MW 12x1 / N38 - magnes neodymowy walcowy
magnes neodymowy walcowy
Numer katalogowy 010015
GTIN: 5906301810148
Średnica Ø
12 mm [±0,1 mm]
Wysokość
1 mm [±0,1 mm]
Waga
0.85 g
Kierunek magnesowania
↑ osiowy
Udźwig
0.42 kg / 4.15 N
Indukcja magnetyczna
101.90 mT / 1019 Gs
Powłoka
[NiCuNi] nikiel
0.578 ZŁ z VAT / szt. + cena za transport
0.470 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?Potrzebujesz porady?
Zadzwoń do nas
+48 22 499 98 98
ewentualnie pisz poprzez
formularz zapytania
na stronie kontaktowej.
Masę oraz budowę elementów magnetycznych zobaczysz w naszym
kalkulatorze mocy.
Zamówienia złożone przed 14:00 realizujemy jeszcze dziś!
MW 12x1 / N38 - magnes neodymowy walcowy
Specyfikacja / charakterystyka MW 12x1 / N38 - magnes neodymowy walcowy
| właściwości | wartości |
|---|---|
| Nr kat. | 010015 |
| GTIN | 5906301810148 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Średnica Ø | 12 mm [±0,1 mm] |
| Wysokość | 1 mm [±0,1 mm] |
| Waga | 0.85 g |
| Kierunek magnesowania | ↑ osiowy |
| Udźwig ~ ? | 0.42 kg / 4.15 N |
| Indukcja magnetyczna ~ ? | 101.90 mT / 1019 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [Min. - Max.] ? | 12.2-12.6 | kGs |
| remanencja Br [Min. - Max.] ? | 1220-1260 | T |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [Min. - Max.] ? | 36-38 | BH max MGOe |
| gęstość energii [Min. - Max.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Curie Temperatura TC | 312 - 380 | °C |
| Curie Temperatura TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅Cm |
| Siła wyginania | 250 | Mpa |
| Wytrzymałość na ściskanie | 1000~1100 | Mpa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 106 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Analiza techniczna magnesu - parametry techniczne
Przedstawione wartości są wynik symulacji matematycznej. Wyniki bazują na algorytmach dla materiału NdFeB. Realne warunki mogą różnić się od wartości teoretycznych. Traktuj te wyliczenia jako wstępny drogowskaz podczas planowania montażu.
MW 12x1 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg) | Status ryzyka |
|---|---|---|---|
| 0 mm |
1019 Gs
101.9 mT
|
0.42 kg / 420.0 g
4.1 N
|
słaby uchwyt |
| 1 mm |
941 Gs
94.1 mT
|
0.36 kg / 358.5 g
3.5 N
|
słaby uchwyt |
| 2 mm |
812 Gs
81.2 mT
|
0.27 kg / 266.8 g
2.6 N
|
słaby uchwyt |
| 3 mm |
666 Gs
66.6 mT
|
0.18 kg / 179.7 g
1.8 N
|
słaby uchwyt |
| 5 mm |
415 Gs
41.5 mT
|
0.07 kg / 69.7 g
0.7 N
|
słaby uchwyt |
| 10 mm |
126 Gs
12.6 mT
|
0.01 kg / 6.5 g
0.1 N
|
słaby uchwyt |
| 15 mm |
49 Gs
4.9 mT
|
0.00 kg / 1.0 g
0.0 N
|
słaby uchwyt |
| 20 mm |
23 Gs
2.3 mT
|
0.00 kg / 0.2 g
0.0 N
|
słaby uchwyt |
| 30 mm |
7 Gs
0.7 mT
|
0.00 kg / 0.0 g
0.0 N
|
słaby uchwyt |
| 50 mm |
2 Gs
0.2 mT
|
0.00 kg / 0.0 g
0.0 N
|
słaby uchwyt |
MW 12x1 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg) |
|---|---|---|
| 0 mm | Stal (~0.2) |
0.08 kg / 84.0 g
0.8 N
|
| 1 mm | Stal (~0.2) |
0.07 kg / 72.0 g
0.7 N
|
| 2 mm | Stal (~0.2) |
0.05 kg / 54.0 g
0.5 N
|
| 3 mm | Stal (~0.2) |
