MW 12x2 / N38 - magnes neodymowy walcowy
magnes neodymowy walcowy
Numer katalogowy 010017
GTIN/EAN: 5906301810162
Średnica Ø
12 mm [±0,1 mm]
Wysokość
2 mm [±0,1 mm]
Waga
1.7 g
Kierunek magnesowania
↑ osiowy
Udźwig
1.39 kg / 13.66 N
Indukcja magnetyczna
195.97 mT / 1960 Gs
Powłoka
[NiCuNi] nikiel
1.132 ZŁ z VAT / szt. + cena za transport
0.920 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?
Zadzwoń i zapytaj
+48 888 99 98 98
alternatywnie daj znać korzystając z
formularz zapytania
przez naszą stronę.
Parametry a także budowę magnesu neodymowego zobaczysz w naszym
modułowym kalkulatorze.
Zamów do 14:00, a wyślemy dziś!
Karta produktu - MW 12x2 / N38 - magnes neodymowy walcowy
Specyfikacja / charakterystyka - MW 12x2 / N38 - magnes neodymowy walcowy
| właściwości | wartości |
|---|---|
| Nr kat. | 010017 |
| GTIN/EAN | 5906301810162 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Średnica Ø | 12 mm [±0,1 mm] |
| Wysokość | 2 mm [±0,1 mm] |
| Waga | 1.7 g |
| Kierunek magnesowania | ↑ osiowy |
| Udźwig ~ ? | 1.39 kg / 13.66 N |
| Indukcja magnetyczna ~ ? | 195.97 mT / 1960 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [min. - maks.] ? | 12.2-12.6 | kGs |
| remanencja Br [min. - maks.] ? | 1220-1260 | mT |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [min. - maks.] ? | 36-38 | BH max MGOe |
| gęstość energii [min. - maks.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Temperatura Curie TC | 312 - 380 | °C |
| Temperatura Curie TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅cm |
| Siła wyginania | 250 | MPa |
| Wytrzymałość na ściskanie | 1000~1100 | MPa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 10-6 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Symulacja fizyczna magnesu - dane
Przedstawione wartości są rezultat symulacji fizycznej. Wyniki oparte są na modelach dla klasy Nd2Fe14B. Realne parametry mogą odbiegać od wyników symulacji. Prosimy traktować te dane jako punkt odniesienia podczas planowania montażu.
Tabela 1: Siła prostopadła statyczna (siła vs dystans) - wykres oddziaływania
MW 12x2 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg)(gram)(Niuton) | Status ryzyka |
|---|---|---|---|
| 0 mm |
1959 Gs
195.9 mT
|
1.39 kg / 1390.0 g
13.6 N
|
niskie ryzyko |
| 1 mm |
1753 Gs
175.3 mT
|
1.11 kg / 1113.5 g
10.9 N
|
niskie ryzyko |
| 2 mm |
1479 Gs
147.9 mT
|
0.79 kg / 791.7 g
7.8 N
|
niskie ryzyko |
| 3 mm |
1196 Gs
119.6 mT
|
0.52 kg / 518.4 g
5.1 N
|
niskie ryzyko |
| 5 mm |
738 Gs
73.8 mT
|
0.20 kg / 197.4 g
1.9 N
|
niskie ryzyko |
| 10 mm |
229 Gs
22.9 mT
|
0.02 kg / 19.0 g
0.2 N
|
niskie ryzyko |
| 15 mm |
90 Gs
9.0 mT
|
0.00 kg / 2.9 g
0.0 N
|
niskie ryzyko |
| 20 mm |
43 Gs
4.3 mT
|
0.00 kg / 0.7 g
0.0 N
|
niskie ryzyko |
| 30 mm |
14 Gs
1.4 mT
|
0.00 kg / 0.1 g
0.0 N
|
niskie ryzyko |
| 50 mm |
3 Gs
0.3 mT
|
0.00 kg / 0.0 g
0.0 N
|
niskie ryzyko |
Tabela 2: Siła równoległa ześlizgu (pion)
MW 12x2 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg)(gram)(Niuton) |
|---|---|---|
| 0 mm | Stal (~0.2) |
0.28 kg / 278.0 g
2.7 N
|
| 1 mm | Stal (~0.2) |
0.22 kg / 222.0 g
2.2 N
|
| 2 mm | Stal (~0.2) |
0.16 kg / 158.0 g
1.5 N
|
| 3 mm | Stal (~0.2) |
0.10 kg / 104.0 g
1.0 N
|
| 5 mm | Stal (~0.2) |
0.04 kg / 40.0 g
0.4 N
|
| 10 mm | Stal (~0.2) |
0.00 kg / 4.0 g
0.0 N
