Neodymy – szeroki wybór kształtów

Potrzebujesz silnego pola magnetycznego? Posiadamy w sprzedaży bogatą gamę magnesów płytkowych, walcowych i pierścieniowych. To najlepszy wybór do zastosowań domowych, warsztatu oraz zadań przemysłowych. Sprawdź naszą ofertę dostępne od ręki.

poznaj cennik i wymiary

Magnet fishing: mocne zestawy F200/F400

Zacznij swoje hobby związaną z eksploracją dna! Nasze uchwyty z dwoma uchwytami (F200, F400) to gwarancja bezpieczeństwa i ogromnego udźwigu. Solidna, antykorozyjna obudowa oraz mocne linki sprawdzą się w każdej wodzie.

wybierz swój magnes do wody

Mocowania magnetyczne dla przemysłu

Niezawodne rozwiązania do montażu bez wiercenia. Uchwyty z gwintem (zewnętrznym lub wewnętrznym) zapewniają błyskawiczną organizację pracy na magazynach. Są niezastąpione przy instalacji lamp, czujników oraz reklam.

sprawdź parametry techniczne

🚀 Ekspresowa realizacja: zamówienia do 14:00 wysyłamy od ręki!

Dhit sp. z o.o.
Produkt dostępny Wysyłamy jutro

MW 12x2 / N38 - magnes neodymowy walcowy

magnes neodymowy walcowy

Numer katalogowy 010017

GTIN/EAN: 5906301810162

5.00

Średnica Ø

12 mm [±0,1 mm]

Wysokość

2 mm [±0,1 mm]

Waga

1.7 g

Kierunek magnesowania

↑ osiowy

Udźwig

1.39 kg / 13.66 N

Indukcja magnetyczna

195.97 mT / 1960 Gs

Powłoka

[NiCuNi] nikiel

1.132 z VAT / szt. + cena za transport

0.920 ZŁ netto + 23% VAT / szt.

upusty ilościowe:

Potrzebujesz więcej?

cena od 1 szt.
0.920 ZŁ
1.132 ZŁ
cena od 700 szt.
0.865 ZŁ
1.064 ZŁ
cena od 2800 szt.
0.810 ZŁ
0.996 ZŁ
Chcesz skonsultować wybór?

Skontaktuj się z nami telefonicznie +48 888 99 98 98 lub skontaktuj się przez formularz zgłoszeniowy na stronie kontakt.
Masę i budowę magnesu skontrolujesz w naszym kalkulatorze magnetycznym.

Realizacja tego samego dnia przy zamówieniu do 14:00.

Specyfikacja - MW 12x2 / N38 - magnes neodymowy walcowy

Specyfikacja / charakterystyka - MW 12x2 / N38 - magnes neodymowy walcowy

właściwości
właściwości wartości
Nr kat. 010017
GTIN/EAN 5906301810162
Produkcja/Dystrybucja Dhit sp. z o.o.
ul. Zielona 14 05-850 Ożarów Mazowiecki PL
Kraj pochodzenia Polska / Chiny / Niemcy
Kod celny 85059029
Średnica Ø 12 mm [±0,1 mm]
Wysokość 2 mm [±0,1 mm]
Waga 1.7 g
Kierunek magnesowania ↑ osiowy
Udźwig ~ ? 1.39 kg / 13.66 N
Indukcja magnetyczna ~ ? 195.97 mT / 1960 Gs
Powłoka [NiCuNi] nikiel
Tolerancja wykonania ±0.1 mm

Własności magnetyczne materiału N38

Specyfikacja / charakterystyka MW 12x2 / N38 - magnes neodymowy walcowy
właściwości wartości jednostki
remanencja Br [min. - maks.] ? 12.2-12.6 kGs
remanencja Br [min. - maks.] ? 1220-1260 mT
koercja bHc ? 10.8-11.5 kOe
koercja bHc ? 860-915 kA/m
faktyczna wewnętrzna siła iHc ≥ 12 kOe
faktyczna wewnętrzna siła iHc ≥ 955 kA/m
gęstość energii [min. - maks.] ? 36-38 BH max MGOe
gęstość energii [min. - maks.] ? 287-303 BH max KJ/m
max. temperatura ? ≤ 80 °C

Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C

Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
właściwości wartości jednostki
Twardość Vickersa ≥550 Hv
Gęstość ≥7.4 g/cm3
Temperatura Curie TC 312 - 380 °C
Temperatura Curie TF 593 - 716 °F
Specyficzna oporność 150 μΩ⋅cm
Siła wyginania 250 MPa
Wytrzymałość na ściskanie 1000~1100 MPa
Rozszerzenie termiczne równoległe (∥) do orientacji (M) (3-4) x 10-6 °C-1
Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) -(1-3) x 10-6 °C-1
Moduł Younga 1.7 x 104 kg/mm²

Analiza fizyczna magnesu - parametry techniczne

Przedstawione wartości stanowią bezpośredni efekt symulacji fizycznej. Wyniki bazują na algorytmach dla klasy Nd2Fe14B. Rzeczywiste osiągi mogą nieznacznie odbiegać od wyników symulacji. Prosimy traktować te wyliczenia jako pomoc pomocniczą przy projektowaniu systemów.

Tabela 1: Siła prostopadła statyczna (siła vs odległość) - wykres oddziaływania
MW 12x2 / N38

Dystans (mm) Indukcja (Gauss) / mT Udźwig (kg/lbs/g/N) Status ryzyka
0 mm 1959 Gs
195.9 mT
1.39 kg / 3.06 lbs
1390.0 g / 13.6 N
niskie ryzyko
1 mm 1753 Gs
175.3 mT
1.11 kg / 2.45 lbs
1113.5 g / 10.9 N
niskie ryzyko
2 mm 1479 Gs
147.9 mT
0.79 kg / 1.75 lbs
791.7 g / 7.8 N
niskie ryzyko
3 mm 1196 Gs
119.6 mT
0.52 kg / 1.14 lbs
518.4 g / 5.1 N
niskie ryzyko
5 mm 738 Gs
73.8 mT
0.20 kg / 0.44 lbs
197.4 g / 1.9 N
niskie ryzyko
10 mm 229 Gs
22.9 mT
0.02 kg / 0.04 lbs
19.0 g / 0.2 N
niskie ryzyko
15 mm 90 Gs
9.0 mT
0.00 kg / 0.01 lbs
2.9 g / 0.0 N
niskie ryzyko
20 mm 43 Gs
4.3 mT
0.00 kg / 0.00 lbs
0.7 g / 0.0 N
niskie ryzyko
30 mm 14 Gs
1.4 mT
0.00 kg / 0.00 lbs
0.1 g / 0.0 N
niskie ryzyko
50 mm 3 Gs
0.3 mT
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
niskie ryzyko

Tabela 2: Siła równoległa obsunięcia (pion)
MW 12x2 / N38

Dystans (mm) Współczynnik tarcia Udźwig (kg/lbs/g/N)
0 mm Stal (~0.2) 0.28 kg / 0.61 lbs
278.0 g / 2.7 N
1 mm Stal (~0.2) 0.22 kg / 0.49 lbs
222.0 g / 2.2 N
2 mm Stal (~0.2) 0.16 kg / 0.35 lbs
158.0 g / 1.5 N
3 mm Stal (~0.2) 0.10 kg / 0.23 lbs
104.0 g / 1.0 N
5 mm Stal (~0.2) 0.04 kg / 0.09 lbs
40.0 g / 0.4 N
10 mm Stal (~0.2) 0.00 kg / 0.01 lbs
4.0 g / 0.0 N
15 mm Stal (~0.2) 0.00 kg / 0.00 lbs
0.0 g / 0.0 N
20 mm Stal (~0.2) 0.00 kg / 0.00 lbs
0.0 g / 0.0 N
30 mm Stal (~0.2) 0.00 kg / 0.00 lbs
0.0 g / 0.0 N
50 mm Stal (~0.2) 0.00 kg / 0.00 lbs
0.0 g / 0.0 N

