MW 12x2 / N38 - magnes neodymowy walcowy
magnes neodymowy walcowy
Numer katalogowy 010017
GTIN/EAN: 5906301810162
Średnica Ø
12 mm [±0,1 mm]
Wysokość
2 mm [±0,1 mm]
Waga
1.7 g
Kierunek magnesowania
↑ osiowy
Udźwig
1.39 kg / 13.66 N
Indukcja magnetyczna
195.97 mT / 1960 Gs
Powłoka
[NiCuNi] nikiel
1.132 ZŁ z VAT / szt. + cena za transport
0.920 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?
Zadzwoń do nas
+48 22 499 98 98
ewentualnie skontaktuj się poprzez
formularz zgłoszeniowy
w sekcji kontakt.
Masę oraz wygląd magnesów sprawdzisz w naszym
kalkulatorze siły.
Zamówienia złożone do godziny 14:00 zostaną wysłane tego samego dnia roboczego.
Parametry produktu - MW 12x2 / N38 - magnes neodymowy walcowy
Specyfikacja / charakterystyka - MW 12x2 / N38 - magnes neodymowy walcowy
| właściwości | wartości |
|---|---|
| Nr kat. | 010017 |
| GTIN/EAN | 5906301810162 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Średnica Ø | 12 mm [±0,1 mm] |
| Wysokość | 2 mm [±0,1 mm] |
| Waga | 1.7 g |
| Kierunek magnesowania | ↑ osiowy |
| Udźwig ~ ? | 1.39 kg / 13.66 N |
| Indukcja magnetyczna ~ ? | 195.97 mT / 1960 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [min. - maks.] ? | 12.2-12.6 | kGs |
| remanencja Br [min. - maks.] ? | 1220-1260 | mT |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [min. - maks.] ? | 36-38 | BH max MGOe |
| gęstość energii [min. - maks.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Temperatura Curie TC | 312 - 380 | °C |
| Temperatura Curie TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅cm |
| Siła wyginania | 250 | MPa |
| Wytrzymałość na ściskanie | 1000~1100 | MPa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 10-6 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Symulacja fizyczna magnesu neodymowego - dane
Poniższe dane stanowią rezultat symulacji inżynierskiej. Wartości oparte są na algorytmach dla materiału Nd2Fe14B. Rzeczywiste parametry mogą nieznacznie się różnić. Traktuj te wyliczenia jako punkt odniesienia przy projektowaniu systemów.
Tabela 1: Siła prostopadła statyczna (siła vs odległość) - wykres oddziaływania
MW 12x2 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg)(gram)(Niuton) | Status ryzyka |
|---|---|---|---|
| 0 mm |
1959 Gs
195.9 mT
|
1.39 kg / 1390.0 g
13.6 N
|
bezpieczny |
| 1 mm |
1753 Gs
175.3 mT
|
1.11 kg / 1113.5 g
10.9 N
|
bezpieczny |
| 2 mm |
1479 Gs
147.9 mT
|
0.79 kg / 791.7 g
7.8 N
|
bezpieczny |
| 3 mm |
1196 Gs
119.6 mT
|
0.52 kg / 518.4 g
5.1 N
|
bezpieczny |
| 5 mm |
738 Gs
73.8 mT
|
0.20 kg / 197.4 g
1.9 N
|
bezpieczny |
| 10 mm |
229 Gs
22.9 mT
|
0.02 kg / 19.0 g
0.2 N
|
bezpieczny |
| 15 mm |
90 Gs
9.0 mT
|
0.00 kg / 2.9 g
0.0 N
|
bezpieczny |
| 20 mm |
43 Gs
4.3 mT
|
0.00 kg / 0.7 g
0.0 N
|
bezpieczny |
| 30 mm |
14 Gs
1.4 mT
|
0.00 kg / 0.1 g
0.0 N
|
bezpieczny |
| 50 mm |
3 Gs
0.3 mT
|
0.00 kg / 0.0 g
0.0 N
|
bezpieczny |
Tabela 2: Siła równoległa ześlizgu (pion)
MW 12x2 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg)(gram)(Niuton) |
|---|---|---|
| 0 mm | Stal (~0.2) |
0.28 kg / 278.0 g
2.7 N
|
| 1 mm | Stal (~0.2) |
0.22 kg / 222.0 g
2.2 N
|
| 2 mm | Stal (~0.2) |
0.16 kg / 158.0 g
1.5 N
|
| 3 mm | Stal (~0.2) |
0.10 kg / 104.0 g
1.0 N
|
| 5 mm | Stal (~0.2) |
0.04 kg / 40.0 g
0.4 N
|
| 10 mm | Stal (~0.2) |
0.00 kg / 4.0 g
0.0 N
