MW 12x1 / N38 - magnes neodymowy walcowy
magnes neodymowy walcowy
Numer katalogowy 010015
GTIN/EAN: 5906301810148
Średnica Ø
12 mm [±0,1 mm]
Wysokość
1 mm [±0,1 mm]
Waga
0.85 g
Kierunek magnesowania
↑ osiowy
Udźwig
0.42 kg / 4.15 N
Indukcja magnetyczna
101.90 mT / 1019 Gs
Powłoka
[NiCuNi] nikiel
0.578 ZŁ z VAT / szt. + cena za transport
0.470 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?Chcesz się targować?
Zadzwoń już teraz
+48 888 99 98 98
alternatywnie zostaw wiadomość poprzez
formularz kontaktowy
przez naszą stronę.
Właściwości i kształt magnesów przetestujesz dzięki naszemu
narzędziu online do obliczeń.
Zamówienia złożone przed 14:00 realizujemy jeszcze dziś!
MW 12x1 / N38 - magnes neodymowy walcowy
Specyfikacja / charakterystyka MW 12x1 / N38 - magnes neodymowy walcowy
| właściwości | wartości |
|---|---|
| Nr kat. | 010015 |
| GTIN/EAN | 5906301810148 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Średnica Ø | 12 mm [±0,1 mm] |
| Wysokość | 1 mm [±0,1 mm] |
| Waga | 0.85 g |
| Kierunek magnesowania | ↑ osiowy |
| Udźwig ~ ? | 0.42 kg / 4.15 N |
| Indukcja magnetyczna ~ ? | 101.90 mT / 1019 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [min. - maks.] ? | 12.2-12.6 | kGs |
| remanencja Br [min. - maks.] ? | 1220-1260 | mT |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [min. - maks.] ? | 36-38 | BH max MGOe |
| gęstość energii [min. - maks.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Temperatura Curie TC | 312 - 380 | °C |
| Temperatura Curie TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅cm |
| Siła wyginania | 250 | MPa |
| Wytrzymałość na ściskanie | 1000~1100 | MPa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 10-6 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Modelowanie inżynierska magnesu neodymowego - raport
Przedstawione dane stanowią rezultat symulacji inżynierskiej. Wartości oparte są na algorytmach dla klasy Nd2Fe14B. Rzeczywiste osiągi mogą nieznacznie się różnić. Traktuj te dane jako punkt odniesienia dla projektantów.
MW 12x1 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg)(gram)(Niuton) | Status ryzyka |
|---|---|---|---|
| 0 mm |
1019 Gs
101.9 mT
|
0.42 kg / 420.0 g
4.1 N
|
słaby uchwyt |
| 1 mm |
941 Gs
94.1 mT
|
0.36 kg / 358.5 g
3.5 N
|
słaby uchwyt |
| 2 mm |
812 Gs
81.2 mT
|
0.27 kg / 266.8 g
2.6 N
|
słaby uchwyt |
| 3 mm |
666 Gs
66.6 mT
|
0.18 kg / 179.7 g
1.8 N
|
słaby uchwyt |
| 5 mm |
415 Gs
41.5 mT
|
0.07 kg / 69.7 g
0.7 N
|
słaby uchwyt |
| 10 mm |
126 Gs
12.6 mT
|
0.01 kg / 6.5 g
0.1 N
|
słaby uchwyt |
| 15 mm |
49 Gs
4.9 mT
|
0.00 kg / 1.0 g
0.0 N
|
słaby uchwyt |
| 20 mm |
23 Gs
2.3 mT
|
0.00 kg / 0.2 g
0.0 N
|
słaby uchwyt |
| 30 mm |
7 Gs
0.7 mT
|
0.00 kg / 0.0 g
0.0 N
|
słaby uchwyt |
| 50 mm |
2 Gs
0.2 mT
|
0.00 kg / 0.0 g
0.0 N
|
słaby uchwyt |
MW 12x1 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg)(gram)(Niuton) |
|---|---|---|
| 0 mm | Stal (~0.2) |
0.08 kg / 84.0 g
0.8 N
|
| 1 mm | Stal (~0.2) |
0.07 kg / 72.0 g
