MW 12x2 / N38 - magnes neodymowy walcowy
magnes neodymowy walcowy
Numer katalogowy 010017
GTIN/EAN: 5906301810162
Średnica Ø
12 mm [±0,1 mm]
Wysokość
2 mm [±0,1 mm]
Waga
1.7 g
Kierunek magnesowania
↑ osiowy
Udźwig
1.39 kg / 13.66 N
Indukcja magnetyczna
195.97 mT / 1960 Gs
Powłoka
[NiCuNi] nikiel
1.132 ZŁ z VAT / szt. + cena za transport
0.920 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?
Dzwoń do nas
+48 22 499 98 98
ewentualnie pisz poprzez
nasz formularz online
na stronie kontaktowej.
Właściwości i formę magnesów wyliczysz u nas w
naszym kalkulatorze magnetycznym.
Zamów do 14:00, a wyślemy dziś!
Właściwości fizyczne MW 12x2 / N38 - magnes neodymowy walcowy
Specyfikacja / charakterystyka - MW 12x2 / N38 - magnes neodymowy walcowy
| właściwości | wartości |
|---|---|
| Nr kat. | 010017 |
| GTIN/EAN | 5906301810162 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Średnica Ø | 12 mm [±0,1 mm] |
| Wysokość | 2 mm [±0,1 mm] |
| Waga | 1.7 g |
| Kierunek magnesowania | ↑ osiowy |
| Udźwig ~ ? | 1.39 kg / 13.66 N |
| Indukcja magnetyczna ~ ? | 195.97 mT / 1960 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [min. - maks.] ? | 12.2-12.6 | kGs |
| remanencja Br [min. - maks.] ? | 1220-1260 | mT |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [min. - maks.] ? | 36-38 | BH max MGOe |
| gęstość energii [min. - maks.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Temperatura Curie TC | 312 - 380 | °C |
| Temperatura Curie TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅cm |
| Siła wyginania | 250 | MPa |
| Wytrzymałość na ściskanie | 1000~1100 | MPa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 10-6 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Symulacja inżynierska magnesu neodymowego - parametry techniczne
Przedstawione wartości stanowią bezpośredni efekt symulacji inżynierskiej. Wartości zostały wyliczone na algorytmach dla klasy Nd2Fe14B. Realne parametry mogą odbiegać od wyników symulacji. Prosimy traktować te wyliczenia jako wstępny drogowskaz podczas planowania montażu.
Tabela 1: Siła prostopadła statyczna (siła vs odległość) - charakterystyka
MW 12x2 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg/lbs/g/N) | Status ryzyka |
|---|---|---|---|
| 0 mm |
1959 Gs
195.9 mT
|
1.39 kg / 3.06 lbs
1390.0 g / 13.6 N
|
niskie ryzyko |
| 1 mm |
1753 Gs
175.3 mT
|
1.11 kg / 2.45 lbs
1113.5 g / 10.9 N
|
niskie ryzyko |
| 2 mm |
1479 Gs
147.9 mT
|
0.79 kg / 1.75 lbs
791.7 g / 7.8 N
|
niskie ryzyko |
| 3 mm |
1196 Gs
119.6 mT
|
0.52 kg / 1.14 lbs
518.4 g / 5.1 N
|
niskie ryzyko |
| 5 mm |
738 Gs
73.8 mT
|
0.20 kg / 0.44 lbs
197.4 g / 1.9 N
|
niskie ryzyko |
| 10 mm |
229 Gs
22.9 mT
|
0.02 kg / 0.04 lbs
19.0 g / 0.2 N
|
niskie ryzyko |
| 15 mm |
90 Gs
9.0 mT
|
0.00 kg / 0.01 lbs
2.9 g / 0.0 N
|
niskie ryzyko |
| 20 mm |
43 Gs
4.3 mT
|
0.00 kg / 0.00 lbs
0.7 g / 0.0 N
|
niskie ryzyko |
| 30 mm |
14 Gs
1.4 mT
|
0.00 kg / 0.00 lbs
0.1 g / 0.0 N
|
niskie ryzyko |
| 50 mm |
3 Gs
0.3 mT
|
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
niskie ryzyko |
Tabela 2: Siła równoległa ześlizgu (ściana)
MW 12x2 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg/lbs/g/N) |
|---|---|---|
| 0 mm | Stal (~0.2) |
0.28 kg / 0.61 lbs
278.0 g / 2.7 N
|
| 1 mm | Stal (~0.2) |
0.22 kg / 0.49 lbs
222.0 g / 2.2 N
|
| 2 mm | Stal (~0.2) |
0.16 kg / 0.35 lbs
158.0 g / 1.5 N
|
| 3 mm | Stal (~0.2) |