|
| 15 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
| 20 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
| 30 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
Tabela 3: Siła na ścianie (ścinanie) - zachowanie na śliskim podłożu
MW 12x2 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
0.42 kg / 417.0 g
4.1 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
0.28 kg / 278.0 g
2.7 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
0.14 kg / 139.0 g
1.4 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
0.70 kg / 695.0 g
6.8 N
|
Tabela 4: Grubość stali (wpływ podłoża) - straty mocy
MW 12x2 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg) |
|---|---|---|
| 0.5 mm |
|
0.14 kg / 139.0 g
1.4 N
|
| 1 mm |
|
0.35 kg / 347.5 g
3.4 N
|
| 2 mm |
|
0.70 kg / 695.0 g
6.8 N
|
| 5 mm |
|
1.39 kg / 1390.0 g
13.6 N
|
| 10 mm |
|
1.39 kg / 1390.0 g
13.6 N
|
Tabela 5: Praca w cieple (stabilność) - limit termiczny
MW 12x2 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig | Status |
|---|---|---|---|
| 20 °C | 0.0% |
1.39 kg / 1390.0 g
13.6 N
|
OK |
| 40 °C | -2.2% |
1.36 kg / 1359.4 g
13.3 N
|
OK |
| 60 °C | -4.4% |
1.33 kg / 1328.8 g
13.0 N
|
|
| 80 °C | -6.6% |
1.30 kg / 1298.3 g
12.7 N
|
|
| 100 °C | -28.8% |
0.99 kg / 989.7 g
9.7 N
|
Tabela 6: Interakcja magnes-magnes (przyciąganie) - zasięg pola
MW 12x2 / N38
| Szczelina (mm) | Przyciąganie (kg) (N-S) | Odpychanie (kg) (N-N) |
|---|---|---|
| 0 mm |
2.68 kg / 2676 g
26.3 N
3 435 Gs
|
N/A |
| 1 mm |
2.44 kg / 2438 g
23.9 N
3 739 Gs
|
2.19 kg / 2194 g
21.5 N
~0 Gs
|
| 2 mm |
2.14 kg / 2144 g
21.0 N
3 507 Gs
|
1.93 kg / 1929 g
18.9 N
~0 Gs
|
| 3 mm |
1.83 kg / 1830 g
18.0 N
3 241 Gs
|
1.65 kg / 1647 g
16.2 N
~0 Gs
|
| 5 mm |
1.24 kg / 1243 g
12.2 N
2 671 Gs
|
1.12 kg / 1119 g
11.0 N
~0 Gs
|
| 10 mm |
0.38 kg / 380 g
3.7 N
1 476 Gs
|
0.34 kg / 342 g
3.4 N
~0 Gs
|
| 20 mm |
0.04 kg / 37 g
0.4 N
458 Gs
|
0.03 kg / 33 g
0.3 N
~0 Gs
|
| 50 mm |
0.00 kg / 0 g
0.0 N
47 Gs
|
0.00 kg / 0 g
0.0 N
~0 Gs
|
Tabela 7: Zagrożenia (elektronika) - ostrzeżenia
MW 12x2 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 4.5 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 3.5 cm |
| Czasomierz | 20 Gs (2.0 mT) | 3.0 cm |
| Telefon / Smartfon | 40 Gs (4.0 mT) | 2.5 cm |
| Kluczyk samochodowy | 50 Gs (5.0 mT) | 2.0 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 1.0 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 1.0 cm |
Tabela 8: Dynamika (energia kinetyczna) - skutki zderzenia
MW 12x2 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
29.08 km/h
(8.08 m/s)
|
0.06 J | |
| 30 mm |
49.95 km/h
(13.88 m/s)
|
0.16 J | |
| 50 mm |
64.48 km/h
(17.91 m/s)
|
0.27 J | |
| 100 mm |
91.19 km/h
(25.33 m/s)
|
0.55 J |
Tabela 9: Specyfikacja ochrony powierzchni
MW 12x2 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
Tabela 10: Dane elektryczne (Strumień)
MW 12x2 / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 2 665 Mx | 26.7 µWb |
| Współczynnik Pc | 0.25 | Niski (Płaski) |
Tabela 11: Praca w wodzie (Magnet Fishing)
MW 12x2 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 1.39 kg | Standard |
| Woda (dno rzeki) |
1.59 kg
(+0.20 kg Zysk z wyporności)
|
+14.5% |
1. Udźwig w pionie
*Ważne: Na pionowej ścianie magnes utrzyma zaledwie ~20-30% nominalnego udźwigu.
