MW 12x2 / N38 - magnes neodymowy walcowy
magnes neodymowy walcowy
Numer katalogowy 010017
GTIN/EAN: 5906301810162
Średnica Ø
12 mm [±0,1 mm]
Wysokość
2 mm [±0,1 mm]
Waga
1.7 g
Kierunek magnesowania
↑ osiowy
Udźwig
1.39 kg / 13.66 N
Indukcja magnetyczna
195.97 mT / 1960 Gs
Powłoka
[NiCuNi] nikiel
1.132 ZŁ z VAT / szt. + cena za transport
0.920 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?
Zadzwoń już teraz
+48 888 99 98 98
alternatywnie napisz korzystając z
formularz
przez naszą stronę.
Parametry a także wygląd magnesów neodymowych skontrolujesz u nas w
kalkulatorze mocy.
Zamówienia złożone do godziny 14:00 zostaną wysłane tego samego dnia roboczego.
Właściwości fizyczne MW 12x2 / N38 - magnes neodymowy walcowy
Specyfikacja / charakterystyka - MW 12x2 / N38 - magnes neodymowy walcowy
| właściwości | wartości |
|---|---|
| Nr kat. | 010017 |
| GTIN/EAN | 5906301810162 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Średnica Ø | 12 mm [±0,1 mm] |
| Wysokość | 2 mm [±0,1 mm] |
| Waga | 1.7 g |
| Kierunek magnesowania | ↑ osiowy |
| Udźwig ~ ? | 1.39 kg / 13.66 N |
| Indukcja magnetyczna ~ ? | 195.97 mT / 1960 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [min. - maks.] ? | 12.2-12.6 | kGs |
| remanencja Br [min. - maks.] ? | 1220-1260 | mT |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [min. - maks.] ? | 36-38 | BH max MGOe |
| gęstość energii [min. - maks.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Temperatura Curie TC | 312 - 380 | °C |
| Temperatura Curie TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅cm |
| Siła wyginania | 250 | MPa |
| Wytrzymałość na ściskanie | 1000~1100 | MPa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 10-6 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Symulacja techniczna magnesu neodymowego - parametry techniczne
Niniejsze wartości są rezultat analizy inżynierskiej. Wyniki oparte są na algorytmach dla klasy Nd2Fe14B. Realne parametry mogą nieznacznie się różnić. Prosimy traktować te wyliczenia jako pomoc pomocniczą dla projektantów.
Tabela 1: Siła prostopadła statyczna (siła vs dystans) - charakterystyka
MW 12x2 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg/lbs/g/N) | Status ryzyka |
|---|---|---|---|
| 0 mm |
1959 Gs
195.9 mT
|
1.39 kg / 3.06 lbs
1390.0 g / 13.6 N
|
bezpieczny |
| 1 mm |
1753 Gs
175.3 mT
|
1.11 kg / 2.45 lbs
1113.5 g / 10.9 N
|
bezpieczny |
| 2 mm |
1479 Gs
147.9 mT
|
0.79 kg / 1.75 lbs
791.7 g / 7.8 N
|
bezpieczny |
| 3 mm |
1196 Gs
119.6 mT
|
0.52 kg / 1.14 lbs
518.4 g / 5.1 N
|
bezpieczny |
| 5 mm |
738 Gs
73.8 mT
|
0.20 kg / 0.44 lbs
197.4 g / 1.9 N
|
bezpieczny |
| 10 mm |
229 Gs
22.9 mT
|
0.02 kg / 0.04 lbs
19.0 g / 0.2 N
|
bezpieczny |
| 15 mm |
90 Gs
9.0 mT
|
0.00 kg / 0.01 lbs
2.9 g / 0.0 N
|
bezpieczny |
| 20 mm |
43 Gs
4.3 mT
|
0.00 kg / 0.00 lbs
0.7 g / 0.0 N
|
bezpieczny |
| 30 mm |
14 Gs
1.4 mT
|
0.00 kg / 0.00 lbs
0.1 g / 0.0 N
|
bezpieczny |
| 50 mm |
3 Gs
0.3 mT
|
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
bezpieczny |
Tabela 2: Równoległa siła obsunięcia (pion)
MW 12x2 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg/lbs/g/N) |
|---|---|---|
| 0 mm | Stal (~0.2) |
0.28 kg / 0.61 lbs
278.0 g / 2.7 N
|
| 1 mm | Stal (~0.2) |
0.22 kg / 0.49 lbs
222.0 g / 2.2 N
|
| 2 mm | Stal (~0.2) |
0.16 kg / 0.35 lbs
158.0 g / 1.5 N
|
| 3 mm | Stal (~0.2) |
0.10 kg / 0.23 lbs
104.0 g / 1.0 N
|
| 5 mm | Stal (~0.2) |