0.04 kg / 36.0 g
0.4 N
|
| 5 mm | Stal (~0.2) |
0.01 kg / 14.0 g
0.1 N
|
| 10 mm | Stal (~0.2) |
0.00 kg / 2.0 g
0.0 N
|
| 15 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
| 20 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
| 30 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
MW 12x1 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
0.13 kg / 126.0 g
1.2 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
0.08 kg / 84.0 g
0.8 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
0.04 kg / 42.0 g
0.4 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
0.21 kg / 210.0 g
2.1 N
|
MW 12x1 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg) |
|---|---|---|
| 0.5 mm |
|
0.04 kg / 42.0 g
0.4 N
|
| 1 mm |
|
0.11 kg / 105.0 g
1.0 N
|
| 2 mm |
|
0.21 kg / 210.0 g
2.1 N
|
| 5 mm |
|
0.42 kg / 420.0 g
4.1 N
|
| 10 mm |
|
0.42 kg / 420.0 g
4.1 N
|
MW 12x1 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig | Status |
|---|---|---|---|
| 20 °C | 0.0% |
0.42 kg / 420.0 g
4.1 N
|
OK |
| 40 °C | -2.2% |
0.41 kg / 410.8 g
4.0 N
|
OK |
| 60 °C | -4.4% |
0.40 kg / 401.5 g
3.9 N
|
|
| 80 °C | -6.6% |
0.39 kg / 392.3 g
3.8 N
|
|
| 100 °C | -28.8% |
0.30 kg / 299.0 g
2.9 N
|
MW 12x1 / N38
| Szczelina (mm) | Przyciąganie (kg) (N-S) | Odpychanie (kg) (N-N) |
|---|---|---|
| 0 mm |
0.72 kg / 724 g
7.1 N
1 959 Gs
|
N/A |
| 1 mm |
0.68 kg / 682 g
6.7 N
1 978 Gs
|
0.61 kg / 614 g
6.0 N
~0 Gs
|
| 2 mm |
0.62 kg / 618 g
6.1 N
1 883 Gs
|
0.56 kg / 556 g
5.5 N
~0 Gs
|
| 3 mm |
0.54 kg / 541 g
5.3 N
1 762 Gs
|
0.49 kg / 487 g
4.8 N
~0 Gs
|
| 5 mm |
0.38 kg / 381 g
3.7 N
1 479 Gs
|
0.34 kg / 343 g
3.4 N
~0 Gs
|
| 10 mm |
0.12 kg / 120 g
1.2 N
830 Gs
|
0.11 kg / 108 g
1.1 N
~0 Gs
|
| 20 mm |
0.01 kg / 11 g
0.1 N
253 Gs
|
0.01 kg / 10 g
0.1 N
~0 Gs
|
| 50 mm |
0.00 kg / 0 g
0.0 N
25 Gs
|
0.00 kg / 0 g
0.0 N
~0 Gs
|
MW 12x1 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 3.5 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 3.0 cm |
| Zegarek mechaniczny | 20 Gs (2.0 mT) | 2.5 cm |
| Telefon / Smartfon | 40 Gs (4.0 mT) | 2.0 cm |
| Kluczyk samochodowy | 50 Gs (5.0 mT) | 1.5 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 1.0 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 0.5 cm |
MW 12x1 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
22.63 km/h
(6.29 m/s)
|
0.02 J | |
| 30 mm |
38.83 km/h
(10.79 m/s)
|
0.05 J | |
| 50 mm |
50.13 km/h
(13.92 m/s)
|
0.08 J | |
| 100 mm |
70.89 km/h
(19.69 m/s)
|
0.16 J |
MW 12x1 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
MW 12x1 / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 1 564 Mx | 15.6 µWb |
| Współczynnik Pc | 0.13 | Niski (Płaski) |
MW 12x1 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 0.42 kg | Standard |
| Woda (dno rzeki) |
0.48 kg
(+0.06 kg Zysk z wyporności)
|
+14.5% |
1. Montaż na Ścianie (Ześlizg)
*Uwaga: Na pionowej ścianie magnes utrzyma tylko ok. 20-30% tego co na suficie.
2. Wpływ Grubości Blachy
*Cienka blacha (np. obudowa PC 0.5mm) drastycznie osłabia magnes.