Tabela 3: Siła na ścianie (poślizg) - udźwig wertykalny
MW 12x2 / N38

Rodzaj powierzchni Współczynnik tarcia / % Mocy Maks. ciężar (kg/lbs/g/N)
Stal surowa
µ = 0.3 30% Nominalnej Siły
0.42 kg / 0.92 lbs
417.0 g / 4.1 N
Stal malowana (standard)
µ = 0.2 20% Nominalnej Siły
0.28 kg / 0.61 lbs
278.0 g / 2.7 N
Stal tłusta/śliska
µ = 0.1 10% Nominalnej Siły
0.14 kg / 0.31 lbs
139.0 g / 1.4 N
Magnes z gumą antypoślizgową
µ = 0.5 50% Nominalnej Siły
0.70 kg / 1.53 lbs
695.0 g / 6.8 N

Tabela 4: Grubość stali (wpływ podłoża) - dobór blachy
MW 12x2 / N38

Grubość blachy (mm) % mocy Realny udźwig (kg/lbs/g/N)
0.5 mm
10%
0.14 kg / 0.31 lbs
139.0 g / 1.4 N
1 mm
25%
0.35 kg / 0.77 lbs
347.5 g / 3.4 N
2 mm
50%
0.70 kg / 1.53 lbs
695.0 g / 6.8 N
3 mm
75%
1.04 kg / 2.30 lbs
1042.5 g / 10.2 N
5 mm
100%
1.39 kg / 3.06 lbs
1390.0 g / 13.6 N
10 mm
100%
1.39 kg / 3.06 lbs
1390.0 g / 13.6 N
11 mm
100%
1.39 kg / 3.06 lbs
1390.0 g / 13.6 N
12 mm
100%
1.39 kg / 3.06 lbs
1390.0 g / 13.6 N

Tabela 5: Wytrzymałość temperaturowa (zachowanie materiału) - limit termiczny
MW 12x2 / N38

Temp. otoczenia (°C) Strata mocy Pozostały udźwig (kg/lbs/g/N) Status
20 °C 0.0% 1.39 kg / 3.06 lbs
1390.0 g / 13.6 N
OK
40 °C -2.2% 1.36 kg / 3.00 lbs
1359.4 g / 13.3 N
OK
60 °C -4.4% 1.33 kg / 2.93 lbs
1328.8 g / 13.0 N
80 °C -6.6% 1.30 kg / 2.86 lbs
1298.3 g / 12.7 N
100 °C -28.8% 0.99 kg / 2.18 lbs
989.7 g / 9.7 N