2. Grubość podłoża
*Cienka blacha (np. obudowa PC 0.5mm) znacząco ogranicza siłę trzymania.
3. Wytrzymałość temperaturowa
*Dla standardowych magnesów maksymalna temperatura to 80°C.
4. Krzywa odmagnesowania i punkt pracy (B-H)
wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 0.25
Powyższy wykres prezentuje charakterystykę magnetyczną materiału w drugim kwadrancie pętli histerezy. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.
Analiza pierwiastkowa
| żelazo (Fe) | 64% – 68% |
| neodym (Nd) | 29% – 32% |
| bor (B) | 1.1% – 1.2% |
| dysproz (Dy) | 0.5% – 2.0% |
| powłoka (Ni-Cu-Ni) | < 0.05% |
Ekologia i recykling (GPSR)
| recyklowalność (EoL) | 100% |
| surowce z recyklingu | ~10% (pre-cons) |
| ślad węglowy | low / zredukowany |
| kod odpadu (EWC) | 16 02 16 |
Inne oferty
Zalety oraz wady neodymowych magnesów Nd2Fe14B.
Korzyści
- Cechują się stabilnością – przez okres ok. 10 lat tracą nie więcej niż ~1% swojej mocy (wg danych).
- Charakteryzują się niezwykłą odpornością na demagnetyzację, nawet w silnych polach zewnętrznych.
- Warstwa ochronna (np. niklowa) zapewnia im metaliczny połysk, co podnosi ich walory wizualne.
- Cechują się bardzo wysoką gęstością pola na powierzchni, co umożliwia silne chwytanie z dużą mocą.
- Posiadają imponującą wytrzymałość termiczną, co pozwala na ich użycie w warunkach do 230°C (dotyczy odpowiednich serii).
- Możliwość uzyskania złożonych kształtów sprawia, że są idealne do indywidualnych zastosowań.
- Pełnią kluczową rolę w rozwoju technologii, będąc sercem generatorów, dysków i urządzeń ratujących życie.
- Mały rozmiar, wielka moc – przy niewielkich gabarytach oferują ogromną siłę, co jest kluczowe przy budowie małych urządzeń.
Wady
- Należy uważać na wstrząsy – materiał jest kruchy i może odprysnąć. Ochrona w postaci obudowy to dobre rozwiązanie.
- Gorąco to wróg neodymów – powyżej 80°C tracą właściwości. Do zadań specjalnych polecamy serię [AH], działającą stabilnie aż do 230°C.
- Podatność na wilgoć skutkuje utlenianiem. Do zadań zewnętrznych rekomendujemy wyłącznie magnesy zabezpieczone antykorozyjnie (plastik/guma).
- Trudności montażowe: zamiast próbować robić otwory kruchy magnes, wybierz uchwytów w stalowej obudowie, które posiadają gwinty.
- Ryzyko połknięcia – małe elementy są groźne dla dzieci. Połknięcie kilku sztuk grozi poważnymi obrażeniami. Dodatkowo mogą zakłócać badania (np. rezonans).
- Są produktem premium – ich cena jest wyższa niż ferrytów, co należy uwzględnić przy kalkulacji produkcji.