3. Wytrzymałość Temperaturowa
*Dla materiału N38 granica bezpieczeństwa to 80°C.
Jak rozdzielać?
Nie próbuj odrywać magnesów siłą!
Zawsze zsuwaj je na bok krawędzi stołu.
Elektronika
Trzymaj z dala od dysków HDD, kart płatniczych i telefonów.
Rozruszniki Serca
Osoby z rozrusznikiem muszą zachować dystans min. 10 cm.
Nie dla dzieci
Ryzyko połknięcia. Połknięcie dwóch magnesów grozi śmiercią.
Kruchy materiał
Magnes to ceramika! Uderzenie o inny magnes spowoduje odpryski.
Do czego użyć tego magnesu?
Sprawdzone zastosowania dla wymiaru 15x10x2 mm
Elektronika i Czujniki
Idealny jako element wyzwalający dla czujników Halla oraz kontaktronów w systemach alarmowych. Płaski kształt (2mm) pozwala na ukrycie go w wąskich szczelinach obudowy.
Modelarstwo i Druk 3D
Stosowany do tworzenia niewidocznych zamknięć w modelach drukowanych 3D. Można go wprasować w wydruk lub wkleić w kieszeń zaprojektowaną w modelu CAD.
Meble i Fronty
Używany jako "domykacz" lekkich drzwiczek szafkowych, gdzie standardowe magnesy meblowe są za grube. Wymaga wklejenia w płytkie podfrezowanie.
Zobacz też inne oferty
Wady oraz zalety magnesów neodymowych NdFeB.
Poza imponującą siłą, te produkty posiadają dodatkowe korzyści::
- Są niezwykle trwałe – przez okres ok. 10 lat tracą maksymalnie ~1% swojej pierwotnej siły (wg danych).
- Inne źródła magnetyzmu nie powodują ich szybkiego rozmagnesowania – posiadają wysoki współczynnik koercji.
- Wykończenie materiałami takimi jak nikiel, srebro lub złoto nadaje im czysty i lśniący charakter.
- Wyróżniają się bardzo wysoką gęstością pola na powierzchni, co umożliwia silne chwytanie z dużą mocą.
- Posiadają imponującą wytrzymałość termiczną, co pozwala na ich użycie w warunkach do 230°C (dotyczy odpowiednich serii).
- Elastyczność kształtowania – można je wykonać w dowolnych formach, dopasowanych do konkretnego projektu.
- Są niezbędne w technologiach przyszłości, zasilając silniki, sprzęt szpitalny czy elektronikę użytkową.
- Moc w skali mikro – ich mała masa nie przeszkadza w generowaniu dużej siły przyciągania.
Oto ograniczenia i wady, o których musisz wiedzieć:
- Ze względu na kruchość, trzeba się z nimi obchodzić delikatnie. Gwałtowne złączenie może je zniszczyć, stąd rekomendacja stosowania osłon.
- Wysoka temperatura to wróg neodymów – powyżej 80°C tracą właściwości. Do zadań specjalnych polecamy serię [AH], działającą stabilnie aż do 230°C.
- Nie lubią wody – szybko rdzewieją. Jeśli planujesz montaż na dworze, jedynym słusznym wyborem są magnesy w gumowej otulinie.
- Trudności montażowe: zamiast próbować gwintować kruchy magnes, skorzystaj z uchwytów w stalowej obudowie, które posiadają gotowe mocowania.
- Zachowaj ostrożność – połknięcie magnesów przez dziecko to zagrożenie życia. Ponadto, ich obecność w ciele uniemożliwia diagnostykę obrazową.
- Za jakość trzeba płacić – magnesy neodymowe są droższe od ceramicznych, co wpływa na budżet projektu.
Wytrzymałość na oderwanie magnesu w warunkach idealnych – od czego zależy?