Tabela 6: Dwa magnesy (odpychanie) - kolizja pól
MW 12x2 / N38

Szczelina (mm) Przyciąganie (kg/lbs) (N-S) Opór ścinania (kg/lbs/g/N) Odpychanie (kg/lbs) (N-N)
0 mm 2.68 kg / 5.90 lbs
3 435 Gs
0.40 kg / 0.88 lbs
401 g / 3.9 N
N/A
1 mm 2.44 kg / 5.37 lbs
3 739 Gs
0.37 kg / 0.81 lbs
366 g / 3.6 N
2.19 kg / 4.84 lbs
~0 Gs
2 mm 2.14 kg / 4.73 lbs
3 507 Gs
0.32 kg / 0.71 lbs
322 g / 3.2 N
1.93 kg / 4.25 lbs
~0 Gs
3 mm 1.83 kg / 4.04 lbs
3 241 Gs
0.27 kg / 0.61 lbs
275 g / 2.7 N
1.65 kg / 3.63 lbs
~0 Gs
5 mm 1.24 kg / 2.74 lbs
2 671 Gs
0.19 kg / 0.41 lbs
187 g / 1.8 N
1.12 kg / 2.47 lbs
~0 Gs
10 mm 0.38 kg / 0.84 lbs
1 476 Gs
0.06 kg / 0.13 lbs
57 g / 0.6 N
0.34 kg / 0.75 lbs
~0 Gs
20 mm 0.04 kg / 0.08 lbs
458 Gs
0.01 kg / 0.01 lbs
5 g / 0.1 N
0.03 kg / 0.07 lbs
~0 Gs
50 mm 0.00 kg / 0.00 lbs
47 Gs
0.00 kg / 0.00 lbs
0 g / 0.0 N
0.00 kg / 0.00 lbs
~0 Gs
60 mm 0.00 kg / 0.00 lbs
28 Gs
0.00 kg / 0.00 lbs
0 g / 0.0 N
0.00 kg / 0.00 lbs
~0 Gs
70 mm 0.00 kg / 0.00 lbs
18 Gs
0.00 kg / 0.00 lbs
0 g / 0.0 N
0.00 kg / 0.00 lbs
~0 Gs
80 mm 0.00 kg / 0.00 lbs
13 Gs
0.00 kg / 0.00 lbs
0 g / 0.0 N
0.00 kg / 0.00 lbs
~0 Gs
90 mm 0.00 kg / 0.00 lbs
9 Gs
0.00 kg / 0.00 lbs
0 g / 0.0 N
0.00 kg / 0.00 lbs
~0 Gs
100 mm 0.00 kg / 0.00 lbs
7 Gs
0.00 kg / 0.00 lbs
0 g / 0.0 N
0.00 kg / 0.00 lbs
~0 Gs

Tabela 7: Strefy ochronne (elektronika) - środki ostrożności
MW 12x2 / N38

Obiekt / Urządzenie Limit (Gauss) / mT Bezpieczny dystans
Rozrusznik serca 5 Gs (0.5 mT) 4.5 cm
Implant słuchowy 10 Gs (1.0 mT) 3.5 cm
Zegarek mechaniczny 20 Gs (2.0 mT) 3.0 cm
Telefon / Smartfon 40 Gs (4.0 mT) 2.5 cm
Pilot do auta 50 Gs (5.0 mT) 2.0 cm
Karta płatnicza 400 Gs (40.0 mT) 1.0 cm
Dysk twardy HDD 600 Gs (60.0 mT) 1.0 cm

Tabela 8: Zderzenia (ryzyko pęknięcia) - ostrzeżenie
MW 12x2 / N38

Start z (mm) Prędkość (km/h) Energia (J) Przewidywany skutek
10 mm 29.08 km/h
(8.08 m/s)
0.06 J
30 mm 49.95 km/h
(13.88 m/s)
0.16 J
50 mm 64.48 km/h
(17.91 m/s)
0.27 J
100 mm 91.19 km/h
(25.33 m/s)
0.55 J

Tabela 9: Parametry powłoki (trwałość)
MW 12x2 / N38

Parametr techniczny Wartość / opis
Rodzaj powłoki [NiCuNi] nikiel
Struktura warstw Nikiel - Miedź - Nikiel
Grubość warstwy 10-20 µm
Test mgły solnej (SST) ? 24 h
Zalecane środowisko Tylko wnętrza (sucho)

Tabela 10: Dane konstrukcyjne (Strumień)
MW 12x2 / N38

Parametr Wartość Jedn. SI / Opis
Strumień (Flux) 2 665 Mx 26.7 µWb
Współczynnik Pc 0.25 Niski (Płaski)

Tabela 11: Fizyka poszukiwań podwodnych
MW 12x2 / N38

Środowisko Efektywny udźwig stali Efekt
Powietrze (ląd) 1.39 kg Standard
Woda (dno rzeki) 1.59 kg
(+0.20 kg zysk z wyporności)
+14.5%
Ostrzeżenie: Standardowy nikiel wymaga osuszenia po każdym kontakcie z wilgocią; brak konserwacji doprowadzi do powstania ognisk rdzy.
1. Udźwig w pionie

*Pamiętaj: Na pionowej ścianie magnes zachowa jedynie ułamek siły oderwania.