0.04 kg / 0.09 lbs
40.0 g / 0.4 N
|
| 10 mm | Stal (~0.2) |
0.00 kg / 0.01 lbs
4.0 g / 0.0 N
|
| 15 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
| 20 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
| 30 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
Tabela 3: Montaż pionowy (poślizg) - zachowanie na śliskim podłożu
MW 12x2 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg/lbs/g/N) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
0.42 kg / 0.92 lbs
417.0 g / 4.1 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
0.28 kg / 0.61 lbs
278.0 g / 2.7 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
0.14 kg / 0.31 lbs
139.0 g / 1.4 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
0.70 kg / 1.53 lbs
695.0 g / 6.8 N
|
Tabela 4: Efektywność materiałowa (wpływ podłoża) - straty mocy
MW 12x2 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg/lbs/g/N) |
|---|---|---|
| 0.5 mm |
|
0.14 kg / 0.31 lbs
139.0 g / 1.4 N
|
| 1 mm |
|
0.35 kg / 0.77 lbs
347.5 g / 3.4 N
|
| 2 mm |
|
0.70 kg / 1.53 lbs
695.0 g / 6.8 N
|
| 3 mm |
|
1.04 kg / 2.30 lbs
1042.5 g / 10.2 N
|
| 5 mm |
|
1.39 kg / 3.06 lbs
1390.0 g / 13.6 N
|
| 10 mm |
|
1.39 kg / 3.06 lbs
1390.0 g / 13.6 N
|
| 11 mm |
|
1.39 kg / 3.06 lbs
1390.0 g / 13.6 N
|
| 12 mm |
|
1.39 kg / 3.06 lbs
1390.0 g / 13.6 N
|
Tabela 5: Praca w cieple (stabilność) - próg odporności
MW 12x2 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig (kg/lbs/g/N) | Status |
|---|---|---|---|
| 20 °C | 0.0% |
1.39 kg / 3.06 lbs
1390.0 g / 13.6 N
|
OK |
| 40 °C | -2.2% |
1.36 kg / 3.00 lbs
1359.4 g / 13.3 N
|
OK |
| 60 °C | -4.4% |
1.33 kg / 2.93 lbs
1328.8 g / 13.0 N
|
|
| 80 °C | -6.6% |
1.30 kg / 2.86 lbs
1298.3 g / 12.7 N
|
|
| 100 °C | -28.8% |
0.99 kg / 2.18 lbs
989.7 g / 9.7 N
|
Tabela 6: Dwa magnesy (odpychanie) - zasięg pola
MW 12x2 / N38
| Szczelina (mm) | Przyciąganie (kg/lbs) (N-S) | Siła ścinająca (kg/lbs/g/N) | Odpychanie (kg/lbs) (N-N) |
|---|---|---|---|
| 0 mm |
2.68 kg / 5.90 lbs
3 435 Gs
|
0.40 kg / 0.88 lbs
401 g / 3.9 N
|
N/A |
| 1 mm |
2.44 kg / 5.37 lbs
3 739 Gs
|
0.37 kg / 0.81 lbs
366 g / 3.6 N
|
2.19 kg / 4.84 lbs
~0 Gs
|
| 2 mm |
2.14 kg / 4.73 lbs
3 507 Gs
|
0.32 kg / 0.71 lbs
322 g / 3.2 N
|
1.93 kg / 4.25 lbs
~0 Gs
|
| 3 mm |
1.83 kg / 4.04 lbs
3 241 Gs
|
0.27 kg / 0.61 lbs
275 g / 2.7 N
|
1.65 kg / 3.63 lbs
~0 Gs
|
| 5 mm |
1.24 kg / 2.74 lbs
2 671 Gs
|
0.19 kg / 0.41 lbs
187 g / 1.8 N
|
1.12 kg / 2.47 lbs
~0 Gs
|
| 10 mm |
0.38 kg / 0.84 lbs
1 476 Gs
|
0.06 kg / 0.13 lbs
57 g / 0.6 N
|
0.34 kg / 0.75 lbs
~0 Gs
|
| 20 mm |
0.04 kg / 0.08 lbs
458 Gs
|
0.01 kg / 0.01 lbs
5 g / 0.1 N
|
0.03 kg / 0.07 lbs
~0 Gs
|
| 50 mm |
0.00 kg / 0.00 lbs
47 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 60 mm |
0.00 kg / 0.00 lbs
28 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 70 mm |
0.00 kg / 0.00 lbs
18 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 80 mm |
0.00 kg / 0.00 lbs
13 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 90 mm |
0.00 kg / 0.00 lbs
9 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 100 mm |
0.00 kg / 0.00 lbs
7 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
Tabela 7: Zagrożenia (implanty) - środki ostrożności
MW 12x2 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 4.5 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 3.5 cm |
| Zegarek mechaniczny | 20 Gs (2.0 mT) | 3.0 cm |
| Telefon / Smartfon | 40 Gs (4.0 mT) | 2.5 cm |