0.10 kg / 0.23 lbs
104.0 g / 1.0 N
|
| 5 mm | Stal (~0.2) |
0.04 kg / 0.09 lbs
40.0 g / 0.4 N
|
| 10 mm | Stal (~0.2) |
0.00 kg / 0.01 lbs
4.0 g / 0.0 N
|
| 15 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
| 20 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
| 30 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
Tabela 3: Montaż pionowy (ścinanie) - udźwig wertykalny
MW 12x2 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg/lbs/g/N) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
0.42 kg / 0.92 lbs
417.0 g / 4.1 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
0.28 kg / 0.61 lbs
278.0 g / 2.7 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
0.14 kg / 0.31 lbs
139.0 g / 1.4 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
0.70 kg / 1.53 lbs
695.0 g / 6.8 N
|
Tabela 4: Grubość stali (wpływ podłoża) - dobór blachy
MW 12x2 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg/lbs/g/N) |
|---|---|---|
| 0.5 mm |
|
0.14 kg / 0.31 lbs
139.0 g / 1.4 N
|
| 1 mm |
|
0.35 kg / 0.77 lbs
347.5 g / 3.4 N
|
| 2 mm |
|
0.70 kg / 1.53 lbs
695.0 g / 6.8 N
|
| 3 mm |
|
1.04 kg / 2.30 lbs
1042.5 g / 10.2 N
|
| 5 mm |
|
1.39 kg / 3.06 lbs
1390.0 g / 13.6 N
|
| 10 mm |
|
1.39 kg / 3.06 lbs
1390.0 g / 13.6 N
|
| 11 mm |
|
1.39 kg / 3.06 lbs
1390.0 g / 13.6 N
|
| 12 mm |
|
1.39 kg / 3.06 lbs
1390.0 g / 13.6 N
|
Tabela 5: Wytrzymałość temperaturowa (zachowanie materiału) - próg odporności
MW 12x2 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig (kg/lbs/g/N) | Status |
|---|---|---|---|
| 20 °C | 0.0% |
1.39 kg / 3.06 lbs
1390.0 g / 13.6 N
|
OK |
| 40 °C | -2.2% |
1.36 kg / 3.00 lbs
1359.4 g / 13.3 N
|
OK |
| 60 °C | -4.4% |
1.33 kg / 2.93 lbs
1328.8 g / 13.0 N
|
|
| 80 °C | -6.6% |
1.30 kg / 2.86 lbs
1298.3 g / 12.7 N
|
|
| 100 °C | -28.8% |
0.99 kg / 2.18 lbs
989.7 g / 9.7 N
|
Tabela 6: Dwa magnesy (przyciąganie) - zasięg pola
MW 12x2 / N38
| Szczelina (mm) | Przyciąganie (kg/lbs) (N-S) | Siła ścinająca (kg/lbs/g/N) | Odpychanie (kg/lbs) (N-N) |
|---|---|---|---|
| 0 mm |
2.68 kg / 5.90 lbs
3 435 Gs
|
0.40 kg / 0.88 lbs
401 g / 3.9 N
|
N/A |
| 1 mm |
2.44 kg / 5.37 lbs
3 739 Gs
|
0.37 kg / 0.81 lbs
366 g / 3.6 N
|
2.19 kg / 4.84 lbs
~0 Gs
|
| 2 mm |
2.14 kg / 4.73 lbs
3 507 Gs
|
0.32 kg / 0.71 lbs
322 g / 3.2 N
|
1.93 kg / 4.25 lbs
~0 Gs
|
| 3 mm |
1.83 kg / 4.04 lbs
3 241 Gs
|
0.27 kg / 0.61 lbs
275 g / 2.7 N
|
1.65 kg / 3.63 lbs
~0 Gs
|
| 5 mm |
1.24 kg / 2.74 lbs
2 671 Gs
|
0.19 kg / 0.41 lbs
187 g / 1.8 N
|
1.12 kg / 2.47 lbs
~0 Gs
|
| 10 mm |
0.38 kg / 0.84 lbs
1 476 Gs
|
0.06 kg / 0.13 lbs
57 g / 0.6 N
|
0.34 kg / 0.75 lbs
~0 Gs
|
| 20 mm |
0.04 kg / 0.08 lbs
458 Gs
|
0.01 kg / 0.01 lbs
5 g / 0.1 N
|
0.03 kg / 0.07 lbs
~0 Gs
|
| 50 mm |
0.00 kg / 0.00 lbs
47 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 60 mm |
0.00 kg / 0.00 lbs
28 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 70 mm |
0.00 kg / 0.00 lbs
18 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 80 mm |
0.00 kg / 0.00 lbs
13 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 90 mm |
0.00 kg / 0.00 lbs
9 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 100 mm |
0.00 kg / 0.00 lbs
7 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
Tabela 7: Zagrożenia (implanty) - środki ostrożności
MW 12x2 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 4.5 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 3.5 cm |