Parametr siły jest wynikiem testu laboratoryjnego wykonanego w następującej konfiguracji:
- z wykorzystaniem podłoża ze stali niskowęglowej, która służy jako zwora magnetyczna
- której wymiar poprzeczny wynosi ok. 10 mm
- z powierzchnią wolną od rys
- bez najmniejszej szczeliny pomiędzy magnesem a stalą
- podczas odrywania w kierunku pionowym do powierzchni mocowania
- w standardowej temperaturze otoczenia
Udźwig w warunkach rzeczywistych – czynniki
Na skuteczność trzymania mają wpływ konkretne warunki, głównie (od priorytetowych):
- Dystans (pomiędzy magnesem a blachą), ponieważ nawet bardzo mała przerwa (np. 0,5 mm) skutkuje redukcję siły nawet o 50% (dotyczy to także lakieru, korozji czy zanieczyszczeń).
- Sposób obciążenia – deklarowany udźwig dotyczy odrywania w pionie. Przy ześlizgiwaniu, magnes wykazuje znacznie mniejszą moc (zazwyczaj ok. 20-30% siły maksymalnej).
- Grubość ścianki – im cieńsza blacha, tym słabsze trzymanie. Część pola magnetycznego przenika na wylot, zamiast generować siłę.
- Gatunek stali – idealnym podłożem jest czysta stal żelazna. Stale nierdzewne mogą przyciągać słabiej.
- Gładkość podłoża – im gładsza i bardziej polerowana powierzchnia, tym większa strefa kontaktu i wyższy udźwig. Chropowatość działają jak mikroszczeliny.
- Wpływ temperatury – gorące środowisko zmniejsza pole magnetyczne. Przekroczenie temperatury granicznej może trwale uszkodzić magnes.
* Udźwig określano używając gładkiej blachy o optymalnej grubości (min. 20 mm), przy siłach działających pionowo, jednak przy działaniu siły na zsuwanie nośność jest mniejsza nawet 75%. Ponadto, nawet drobny odstęp pomiędzy powierzchnią magnesu, a blachą obniża udźwig.
Wady oraz zalety magnesów neodymowych NdFeB.
Poza imponującą siłą, te produkty posiadają dodatkowe korzyści::
- Są niezwykle trwałe – przez okres ok. 10 lat tracą maksymalnie ~1% swojej pierwotnej siły (wg danych).
- Inne źródła magnetyzmu nie powodują ich szybkiego rozmagnesowania – posiadają wysoki współczynnik koercji.
- Wykończenie materiałami takimi jak nikiel, srebro lub złoto nadaje im czysty i lśniący charakter.
- Wyróżniają się bardzo wysoką gęstością pola na powierzchni, co umożliwia silne chwytanie z dużą mocą.
- Posiadają imponującą wytrzymałość termiczną, co pozwala na ich użycie w warunkach do 230°C (dotyczy odpowiednich serii).
- Elastyczność kształtowania – można je wykonać w dowolnych formach, dopasowanych do konkretnego projektu.
- Są niezbędne w technologiach przyszłości, zasilając silniki, sprzęt szpitalny czy elektronikę użytkową.
- Moc w skali mikro – ich mała masa nie przeszkadza w generowaniu dużej siły przyciągania.
Oto ograniczenia i wady, o których musisz wiedzieć:
- Ze względu na kruchość, trzeba się z nimi obchodzić delikatnie. Gwałtowne złączenie może je zniszczyć, stąd rekomendacja stosowania osłon.
- Wysoka temperatura to wróg neodymów – powyżej 80°C tracą właściwości. Do zadań specjalnych polecamy serię [AH], działającą stabilnie aż do 230°C.
- Nie lubią wody – szybko rdzewieją. Jeśli planujesz montaż na dworze, jedynym słusznym wyborem są magnesy w gumowej otulinie.
- Trudności montażowe: zamiast próbować gwintować kruchy magnes, skorzystaj z uchwytów w stalowej obudowie, które posiadają gotowe mocowania.
- Zachowaj ostrożność – połknięcie magnesów przez dziecko to zagrożenie życia. Ponadto, ich obecność w ciele uniemożliwia diagnostykę obrazową.
- Za jakość trzeba płacić – magnesy neodymowe są droższe od ceramicznych, co wpływa na budżet projektu.
Wytrzymałość na oderwanie magnesu w warunkach idealnych – od czego zależy?