|
| 15 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
| 20 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
| 30 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
Tabela 3: Siła na ścianie (poślizg) - udźwig wertykalny
MW 12x2 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
0.42 kg / 417.0 g
4.1 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
0.28 kg / 278.0 g
2.7 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
0.14 kg / 139.0 g
1.4 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
0.70 kg / 695.0 g
6.8 N
|
Tabela 4: Efektywność materiałowa (nasycenie) - dobór blachy
MW 12x2 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg) |
|---|---|---|
| 0.5 mm |
|
0.14 kg / 139.0 g
1.4 N
|
| 1 mm |
|
0.35 kg / 347.5 g
3.4 N
|
| 2 mm |
|
0.70 kg / 695.0 g
6.8 N
|
| 5 mm |
|
1.39 kg / 1390.0 g
13.6 N
|
| 10 mm |
|
1.39 kg / 1390.0 g
13.6 N
|
Tabela 5: Wytrzymałość temperaturowa (stabilność) - próg odporności
MW 12x2 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig | Status |
|---|---|---|---|
| 20 °C | 0.0% |
1.39 kg / 1390.0 g
13.6 N
|
OK |
| 40 °C | -2.2% |
1.36 kg / 1359.4 g
13.3 N
|
OK |
| 60 °C | -4.4% |
1.33 kg / 1328.8 g
13.0 N
|
|
| 80 °C | -6.6% |
1.30 kg / 1298.3 g
12.7 N
|
|
| 100 °C | -28.8% |
0.99 kg / 989.7 g
9.7 N
|
Tabela 6: Dwa magnesy (odpychanie) - kolizja pól
MW 12x2 / N38
| Szczelina (mm) | Przyciąganie (kg) (N-S) | Odpychanie (kg) (N-N) |
|---|---|---|
| 0 mm |
2.68 kg / 2676 g
26.3 N
3 435 Gs
|
N/A |
| 1 mm |
2.44 kg / 2438 g
23.9 N
3 739 Gs
|
2.19 kg / 2194 g
21.5 N
~0 Gs
|
| 2 mm |
2.14 kg / 2144 g
21.0 N
3 507 Gs
|
1.93 kg / 1929 g
18.9 N
~0 Gs
|
| 3 mm |
1.83 kg / 1830 g
18.0 N
3 241 Gs
|
1.65 kg / 1647 g
16.2 N
~0 Gs
|
| 5 mm |
1.24 kg / 1243 g
12.2 N
2 671 Gs
|
1.12 kg / 1119 g
11.0 N
~0 Gs
|
| 10 mm |
0.38 kg / 380 g
3.7 N
1 476 Gs
|
0.34 kg / 342 g
3.4 N
~0 Gs
|
| 20 mm |
0.04 kg / 37 g
0.4 N
458 Gs
|
0.03 kg / 33 g
0.3 N
~0 Gs
|
| 50 mm |
0.00 kg / 0 g
0.0 N
47 Gs
|
0.00 kg / 0 g
0.0 N
~0 Gs
|
Tabela 7: Strefy ochronne (implanty) - ostrzeżenia
MW 12x2 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 4.5 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 3.5 cm |
| Zegarek mechaniczny | 20 Gs (2.0 mT) | 3.0 cm |
| Telefon / Smartfon | 40 Gs (4.0 mT) | 2.5 cm |
| Kluczyk samochodowy | 50 Gs (5.0 mT) | 2.0 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 1.0 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 1.0 cm |
Tabela 8: Energia uderzenia (ryzyko pęknięcia) - skutki zderzenia
MW 12x2 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
29.08 km/h
(8.08 m/s)
|
0.06 J | |
| 30 mm |
49.95 km/h
(13.88 m/s)
|
0.16 J | |
| 50 mm |
64.48 km/h
(17.91 m/s)
|
0.27 J | |
| 100 mm |
91.19 km/h
(25.33 m/s)
|
0.55 J |
Tabela 9: Trwałość powłoki antykorozyjnej
MW 12x2 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
Tabela 10: Dane konstrukcyjne (Pc)
MW 12x2 / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 2 665 Mx | 26.7 µWb |
| Współczynnik Pc | 0.25 | Niski (Płaski) |
Tabela 11: Zastosowanie podwodne
MW 12x2 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 1.39 kg | Standard |
| Woda (dno rzeki) |
1.59 kg
(+0.20 kg Zysk z wyporności)
|
+14.5% |
1. Ześlizg (ściana)
*Ważne: Na powierzchni pionowej magnes utrzyma tylko ułamek siły prostopadłej.