2. Wpływ grubości blachy

*Zbyt cienki metal (np. obudowa PC 0.5mm) znacząco ogranicza udźwig magnesu.

3. Spadek mocy w temperaturze

*Dla standardowych magnesów krytyczny próg to 80°C.

4. Krzywa odmagnesowania i punkt pracy (B-H)

wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 0.25

Niniejsza symulacja obrazuje stabilność magnetyczną wybranego magnesu w konkretnych warunkach geometrycznych. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.

Dane techniczne i środowiskowe
Specyfikacja materiałowa
żelazo (Fe) 64% – 68%
neodym (Nd) 29% – 32%
bor (B) 1.1% – 1.2%
dysproz (Dy) 0.5% – 2.0%
powłoka (Ni-Cu-Ni) < 0.05%
Ekologia i recykling (GPSR)
recyklowalność (EoL) 100%
surowce z recyklingu ~10% (pre-cons)
ślad węglowy low / zredukowany
kod odpadu (EWC) 16 02 16
Karta bezpieczeństwa (GPSR)
podmiot odpowiedzialny
Dhit sp. z o.o.
ul. Kościuszki 6A, 05-850 Ożarów Mazowiecki
tel: +48 22 499 98 98 | e-mail: bok@dhit.pl
numer partii/typ
id: 010017-2026
Kalkulator miar
Udźwig magnesu

Indukcja magnetyczna

Inne propozycje

Oferowany produkt to wyjątkowo silny magnes w kształcie walca, który został wykonany z trwałego materiału NdFeB, co przy wymiarach Ø12x2 mm gwarantuje optymalną moc. Komponent MW 12x2 / N38 cechuje się dokładnością ±0,1mm oraz przemysłową jakością wykonania, dzięki czemu jest to rozwiązanie idealne dla najbardziej wymagających inżynierów i konstruktorów. Jako magnes cylindryczny o dużej sile (ok. 1.39 kg), produkt ten jest dostępny od ręki z naszego magazynu w Polsce, co zapewnia błyskawiczną realizację zamówienia. Ponadto, jego trójwarstwowa powłoka Ni-Cu-Ni chroni go przed korozją w typowych warunkach pracy, gwarantując estetyczny wygląd i trwałość przez lata.
Ten model jest stworzony do budowy silników elektrycznych, zaawansowanych sensorów Halla oraz wydajnych separatorów magnetycznych, gdzie liczy się maksymalna indukcja na małej powierzchni. Dzięki sile przyciągania 13.66 N przy wadze zaledwie 1.7 g, ten walec jest niezastąpiony w miniaturowych urządzeniach oraz wszędzie tam, gdzie kluczowa jest niska waga.
Ponieważ nasze magnesy mają tolerancję ±0,1mm, najlepszą metodą jest wklejanie ich w otwory o średnicy minimalnie większej (np. 12,1 mm) przy użyciu klejów epoksydowych. Dla zapewnienia stabilności w automatyce, stosuje się żywice anaerobowe, które są bezpieczne dla niklu i wypełniają szczelinę, gwarantując wysoką powtarzalność połączenia.
Klasa N38 to najpopularniejszy standard dla przemysłowych magnesów neodymowych, oferujący świetny balans ekonomiczny oraz wysoką odporność na demagnetyzację. Jeśli potrzebujesz jeszcze mocniejszych magnesów w tej samej objętości (Ø12x2), skontaktuj się z nami w sprawie wyższych klas (np. N50, N52), jednak N38 jest standardem w ciągłej sprzedaży w naszym sklepie.
Model ten charakteryzuje się wymiarami Ø12x2 mm, co przy wadze 1.7 g czyni go elementem o wysokiej gęstości energii magnetycznej. Kluczowym parametrem jest tutaj siła trzymania wynoszący około 1.39 kg (siła ~13.66 N), co przy tak określonych wymiarach świadczy o wysokiej klasie materiału NdFeB. Produkt posiada powłokę [NiCuNi], która zabezpiecza go przed utlenianiem, nadając mu estetyczny, srebrzysty połysk.
Standardowo oś magnetyczna przebiega przez środek walca, sprawiając, że największa siła przyciągania występuje na podstawach o średnicy 12 mm. Taki układ jest najbardziej pożądany przy łączeniu magnesów w stosy (np. w filtrach) lub przy montażu w gniazdach na dnie otworu. Na zamówienie możemy wykonać również wersje magnesowane po średnicy, jeśli Twój projekt tego wymaga.