Parametr siły jest wynikiem testu laboratoryjnego wykonanego w następującej konfiguracji:
- z wykorzystaniem podłoża ze stali niskowęglowej, która służy jako zwora magnetyczna
- której wymiar poprzeczny wynosi ok. 10 mm
- z powierzchnią wolną od rys
- bez najmniejszej szczeliny pomiędzy magnesem a stalą
- podczas odrywania w kierunku pionowym do powierzchni mocowania
- w standardowej temperaturze otoczenia
Udźwig w warunkach rzeczywistych – czynniki
Na skuteczność trzymania mają wpływ konkretne warunki, głównie (od priorytetowych):
- Dystans (pomiędzy magnesem a blachą), ponieważ nawet bardzo mała przerwa (np. 0,5 mm) skutkuje redukcję siły nawet o 50% (dotyczy to także lakieru, korozji czy zanieczyszczeń).
- Sposób obciążenia – deklarowany udźwig dotyczy odrywania w pionie. Przy ześlizgiwaniu, magnes wykazuje znacznie mniejszą moc (zazwyczaj ok. 20-30% siły maksymalnej).
- Grubość ścianki – im cieńsza blacha, tym słabsze trzymanie. Część pola magnetycznego przenika na wylot, zamiast generować siłę.
- Gatunek stali – idealnym podłożem jest czysta stal żelazna. Stale nierdzewne mogą przyciągać słabiej.
- Gładkość podłoża – im gładsza i bardziej polerowana powierzchnia, tym większa strefa kontaktu i wyższy udźwig. Chropowatość działają jak mikroszczeliny.
- Wpływ temperatury – gorące środowisko zmniejsza pole magnetyczne. Przekroczenie temperatury granicznej może trwale uszkodzić magnes.
* Udźwig określano używając gładkiej blachy o optymalnej grubości (min. 20 mm), przy siłach działających pionowo, jednak przy działaniu siły na zsuwanie nośność jest mniejsza nawet 75%. Ponadto, nawet drobny odstęp pomiędzy powierzchnią magnesu, a blachą obniża udźwig.
BHP przy magnesach
Limity termiczne
Nie przegrzewaj. Magnesy neodymowe są wrażliwe na temperaturę. Jeśli wymagasz odporności powyżej 80°C, wybierz magnesy odporne na ciepło (H, SH, UH).
Zagrożenie dla elektroniki
Zagrożenie dla danych: Magnesy neodymowe mogą zdegradować karty bankomatowe oraz urządzenia precyzyjne (implanty, protezy słuchu, czasomierze).
Magnesy są kruche
Mimo metalicznego wyglądu, neodym jest kruchy i nieodporny na uderzenia. Nie rzucaj, gdyż magnes może się pokruszyć na ostre, niebezpieczne kawałki.
Zakaz zabawy
Te produkty magnetyczne nie są przeznaczone dla dzieci. Połknięcie kilku magnesów może doprowadzić do ich złączeniem się w jelitach, co stanowi śmiertelne niebezpieczeństwo i wymaga natychmiastowej operacji.
Alergia na nikiel
Wiedza medyczna potwierdza, że powłoka niklowa (standardowe zabezpieczenie magnesów) jest silnym alergenem. Jeśli jesteś alergikiem, unikaj trzymania magnesów gołą dłonią lub zakup wersje w obudowie plastikowej.
Świadome użytkowanie
Stosuj magnesy z rozwagą. Ich potężna moc może zaskoczyć nawet doświadczonych użytkowników. Zachowaj czujność i nie lekceważ ich siły.
Uszkodzenia czujników
Moduły GPS i smartfony są niezwykle podatne na wpływ magnesów. Bezpośredni kontakt z silnym magnesem może trwale uszkodzić sensory w Twoim telefonie.
Łatwopalność
Proszek powstający podczas cięcia magnesów jest łatwopalny. Zakaz wiercenia w magnesach bez odpowiedniego chłodzenia i wiedzy.
Ochrona dłoni
Niebezpieczeństwo urazu: Moc ściskania jest tak duża, że może spowodować rany, zmiażdżenia, a nawet złamania kości. Używaj grubych rękawic.
Ostrzeżenie dla sercowców
Zagrożenie życia: Magnesy neodymowe mogą dezaktywować rozruszniki serca i defibrylatory. Unikaj kontaktu, jeśli posiadasz implanty elektroniczne.
Zachowaj ostrożność!
Dowiedz się więcej o ryzyku w artykule: Niebezpieczeństwo pracy z magnesem.