| Kluczyk samochodowy | 50 Gs (5.0 mT) | 2.0 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 1.0 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 1.0 cm |
Tabela 8: Energia uderzenia (ryzyko pęknięcia) - ostrzeżenie
MW 12x2 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
29.08 km/h
(8.08 m/s)
|
0.06 J | |
| 30 mm |
49.95 km/h
(13.88 m/s)
|
0.16 J | |
| 50 mm |
64.48 km/h
(17.91 m/s)
|
0.27 J | |
| 100 mm |
91.19 km/h
(25.33 m/s)
|
0.55 J |
Tabela 9: Parametry powłoki (trwałość)
MW 12x2 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
Tabela 10: Dane konstrukcyjne (Strumień)
MW 12x2 / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 2 665 Mx | 26.7 µWb |
| Współczynnik Pc | 0.25 | Niski (Płaski) |
Tabela 11: Fizyka poszukiwań podwodnych
MW 12x2 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 1.39 kg | Standard |
| Woda (dno rzeki) |
1.59 kg
(+0.20 kg zysk z wyporności)
|
+14.5% |
1. Siła zsuwająca
*Pamiętaj: Na powierzchni pionowej magnes utrzyma tylko ~20-30% nominalnego udźwigu.
2. Efektywność, a grubość stali
*Cienka blacha (np. obudowa PC 0.5mm) znacząco ogranicza siłę trzymania.
3. Wytrzymałość temperaturowa
*Dla standardowych magnesów krytyczny próg to 80°C.
4. Krzywa odmagnesowania i punkt pracy (B-H)
wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 0.25
Powyższy wykres prezentuje charakterystykę magnetyczną materiału w drugim kwadrancie pętli histerezy. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.
Specyfikacja materiałowa
| żelazo (Fe) | 64% – 68% |
| neodym (Nd) | 29% – 32% |
| bor (B) | 1.1% – 1.2% |
| dysproz (Dy) | 0.5% – 2.0% |
| powłoka (Ni-Cu-Ni) | < 0.05% |
Dane środowiskowe
| recyklowalność (EoL) | 100% |
| surowce z recyklingu | ~10% (pre-cons) |
| ślad węglowy | low / zredukowany |
| kod odpadu (EWC) | 16 02 16 |
Zobacz też inne produkty
UMP 75x25 [M10x3] GW F200 PLATINIUM / N52 - uchwyty magnetyczne do poszukiwań
Zalety i wady magnesów neodymowych Nd2Fe14B.
Plusy
- Są niezwykle trwałe – przez okres ok. 10 lat gubią nie więcej niż ~1% swojej pierwotnej siły (pomiary wskazują na taką wartość).
- Wyróżniają się niezwykłą odpornością na rozmagnesowanie, nawet w silnych polach zewnętrznych.
- Są nie tylko silne, ale i ładne – poprzez niklowanie lub złocenie ich powierzchnia jest refleksyjna i prezentuje się elegancko.
- Cechują się bardzo wysoką gęstością pola na powierzchni, co umożliwia silne chwytanie nawet małych elementów.
- Posiadają imponującą wytrzymałość termiczną, co pozwala na ich użycie w warunkach do 230°C (dotyczy odpowiednich serii).
- Dają się łatwo formować do specyficznych wymiarów, co pozwala na ich adaptację w przemyśle.
- Stanowią kluczowy element w technologiach przyszłości, zasilając silniki, sprzęt szpitalny czy komputery.
- Mały rozmiar, wielka moc – przy kompaktowej budowie oferują ogromną siłę, co jest kluczowe przy miniaturyzacji.
Minusy
- Są wrażliwe na uderzenia – materiał jest kruchy i grozi pęknięciem. Ochrona w postaci obudowy jest kluczowa.
- Wrażliwość na ciepło: przekroczenie 80°C może trwale osłabić magnes (zależnie od wymiarów). Rozwiązaniem są nasze magnesy wysokotemperaturowe [AH].
- Ryzyko korozji: bez osłony magnes ulegnie utlenieniu na deszczu. Wybierz wersje powlekane tworzywem do zastosowań zewnętrznych.
- Magnesy ciężko się obrabia – do montażu śrubowego przeznaczone są specjalne uchwyty magnetyczne z wbudowanym gwintem.
