięcia strumienia
- z powierzchnią oczyszczoną i gładką
- w warunkach bezszczelinowych (powierzchnia do powierzchni)
- przy osiowym przyłożeniu siły odrywającej (kąt 90 stopni)
- w neutralnych warunkach termicznych
Czynniki determinujące udźwig w warunkach realnych
- Dystans – występowanie jakiejkolwiek warstwy (farba, brud, powietrze) działa jak izolator, co redukuje moc lawinowo (nawet o 50% przy 0,5 mm).
- Sposób obciążenia – deklarowany udźwig dotyczy ciągnięcia w pionie. Przy ześlizgiwaniu, magnes wykazuje dużo słabiej (zazwyczaj ok. 20-30% siły maksymalnej).
- Masywność podłoża – zbyt cienka płyta powoduje nasycenie magnetyczne, przez co część mocy marnuje się na drugą stronę.
- Skład chemiczny podłoża – stal niskowęglowa daje najlepsze rezultaty. Większa zawartość węgla obniżają przenikalność magnetyczną i udźwig.
- Jakość powierzchni – im równiejsza powierzchnia, tym lepsze przyleganie i silniejsze trzymanie. Chropowatość działają jak mikroszczeliny.
- Temperatura pracy – magnesy neodymowe posiadają ujemny współczynnik temperaturowy. Gdy jest gorąco tracą moc, a na mrozie zyskują na sile (do pewnej granicy).
Udźwig wyznaczano stosując blachy o gładkiej powierzchni o właściwej grubości (min. 20 mm), przy siłach działających pionowo, jednak przy siłach działających równolegle nośność jest mniejsza nawet pięciokrotnie. Dodatkowo, nawet drobny odstęp pomiędzy magnesem, a blachą redukuje udźwig.
Instrukcja bezpiecznej obsługi magnesów
Niklowa powłoka a alergia
Wiedza medyczna potwierdza, że powłoka niklowa (standardowe zabezpieczenie magnesów) jest silnym alergenem. Jeśli masz uczulenie, unikaj trzymania magnesów gołą dłonią lub zakup wersje w obudowie plastikowej.
Przegrzanie magnesu
Unikaj gorąca. Magnesy neodymowe są wrażliwe na temperaturę. Jeśli wymagasz odporności powyżej 80°C, zapytaj nas o magnesy odporne na ciepło (H, SH, UH).
Nie lekceważ mocy
Bądź ostrożny. Magnesy neodymowe działają z dużej odległości i łączą się z impetem, często gwałtowniej niż zdążysz zareagować.
Tylko dla dorosłych
Zawsze zabezpiecz magnesy przed dostępem dzieci. Ryzyko zadławienia jest wysokie, a konsekwencje zwarcia magnesów wewnątrz organizmu są tragiczne.
Niebezpieczeństwo dla rozruszników
Osoby z rozrusznikiem serca muszą utrzymać bezpieczną odległość od magnesów. Silny magnes może rozregulować działanie urządzenia ratującego życie.
Ochrona urządzeń
Ekstremalne pole magnetyczne może skasować dane na kartach kredytowych, dyskach twardych i innych pamięciach. Zachowaj odstęp min. 10 cm.
Niebezpieczeństwo przytrzaśnięcia
Niebezpieczeństwo urazu: Siła przyciągania jest tak duża, że może spowodować krwiaki, zgniecenia, a nawet otwarte złamania. Używaj grubych rękawic.
Podatność na pękanie
Mimo niklowej powłoki, neodym jest kruchy i nieodporny na uderzenia. Nie uderzaj, gdyż magnes może się pokruszyć na ostre, niebezpieczne kawałki.
Nie wierć w magnesach
Ryzyko wybuchu: Pył neodymowy jest skrajnie łatwopalny. Nie modyfikuj mechanicznie magnesów w warunkach domowych, gdyż grozi to zapłonem.
Wpływ na smartfony
Silne pole magnetyczne destabilizuje działanie czujników w telefonach i urządzeniach lokalizacyjnych. Trzymaj z dala magnesów od telefonu, aby uniknąć awarii czujników.