Analiza siły trzymania
Maksymalna moc trzymania magnesu – od czego zależy?
- na płycie wykonanej ze stali miękkiej, doskonale skupiającej strumień magnetyczny
- o przekroju przynajmniej 10 mm
- z powierzchnią oczyszczoną i gładką
- przy zerowej szczelinie (brak farby)
- dla siły działającej pod kątem prostym (na odrywanie, nie zsuwanie)
- przy temperaturze ok. 20 stopni Celsjusza
Co wpływa na udźwig w praktyce
- Dystans – obecność ciała obcego (farba, brud, szczelina) przerywa obwód magnetyczny, co redukuje moc gwałtownie (nawet o 50% przy 0,5 mm).
- Kierunek siły – pamiętaj, że magnes najmocniej trzyma prostopadle. Przy zsuwaniu w dół, siła trzymania spada znacząco, często do poziomu 20-30% wartości nominalnej.
- Grubość blachy – za chuda blacha nie przyjmuje całego pola, przez co część strumienia ucieka w powietrzu.
- Skład chemiczny podłoża – stal miękka daje najlepsze rezultaty. Stale stopowe zmniejszają przenikalność magnetyczną i udźwig.
- Gładkość – idealny styk uzyskamy tylko na wypolerowanej stali. Wszelkie rysy i nierówności tworzą poduszki powietrzne, redukując siłę.
- Temperatura – wzrost temperatury skutkuje osłabieniem siły. Należy pamiętać o maksymalną temperaturę pracy dla danego modelu.
Udźwig określano z wykorzystaniem blachy o gładkiej powierzchni o optymalnej grubości (min. 20 mm), przy siłach działających pionowo, jednak przy działaniu siły na zsuwanie udźwig jest mniejszy nawet pięć razy. Ponadto, nawet niewielka szczelina pomiędzy magnesem, a blachą redukuje nośność.
Zasady bezpieczeństwa pracy przy magnesach neodymowych
Kruchy spiek
Magnesy neodymowe to spiek proszkowy, co oznacza, że są łamliwe jak szkło. Upadek dwóch magnesów spowoduje ich rozpryśnięcie na drobne kawałki.
Niszczenie danych
Zagrożenie dla danych: Magnesy neodymowe mogą zdegradować nośniki danych oraz urządzenia precyzyjne (implanty, aparaty słuchowe, zegarki mechaniczne).
Alergia na nikiel
Pewna grupa użytkowników posiada alergię kontaktową na nikiel, którym pokryta jest większość nasze produkty. Dłuższy kontakt może powodować zaczerwienienie skóry. Sugerujemy noszenie rękawic bezlateksowych.
Tylko dla dorosłych
Neodymowe magnesy nie są przeznaczone dla dzieci. Inhalacja kilku magnesów może doprowadzić do ich złączeniem się w jelitach, co stwarza bezpośrednie zagrożenie życia i wiąże się z koniecznością natychmiastowej operacji.
Obróbka mechaniczna
Uwaga na ogień: Pył neodymowy jest skrajnie łatwopalny. Nie modyfikuj mechanicznie magnesów amatorsko, gdyż grozi to zapłonem.
Nie przegrzewaj magnesów
Monitoruj warunki termiczne. Podgrzanie magnesu powyżej 80 stopni Celsjusza zdegraduje jego strukturę magnetyczną i udźwig.
Ostrożność wymagana
Zanim zaczniesz, zapoznaj się z zasadami. Gwałtowne złączenie może połamać magnes lub zranić dłoń. Myśl o krok do przodu.
Smartfony i tablety
Uwaga: magnesy neodymowe generują pole, które mylą elektronikę precyzyjną. Zachowaj odpowiednią odległość od telefonu, tabletu i urządzeń GPS.
Siła zgniatająca
Chroń dłonie. Dwa duże magnesy zderzą błyskawicznie z siłą wielu ton, miażdżąc wszystko na swojej drodze. Zachowaj ekstremalną uwagę!
Uwaga medyczna
Uwaga zdrowotna: Magnesy neodymowe mogą wyłączyć stymulatory i defibrylatory. Unikaj kontaktu, jeśli masz wszczepione urządzenia wspomagające.