- Ryzyko połknięcia – małe elementy są niebezpieczne dla dzieci. Połknięcie kilku sztuk grozi operacją. Dodatkowo mogą zakłócać badania (np. rezonans).
- Są produktem premium – ich cena jest wyższa niż ferrytów, co należy uwzględnić przy planowaniu kosztów.
Parametry udźwigu
Maksymalna siła przyciągania magnesu – co ma na to wpływ?
- przy zastosowaniu blachy ze stali niskowęglowej, gwarantującej pełne nasycenie magnetyczne
- o przekroju nie mniejszej niż 10 mm
- o idealnie gładkiej powierzchni styku
- przy bezpośrednim styku (brak zanieczyszczeń)
- podczas odrywania w kierunku prostopadłym do powierzchni mocowania
- w standardowej temperaturze otoczenia
Czynniki determinujące udźwig w warunkach realnych
- Odstęp (między magnesem a blachą), bowiem nawet mikroskopijna odległość (np. 0,5 mm) powoduje zmniejszenie udźwigu nawet o 50% (dotyczy to także farby, rdzy czy brudu).
- Kąt przyłożenia siły – największą siłę uzyskujemy tylko przy prostopadłym odrywaniu. Opór przy zsuwaniu magnesu po blasze jest z reguły wielokrotnie mniejsza (ok. 1/5 udźwigu).
- Grubość ścianki – cienki materiał nie pozwala na pełne wykorzystanie magnesu. Strumień magnetyczny przenika na wylot, zamiast zamienić się w udźwig.
- Rodzaj stali – stal miękka daje najlepsze rezultaty. Stale stopowe zmniejszają przenikalność magnetyczną i udźwig.
- Gładkość – idealny styk uzyskamy tylko na gładkiej stali. Chropowata faktura tworzą poduszki powietrzne, redukując siłę.
- Temperatura – wzrost temperatury skutkuje osłabieniem indukcji. Warto sprawdzić maksymalną temperaturę pracy dla danego modelu.
Udźwig wyznaczano z wykorzystaniem blachy o gładkiej powierzchni o właściwej grubości (min. 20 mm), przy prostopadłym działaniu siły odrywającej, z kolei przy działaniu siły na zsuwanie udźwig jest mniejszy nawet pięciokrotnie. Co więcej, nawet minimalna przerwa między powierzchnią magnesu, a blachą redukuje nośność.
Zasady bezpieczeństwa pracy przy magnesach neodymowych
Karty i dyski
Potężne pole magnetyczne może zniszczyć zapis na kartach płatniczych, dyskach twardych i innych pamięciach. Zachowaj odstęp min. 10 cm.
Przegrzanie magnesu
Nie przegrzewaj. Magnesy neodymowe są wrażliwe na ciepło. Jeśli wymagasz odporności powyżej 80°C, wybierz magnesy odporne na ciepło (H, SH, UH).
Trzymaj z dala od elektroniki
Intensywne promieniowanie magnetyczne zakłóca funkcjonowanie czujników w telefonach i nawigacjach GPS. Zachowaj odstęp magnesów od telefonu, aby nie uszkodzić czujników.
Kruchość materiału
Chroń oczy. Magnesy mogą eksplodować przy gwałtownym złączeniu, wyrzucając ostre odłamki w powietrze. Noś okulary.
Świadome użytkowanie
Używaj magnesy odpowiedzialnie. Ich potężna moc może zaskoczyć nawet profesjonalistów. Planuj ruchy i nie lekceważ ich siły.
Implanty medyczne
Pacjenci z rozrusznikiem serca muszą utrzymać bezpieczną odległość od magnesów. Silny magnes może rozregulować pracę urządzenia ratującego życie.
To nie jest zabawka
Bezwzględnie zabezpiecz magnesy przed dostępem dzieci. Ryzyko zadławienia jest wysokie, a skutki połączenia się magnesów wewnątrz organizmu są dramatyczne.
Ostrzeżenie dla alergików
Pewna grupa użytkowników posiada alergię kontaktową na pierwiastek nikiel, którym pokryta jest większość nasze produkty. Długotrwała ekspozycja może skutkować zaczerwienienie skóry. Rekomendujemy noszenie rękawic bezlateksowych.
Uszkodzenia ciała
Bloki magnetyczne mogą połamać palce w ułamku sekundy. Nigdy umieszczaj dłoni między dwa silne magnesy.
Zakaz obróbki
Proszek generowany podczas szlifowania magnesów jest łatwopalny. Nie wierć w magnesach bez odpowiedniego chłodzenia i wiedzy.