2. Nasycenie magnetyczne
*Cienka blacha (np. blacha karoseryjna) znacząco redukuje siłę trzymania.
3. Stabilność termiczna
*Dla standardowych magnesów krytyczny próg to 80°C.
4. Krzywa odmagnesowania i punkt pracy (B-H)
wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 0.25
Powyższy wykres prezentuje charakterystykę magnetyczną materiału w drugim kwadrancie pętli histerezy. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.
Analiza pierwiastkowa
| żelazo (Fe) | 64% – 68% |
| neodym (Nd) | 29% – 32% |
| bor (B) | 1.1% – 1.2% |
| dysproz (Dy) | 0.5% – 2.0% |
| powłoka (Ni-Cu-Ni) | < 0.05% |
Zrównoważony rozwój
| recyklowalność (EoL) | 100% |
| surowce z recyklingu | ~10% (pre-cons) |
| ślad węglowy | low / zredukowany |
| kod odpadu (EWC) | 16 02 16 |
Inne oferty
Zalety i wady neodymowych magnesów Nd2Fe14B.
Korzyści
- Są niezwykle trwałe – przez okres ok. 10 lat tracą maksymalnie ~1% swojej mocy (wg danych).
- Wyróżniają się ogromną odpornością na demagnetyzację, nawet w silnych polach zewnętrznych.
- Łączą moc z estetyką – poprzez niklowanie lub złocenie ich powierzchnia jest refleksyjna i wygląda estetycznie.
- Wyróżniają się bardzo wysoką gęstością pola na powierzchni, co zapewnia mocne przyciąganie nawet małych elementów.
- Odpowiedni skład sprawia, że wykazują odporność na wysokie temperatury (zależnie od kształtu, nawet do 230°C).
- Elastyczność kształtowania – można je wykonać w rozmaitych formach, dopasowanych do konkretnego projektu.
- Występują wszędzie tam, gdzie liczy się precyzja: w napędach, medycynie oraz systemach IT.
- Mały rozmiar, wielka moc – przy niewielkich gabarytach oferują ogromną siłę, co jest kluczowe przy miniaturyzacji.
Minusy
- Delikatność mechaniczna to ich słaba strona. Łatwo ulegają uszkodzeniu przy upadku, dlatego warto stosować osłony lub montaż w stali.
- Wrażliwość na ciepło: przekroczenie 80°C może trwale osłabić magnes (zależnie od wymiarów). Rozwiązaniem są nasze magnesy wysokotemperaturowe [AH].
- Ryzyko korozji: bez osłony magnes zardzewieje na deszczu. Wybierz wersje powlekane tworzywem do zastosowań zewnętrznych.
- Trudności montażowe: zamiast próbować gwintować kruchy magnes, skorzystaj z uchwytów w stalowej obudowie, które posiadają gotowe mocowania.
- Drobne magnesy to ryzyko – połknięcie wymaga interwencji chirurga. Mogą też być problemem przy diagnostyce MRI.
- Nie należą do tanich – ich cena jest wyższa niż ferrytów, co należy uwzględnić przy kalkulacji produkcji.