0.7 N
|
| 2 mm | Stal (~0.2) |
0.05 kg / 54.0 g
0.5 N
|
| 3 mm | Stal (~0.2) |
0.04 kg / 36.0 g
0.4 N
|
| 5 mm | Stal (~0.2) |
0.01 kg / 14.0 g
0.1 N
|
| 10 mm | Stal (~0.2) |
0.00 kg / 2.0 g
0.0 N
|
| 15 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
| 20 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
| 30 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
MW 12x1 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
0.13 kg / 126.0 g
1.2 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
0.08 kg / 84.0 g
0.8 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
0.04 kg / 42.0 g
0.4 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
0.21 kg / 210.0 g
2.1 N
|
MW 12x1 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg) |
|---|---|---|
| 0.5 mm |
|
0.04 kg / 42.0 g
0.4 N
|
| 1 mm |
|
0.11 kg / 105.0 g
1.0 N
|
| 2 mm |
|
0.21 kg / 210.0 g
2.1 N
|
| 5 mm |
|
0.42 kg / 420.0 g
4.1 N
|
| 10 mm |
|
0.42 kg / 420.0 g
4.1 N
|
MW 12x1 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig | Status |
|---|---|---|---|
| 20 °C | 0.0% |
0.42 kg / 420.0 g
4.1 N
|
OK |
| 40 °C | -2.2% |
0.41 kg / 410.8 g
4.0 N
|
OK |
| 60 °C | -4.4% |
0.40 kg / 401.5 g
3.9 N
|
|
| 80 °C | -6.6% |
0.39 kg / 392.3 g
3.8 N
|
|
| 100 °C | -28.8% |
0.30 kg / 299.0 g
2.9 N
|
MW 12x1 / N38
| Szczelina (mm) | Przyciąganie (kg) (N-S) | Odpychanie (kg) (N-N) |
|---|---|---|
| 0 mm |
0.72 kg / 724 g
7.1 N
1 959 Gs
|
N/A |
| 1 mm |
0.68 kg / 682 g
6.7 N
1 978 Gs
|
0.61 kg / 614 g
6.0 N
~0 Gs
|
| 2 mm |
0.62 kg / 618 g
6.1 N
1 883 Gs
|
0.56 kg / 556 g
5.5 N
~0 Gs
|
| 3 mm |
0.54 kg / 541 g
5.3 N
1 762 Gs
|
0.49 kg / 487 g
4.8 N
~0 Gs
|
| 5 mm |
0.38 kg / 381 g
3.7 N
1 479 Gs
|
0.34 kg / 343 g
3.4 N
~0 Gs
|
| 10 mm |
0.12 kg / 120 g
1.2 N
830 Gs
|
0.11 kg / 108 g
1.1 N
~0 Gs
|
| 20 mm |
0.01 kg / 11 g
0.1 N
253 Gs
|
0.01 kg / 10 g
0.1 N
~0 Gs
|
| 50 mm |
0.00 kg / 0 g
0.0 N
25 Gs
|
0.00 kg / 0 g
0.0 N
~0 Gs
|
MW 12x1 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 3.5 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 3.0 cm |
| Czasomierz | 20 Gs (2.0 mT) | 2.5 cm |
| Telefon / Smartfon | 40 Gs (4.0 mT) | 2.0 cm |
| Pilot do auta | 50 Gs (5.0 mT) | 1.5 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 1.0 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 0.5 cm |
MW 12x1 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
22.63 km/h
(6.29 m/s)
|
0.02 J | |
| 30 mm |
38.83 km/h
(10.79 m/s)
|
0.05 J | |
| 50 mm |
50.13 km/h
(13.92 m/s)
|
0.08 J | |
| 100 mm |
70.89 km/h
(19.69 m/s)
|
0.16 J |
MW 12x1 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
MW 12x1 / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 1 564 Mx | 15.6 µWb |
| Współczynnik Pc | 0.13 | Niski (Płaski) |
MW 12x1 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 0.42 kg | Standard |
| Woda (dno rzeki) |
0.48 kg
(+0.06 kg Zysk z wyporności)
|
+14.5% |
1. Siła zsuwająca
*Ważne: Na powierzchni pionowej magnes utrzyma jedynie ~20-30% siły oderwania.