Zalety oraz wady neodymowych magnesów Nd2Fe14B.

Korzyści

Magnesy neodymowe to nie tylko siła, ale także inne kluczowe cechy, takie jak::
  • Długowieczność to ich atut – po upływie 10 lat spadek mocy wynosi zaledwie ~1% (wg testów).
  • Inne źródła magnetyzmu nie powodują ich utraty mocy – posiadają dużą zdolność koercji.
  • Dzięki powłoce (NiCuNi, Au, Ag) mają nowoczesny, błyszczący wygląd.
  • Cechują się bardzo wysoką gęstością pola na powierzchni, co umożliwia silne chwytanie z dużą mocą.
  • Wykazują imponującą wytrzymałość termiczną, co pozwala na ich stosowanie w warunkach do 230°C (dotyczy odpowiednich serii).
  • Możliwość uzyskania złożonych kształtów sprawia, że są idealne do nietypowych zastosowań.
  • Stanowią kluczowy element w innowacjach, zasilając silniki, sprzęt szpitalny czy elektronikę użytkową.
  • Potęga w małej formie – ich mała masa nie przeszkadza w generowaniu dużej siły przyciągania.

Ograniczenia

Czego unikać? Wady i zagrożenia związane z neodymami:
  • Ze względu na brak elastyczności, trzeba się z nimi obchodzić delikatnie. Silne uderzenie może je zniszczyć, stąd rekomendacja stosowania osłon.
  • Wrażliwość na ciepło: przekroczenie 80°C może trwale osłabić magnes (zależnie od bryły). Rozwiązaniem są nasze magnesy wysokotemperaturowe [AH].
  • Podatność na wilgoć skutkuje utlenianiem. Do zadań zewnętrznych sugerujemy wyłącznie magnesy w pełnej izolacji (plastik/guma).
  • Magnesy ciężko się obrabia – do montażu śrubowego przeznaczone są specjalne uchwyty magnetyczne z wbudowanym gwintem.
  • Drobne magnesy to ryzyko – połknięcie wymaga interwencji chirurga. Mogą też być problemem przy badaniach lekarskich.
  • Cena – są bardziej kosztowne niż magnesy ferrytowe, co przy wielkich nakładach może być barierą.

Analiza siły trzymania

Optymalny udźwig magnesu neodymowegood czego zależy?

Podany w tabeli udźwig jest wynikiem testu laboratoryjnego przeprowadzonego w specyficznych, idealnych warunkach:
  • przy zastosowaniu zwory ze specjalnej stali pomiarowej, gwarantującej pełne nasycenie magnetyczne
  • o przekroju przynajmniej 10 mm
  • o idealnie gładkiej powierzchni kontaktu
  • przy bezpośrednim styku (bez farby)
  • przy prostopadłym kierunku działania siły (kąt 90 stopni)
  • przy temperaturze ok. 20 stopni Celsjusza