Parametry udźwigu
Najwyższa nośność magnesu – co ma na to wpływ?
- z zastosowaniem podłoża ze stali o wysokiej przenikalności, działającej jako element zamykający obwód
- której grubość to min. 10 mm
- o idealnie gładkiej powierzchni styku
- przy zerowej szczelinie (brak zanieczyszczeń)
- podczas odrywania w kierunku prostopadłym do powierzchni mocowania
- w temp. ok. 20°C
Udźwig w praktyce – czynniki wpływu
- Dystans – występowanie ciała obcego (farba, taśma, powietrze) działa jak izolator, co obniża moc gwałtownie (nawet o 50% przy 0,5 mm).
- Kierunek siły – parametr katalogowy dotyczy ciągnięcia w pionie. Przy ześlizgiwaniu, magnes wykazuje dużo słabiej (często ok. 20-30% siły maksymalnej).
- Masywność podłoża – za chuda stal nie zamyka strumienia, przez co część mocy marnuje się w powietrzu.
- Typ metalu – różne stopy reaguje tak samo. Wysoka zawartość węgla osłabiają interakcję z magnesem.
- Gładkość podłoża – im równiejsza blacha, tym większa strefa kontaktu i silniejsze trzymanie. Chropowatość działają jak mikroszczeliny.
- Temperatura pracy – spieki NdFeB posiadają wrażliwość na temperaturę. W wyższych temperaturach są słabsze, a w niskich mogą być silniejsze (do pewnej granicy).
Pomiar udźwigu wykonywano na gładkiej blaszce o optymalnej grubości, przy siłach prostopadłych, jednak przy działaniu siły na zsuwanie udźwig jest mniejszy nawet pięć razy. Ponadto, nawet niewielka szczelina pomiędzy powierzchnią magnesu, a blachą zmniejsza nośność.
BHP przy magnesach
Smartfony i tablety
Ważna informacja: magnesy neodymowe wytwarzają pole, które dezorientują elektronikę precyzyjną. Zachowaj bezpieczny dystans od komórki, tabletu i nawigacji.
Interferencja medyczna
Pacjenci z rozrusznikiem serca muszą utrzymać bezpieczną odległość od magnesów. Pole magnetyczne może rozregulować działanie implantu.
Kruchy spiek
Magnesy neodymowe to spiek proszkowy, co oznacza, że są łamliwe jak szkło. Upadek dwóch magnesów spowoduje ich rozkruszenie na drobne kawałki.
Ryzyko zmiażdżenia
Chroń dłonie. Dwa duże magnesy złączą się z ogromną prędkością z siłą wielu ton, niszcząc wszystko na swojej drodze. Zachowaj ekstremalną uwagę!
Zakaz zabawy
Zawsze zabezpiecz magnesy przed najmłodszymi. Ryzyko zadławienia jest bardzo duże, a skutki połączenia się magnesów wewnątrz organizmu są nieodwracalne.
Ryzyko uczulenia
Badania wskazują, że powłoka niklowa (standardowe zabezpieczenie magnesów) jest silnym alergenem. Jeśli jesteś alergikiem, wystrzegaj się trzymania magnesów gołą dłonią lub wybierz wersje w obudowie plastikowej.
Temperatura pracy
Monitoruj warunki termiczne. Podgrzanie magnesu powyżej 80 stopni Celsjusza trwale osłabi jego strukturę magnetyczną i siłę przyciągania.
Urządzenia elektroniczne
Unikaj zbliżania magnesów do portfela, komputera czy ekranu. Magnes może nieodwracalnie zepsuć te urządzenia oraz wymazać paski magnetyczne z kart.
Pył jest łatwopalny
Ryzyko wybuchu: Pył neodymowy jest wysoce łatwopalny. Nie poddawaj magnesów obróbce amatorsko, gdyż grozi to zapłonem.
Bezpieczna praca
Bądź ostrożny. Magnesy neodymowe przyciągają z dużej odległości i łączą się z ogromną siłą, często gwałtowniej niż jesteś w stanie przewidzieć.