2. Efektywność, a grubość stali
*Zbyt cienki metal (np. blacha karoseryjna) wyraźnie redukuje udźwig magnesu.
3. Wytrzymałość temperaturowa
*W klasie N38 granica bezpieczeństwa to 80°C.
4. Krzywa odmagnesowania i punkt pracy (B-H)
wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 0.13
Powyższy wykres prezentuje charakterystykę magnetyczną materiału w drugim kwadrancie pętli histerezy. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.
Skład chemiczny materiału
| żelazo (Fe) | 64% – 68% |
| neodym (Nd) | 29% – 32% |
| bor (B) | 1.1% – 1.2% |
| dysproz (Dy) | 0.5% – 2.0% |
| powłoka (Ni-Cu-Ni) | < 0.05% |
Dane środowiskowe
| recyklowalność (EoL) | 100% |
| surowce z recyklingu | ~10% (pre-cons) |
| ślad węglowy | low / zredukowany |
| kod odpadu (EWC) | 16 02 16 |
Zobacz też inne propozycje
Zalety i wady magnesów z neodymu Nd2Fe14B.
Korzyści
- Długowieczność to ich atut – nawet po 10 lat utrata mocy wynosi jedynie ~1% (wg testów).
- Zewnętrzne pola magnetyczne nie wpływają na ich szybkiego rozmagnesowania – posiadają wysoki współczynnik koercji.
- Łączą moc z estetyką – poprzez niklowanie lub złocenie ich powierzchnia jest refleksyjna i wygląda estetycznie.
- Indukcja magnetyczna na powierzchni tych magnesów jest imponująca, co czyni je najwydajniejszymi w swojej klasie.
- Dzięki zaawansowanej technologii funkcjonują w temperaturach sięgających 230°C, zachowując swoje właściwości.
- Opcja produkcji złożonych kształtów sprawia, że są doskonałe do nietypowych zastosowań.
- Spotkasz je wszędzie tam, gdzie liczy się precyzja: w napędach, rezonansach oraz przemyśle komputerowym.
- Idealny stosunek wielkości do siły – są małe, ale niezwykle mocne, co pozwala na ich montaż w ciasnych przestrzeniach.
Słabe strony
- Kruchość to ich mankament. Łatwo ulegają uszkodzeniu przy upadku, dlatego warto stosować osłony lub montaż w stali.
- Wrażliwość na ciepło: przekroczenie 80°C może trwale osłabić magnes (zależnie od wymiarów). Rozwiązaniem są nasze magnesy wysokotemperaturowe [AH].
- Wilgoć powoduje korozję w mokrym otoczeniu. Na zewnątrz konieczne jest użycie magnesów wodoszczelnych (np. w gumie).
- Trudności montażowe: zamiast próbować robić otwory kruchy magnes, skorzystaj z uchwytów w stalowej obudowie, które posiadają gwinty.
- Zachowaj ostrożność – połknięcie magnesów przez dziecko to zagrożenie życia. Ponadto, ich obecność w ciele komplikuje diagnostykę obrazową.
- Za jakość trzeba płacić – magnesy neodymowe są droższe od ceramicznych, co wpływa na ekonomię rozwiązania.
Charakterystyka udźwigu
Wytrzymałość magnetyczna na maksimum – od czego zależy?