Co wpływa na udźwig w praktyce

Na realną siłę wpływają konkretne warunki, takie jak (od priorytetowych):
  • Szczelina – występowanie jakiejkolwiek warstwy (rdza, brud, szczelina) działa jak izolator, co obniża udźwig gwałtownie (nawet o 50% przy 0,5 mm).
  • Wektor obciążenia – największą siłę mamy tylko przy ciągnięciu pod kątem 90°. Siła potrzebna do przesunięcia magnesu po blasze jest z reguły wielokrotnie mniejsza (ok. 1/5 udźwigu).
  • Grubość podłoża – dla pełnej efektywności, stal musi być odpowiednio gruba. Blacha "papierowa" ogranicza siłę przyciągania (magnes „przebija” ją na wylot).
  • Rodzaj stali – stal niskowęglowa daje najlepsze rezultaty. Stale stopowe zmniejszają przenikalność magnetyczną i siłę trzymania.
  • Gładkość – idealny styk uzyskamy tylko na gładkiej stali. Chropowata faktura tworzą poduszki powietrzne, osłabiając magnes.
  • Warunki termiczne – spieki NdFeB posiadają wrażliwość na temperaturę. Gdy jest gorąco są słabsze, a w niskich zyskują na sile (do pewnej granicy).

Udźwig określano z wykorzystaniem gładkiej blachy o optymalnej grubości (min. 20 mm), przy siłach działających pionowo, natomiast przy siłach działających równolegle siła trzymania jest mniejsza nawet pięciokrotnie. Ponadto, nawet minimalna przerwa pomiędzy magnesem, a blachą redukuje udźwig.

Zasady bezpieczeństwa pracy z magnesami neodymowymi
Nie dawać dzieciom

Koniecznie zabezpiecz magnesy przed dostępem dzieci. Ryzyko zadławienia jest wysokie, a konsekwencje zwarcia magnesów wewnątrz organizmu są tragiczne.

Poważne obrażenia

Uważaj na palce. Dwa duże magnesy złączą się z ogromną prędkością z siłą kilkuset kilogramów, niszcząc wszystko na swojej drodze. Bądź ostrożny!

Ryzyko pęknięcia

Spieki NdFeB to spiek proszkowy, co oznacza, że są bardzo kruche. Zderzenie dwóch magnesów wywoła ich rozpryśnięcie na drobne kawałki.

Zagrożenie zapłonem

Proszek powstający podczas szlifowania magnesów jest łatwopalny. Nie wierć w magnesach bez odpowiedniego chłodzenia i wiedzy.

Uwaga medyczna

Ostrzeżenie dla sercowców: Promieniowanie magnetyczne zakłóca elektronikę medyczną. Zachowaj co najmniej 30 cm odstępu lub zleć komuś innemu pracę z magnesów.

Nie lekceważ mocy

Postępuj ostrożnie. Magnesy neodymowe działają z daleka i łączą się z impetem, często gwałtowniej niż zdążysz zareagować.

Dla uczulonych

Badania wskazują, że nikiel (typowe wykończenie magnesów) jest częstą przyczyną uczuleń. Jeśli masz uczulenie, unikaj kontaktu skóry z metalem lub zakup magnesy powlekane tworzywem.

Limity termiczne

Kontroluj ciepło. Ekspozycja magnesu na wysoką temperaturę trwale osłabi jego domenę magnetyczną i siłę przyciągania.

Smartfony i tablety

Urządzenia nawigacyjne są wyjątkowo wrażliwe na wpływ magnesów. Bezpośredni kontakt z silnym magnesem może zniszczyć sensory w Twoim telefonie.

Pole magnetyczne a elektronika

Unikaj zbliżania magnesów do dokumentów, laptopa czy ekranu. Pole magnetyczne może trwale uszkodzić te urządzenia oraz wymazać paski magnetyczne z kart.

Bezpieczeństwo! Więcej informacji o zagrożeniach w artykule: Niebezpieczeństwo pracy z magnesem.
Dhit sp. z o.o.

e-mail: bok@dhit.pl

tel: +48 888 99 98 98