| Zegarek mechaniczny | 20 Gs (2.0 mT) | 3.0 cm |
| Telefon / Smartfon | 40 Gs (4.0 mT) | 2.5 cm |
| Immobilizer | 50 Gs (5.0 mT) | 2.0 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 1.0 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 1.0 cm |
Tabela 8: Energia uderzenia (energia kinetyczna) - skutki zderzenia
MW 12x2 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
29.08 km/h
(8.08 m/s)
|
0.06 J | |
| 30 mm |
49.95 km/h
(13.88 m/s)
|
0.16 J | |
| 50 mm |
64.48 km/h
(17.91 m/s)
|
0.27 J | |
| 100 mm |
91.19 km/h
(25.33 m/s)
|
0.55 J |
Tabela 9: Specyfikacja ochrony powierzchni
MW 12x2 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
Tabela 10: Dane konstrukcyjne (Flux)
MW 12x2 / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 2 665 Mx | 26.7 µWb |
| Współczynnik Pc | 0.25 | Niski (Płaski) |
Tabela 11: Hydrostatyka i wyporność
MW 12x2 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 1.39 kg | Standard |
| Woda (dno rzeki) |
1.59 kg
(+0.20 kg zysk z wyporności)
|
+14.5% |
1. Siła zsuwająca
*Pamiętaj: Na powierzchni pionowej magnes zachowa jedynie ok. 20-30% nominalnego udźwigu.
2. Nasycenie magnetyczne
*Zbyt cienki metal (np. obudowa PC 0.5mm) wyraźnie redukuje udźwig magnesu.
3. Wytrzymałość temperaturowa
*W klasie N38 krytyczny próg to 80°C.
4. Krzywa odmagnesowania i punkt pracy (B-H)
wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 0.25
Niniejsza symulacja obrazuje stabilność magnetyczną wybranego magnesu w konkretnych warunkach geometrycznych. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.
Analiza pierwiastkowa
| żelazo (Fe) | 64% – 68% |
| neodym (Nd) | 29% – 32% |
| bor (B) | 1.1% – 1.2% |
| dysproz (Dy) | 0.5% – 2.0% |
| powłoka (Ni-Cu-Ni) | < 0.05% |
Ekologia i recykling (GPSR)
| recyklowalność (EoL) | 100% |
| surowce z recyklingu | ~10% (pre-cons) |
| ślad węglowy | low / zredukowany |
| kod odpadu (EWC) | 16 02 16 |
Inne produkty
Wady i zalety magnesów neodymowych Nd2Fe14B.
Korzyści
- Długowieczność to ich atut – po upływie 10 lat spadek mocy wynosi jedynie ~1% (teoretycznie).
- Wyróżniają się wyjątkową odpornością na demagnetyzację, nawet w silnych polach zewnętrznych.
- Warstwa ochronna (np. niklowa) zapewnia im atrakcyjny wygląd, co ma znaczenie estetyczne.
- Oferują najwyższą indukcję magnetyczną w punkcie styku, co gwarantuje ogromną siłę.
- Odpowiedni skład sprawia, że są odporne na wysokie temperatury (zależnie od kształtu, nawet do 230°C).
- Dają się łatwo formować do specyficznych wymiarów, co pozwala na ich adaptację w przemyśle.
- Znajdują powszechne zastosowanie w przemyśle high-tech – od dysków twardych i motorów elektrycznych, po precyzyjną diagnostykę.
- Mały rozmiar, wielka moc – przy kompaktowej budowie oferują potężny udźwig, co jest kluczowe przy budowie małych urządzeń.
Wady
- Ze względu na kruchość, wymagają ostrożności. Silne uderzenie może je zniszczyć, stąd rekomendacja stosowania osłon.
- Wrażliwość na ciepło: przekroczenie 80°C może trwale osłabić magnes (zależnie od bryły). Rozwiązaniem są nasze magnesy wysokotemperaturowe [AH].
- Podatność na wilgoć skutkuje utlenianiem. Do zadań zewnętrznych rekomendujemy wyłącznie magnesy w pełnej izolacji (plastik/guma).
- Trudności montażowe: zamiast próbować robić otwory kruchy magnes, wybierz uchwytów w stalowej obudowie, które posiadają gotowe mocowania.
- Produkt niebezpieczny po połknięciu. Bezwzględnie chronić przed dziećmi. Wewnątrz ciała magnesy mogą się połączyć, powodując uszkodzenia jelit.
- Są produktem premium – ich cena jest wyższa niż ferrytów, co należy uwzględnić przy kalkulacji produkcji.
Parametry udźwigu
Najlepsza nośność magnesu w idealnych parametrach – co ma na to wpływ?
- przy użyciu zwory ze stali niskowęglowej, zapewniającej maksymalne skupienie pola
- o przekroju wynoszącej minimum 10 mm
- o wypolerowanej powierzchni styku
- w warunkach idealnego przylegania (metal do metalu)
- dla siły działającej pod kątem prostym (w osi magnesu)
- przy temperaturze otoczenia ok. 20 stopni Celsjusza
Praktyczne aspekty udźwigu – czynniki
- Szczelina – występowanie ciała obcego (farba, brud, powietrze) przerywa obwód magnetyczny, co redukuje udźwig gwałtownie (nawet o 50% przy 0,5 mm).
- Kierunek działania siły – największą siłę osiągamy tylko przy ciągnięciu pod kątem 90°. Opór przy zsuwaniu magnesu po powierzchni jest standardowo wielokrotnie mniejsza (ok. 1/5 udźwigu).
- Masywność podłoża – za chuda blacha nie zamyka strumienia, przez co część strumienia jest tracona w powietrzu.
- Rodzaj materiału – najlepszym wyborem jest stal o wysokiej przenikalności. Stale nierdzewne mogą mieć gorsze właściwości magnetyczne.
- Wykończenie powierzchni – idealny styk uzyskamy tylko na wypolerowanej stali. Chropowata faktura zmniejszają realną powierzchnię styku, redukując siłę.
- Otoczenie termiczne – wzrost temperatury powoduje tymczasowy spadek indukcji. Należy pamiętać o limit termiczny dla danego modelu.
Pomiar udźwigu przeprowadzano na gładkiej blaszce o odpowiedniej grubości, przy prostopadłym działaniu siły, z kolei przy działaniu siły na zsuwanie siła trzymania jest mniejsza nawet pięć razy. Dodatkowo, nawet minimalna przerwa pomiędzy powierzchnią magnesu, a blachą zmniejsza nośność.
Instrukcja bezpiecznej obsługi magnesów
Nie lekceważ mocy
Bądź ostrożny. Magnesy neodymowe działają z daleka i zwierają z ogromną siłą, często szybciej niż jesteś w stanie przewidzieć.
Niebezpieczeństwo przytrzaśnięcia
Zagrożenie fizyczne: Moc ściskania jest tak duża, że może wywołać krwiaki, zmiażdżenia, a nawet złamania kości. Stosuj solidne rękawice ochronne.
Wpływ na smartfony
Urządzenia nawigacyjne są niezwykle wrażliwe na wpływ magnesów. Bliskie sąsiedztwo z silnym magnesem może zniszczyć czujniki w Twoim telefonie.
Samozapłon
Uwaga na ogień: Pył neodymowy jest wysoce łatwopalny. Nie modyfikuj mechanicznie magnesów w warunkach domowych, gdyż może to wywołać pożar.
Wrażliwość na ciepło
Nie przegrzewaj. Magnesy neodymowe są wrażliwe na ciepło. Jeśli wymagasz odporności powyżej 80°C, wybierz magnesy odporne na ciepło (H, SH, UH).
Ryzyko pęknięcia
Magnesy neodymowe to spiek proszkowy, co oznacza, że są bardzo kruche. Upadek dwóch magnesów spowoduje ich rozkruszenie na drobne kawałki.
Nośniki danych
Bardzo silne pole magnetyczne może zniszczyć zapis na kartach kredytowych, nośnikach HDD i innych nośnikach magnetycznych. Trzymaj dystans min. 10 cm.
Ryzyko uczulenia
Powszechnie wiadomo, że powłoka niklowa (standardowe zabezpieczenie magnesów) jest częstą przyczyną uczuleń. Jeśli masz uczulenie, unikaj bezpośredniego dotyku lub zakup magnesy powlekane tworzywem.
Nie dawać dzieciom
Sprzedaż wyłącznie dla dorosłych. Drobne magnesy mogą zostać aspirrowane, co prowadzi do perforacji jelit. Trzymaj z dala od dzieci i zwierząt.
Interferencja medyczna
Ostrzeżenie medyczne: Magnesy neodymowe mogą dezaktywować stymulatory i defibrylatory. Unikaj kontaktu, jeśli masz wszczepione urządzenia wspomagające.