- na podłożu wykonanej ze stali miękkiej, doskonale skupiającej strumień magnetyczny
- o przekroju przynajmniej 10 mm
- z powierzchnią wolną od rys
- przy bezpośrednim styku (bez zanieczyszczeń)
- podczas odrywania w kierunku prostopadłym do powierzchni mocowania
- w temperaturze pokojowej
Praktyczny udźwig: czynniki wpływające
- Dystans – obecność ciała obcego (rdza, brud, szczelina) przerywa obwód magnetyczny, co redukuje udźwig gwałtownie (nawet o 50% przy 0,5 mm).
- Kąt przyłożenia siły – największą siłę uzyskujemy tylko przy ciągnięciu pod kątem 90°. Siła ścinająca magnesu po powierzchni jest z reguły kilkukrotnie niższa (ok. 1/5 udźwigu).
- Grubość elementu – dla pełnej efektywności, stal musi być odpowiednio gruba. Cienka blacha limituje siłę przyciągania (magnes „przebija” ją na wylot).
- Skład materiału – różne stopy przyciąga się identycznie. Dodatki stopowe osłabiają interakcję z magnesem.
- Faktura blachy – powierzchnie gładkie gwarantują idealne doleganie, co poprawia nasycenie pola. Nierówny metal osłabiają chwyt.
- Otoczenie termiczne – podgrzanie magnesu powoduje tymczasowy spadek siły. Należy pamiętać o limit termiczny dla danego modelu.
Udźwig mierzono używając blachy o gładkiej powierzchni o właściwej grubości (min. 20 mm), przy prostopadłym działaniu siły odrywającej, jednak przy działaniu siły na zsuwanie nośność jest mniejsza nawet pięciokrotnie. Dodatkowo, nawet minimalna przerwa pomiędzy powierzchnią magnesu, a blachą zmniejsza udźwig.
Ryzyko pęknięcia
Spieki NdFeB to materiał ceramiczny, co oznacza, że są bardzo kruche. Zderzenie dwóch magnesów wywoła ich pęknięcie na drobne kawałki.
Trzymaj z dala od elektroniki
Intensywne promieniowanie magnetyczne wpływa negatywnie na funkcjonowanie czujników w smartfonach i nawigacjach GPS. Nie zbliżaj magnesów od telefonu, aby uniknąć awarii czujników.
Zagrożenie fizyczne
Ryzyko obrażeń: Moc ściskania jest tak duża, że może wywołać rany, zmiażdżenia, a nawet złamania kości. Stosuj solidne rękawice ochronne.
Świadome użytkowanie
Stosuj magnesy z rozwagą. Ich gigantyczny udźwig może zaskoczyć nawet doświadczonych użytkowników. Planuj ruchy i nie lekceważ ich siły.
Alergia na nikiel
Informacja alergiczna: warstwa ochronna Ni-Cu-Ni zawiera nikiel. W przypadku wystąpienia świądu lub podrażnienia, należy bezzwłocznie przerwać pracę z magnesami i użyć środków ochronnych.
Nośniki danych
Bezpieczeństwo sprzętu: Magnesy neodymowe mogą zdegradować karty bankomatowe oraz urządzenia precyzyjne (implanty, aparaty słuchowe, czasomierze).
Utrata mocy w cieple
Kontroluj ciepło. Ekspozycja magnesu na wysoką temperaturę zdegraduje jego strukturę magnetyczną i siłę przyciągania.
Uwaga medyczna
Dla posiadaczy implantów: Promieniowanie magnetyczne wpływa na elektronikę medyczną. Utrzymuj co najmniej 30 cm odstępu lub zleć komuś innemu pracę z magnesów.
Uwaga: zadławienie
Bezwzględnie zabezpiecz magnesy przed najmłodszymi. Ryzyko zadławienia jest bardzo duże, a konsekwencje połączenia się magnesów wewnątrz organizmu są dramatyczne.
Obróbka mechaniczna
Szlifowanie magnesów neodymowych stwarza ryzyko zapłonu. Pył neodymowy utlenia się błyskawicznie z tlenem i jest niebezpieczny.
