Potężne magnesy neodymowe: płytkowe i walcowe

Chcesz kupić naprawdę silne magnesy? Mamy w ofercie bogatą gamę magnesów płytkowych, walcowych i pierścieniowych. Doskonale sprawdzą się do użytku w domu, warsztatu oraz zadań przemysłowych. Przejrzyj asortyment w naszym magazynie.

sprawdź katalog magnesów

Sprzęt dla poszukiwaczy skarbów

Odkryj pasję związaną z eksploracją dna! Nasze uchwyty z dwoma uchwytami (F200, F400) to pewność chwytu i ogromnego udźwigu. Nierdzewna konstrukcja oraz mocne linki sprawdzą się w trudnych warunkach wodnych.

znajdź zestaw dla siebie

Profesjonalne uchwyty z gwintem

Sprawdzone rozwiązania do mocowania bezinwazyjnego. Mocowania gwintowane (zewnętrznym lub wewnętrznym) gwarantują szybkie usprawnienie pracy na magazynach. Są niezastąpione przy mocowaniu lamp, sensorów oraz banerów.

sprawdź parametry techniczne

🚚 Zamów do 14:00 – wyślemy jeszcze dzisiaj!

Dhit sp. z o.o.
Produkt dostępny Wysyłamy za 2 dni

MW 12.5x2 / N38 - magnes neodymowy walcowy

magnes neodymowy walcowy

Numer katalogowy 010014

GTIN/EAN: 5906301810131

5.00

Średnica Ø

12.5 mm [±0,1 mm]

Wysokość

2 mm [±0,1 mm]

Waga

1.84 g

Kierunek magnesowania

↑ osiowy

Udźwig

1.42 kg / 13.89 N

Indukcja magnetyczna

188.88 mT / 1889 Gs

Powłoka

[NiCuNi] nikiel

0.935 z VAT / szt. + cena za transport

0.760 ZŁ netto + 23% VAT / szt.

upusty ilościowe:

Potrzebujesz więcej?

cena od 1 szt.
0.760 ZŁ
0.935 ZŁ
cena od 768 szt.
0.684 ZŁ
0.841 ZŁ
cena od 1536 szt.
0.669 ZŁ
0.823 ZŁ
Chcesz się targować?

Zadzwoń i zapytaj +48 888 99 98 98 albo skontaktuj się przez nasz formularz online przez naszą stronę.
Parametry i formę magnesów zobaczysz u nas w modułowym kalkulatorze.

Realizacja tego samego dnia przy zamówieniu do 14:00.

Dane techniczne produktu - MW 12.5x2 / N38 - magnes neodymowy walcowy

Specyfikacja / charakterystyka - MW 12.5x2 / N38 - magnes neodymowy walcowy

właściwości
właściwości wartości
Nr kat. 010014
GTIN/EAN 5906301810131
Produkcja/Dystrybucja Dhit sp. z o.o.
ul. Zielona 14 05-850 Ożarów Mazowiecki PL
Kraj pochodzenia Polska / Chiny / Niemcy
Kod celny 85059029
Średnica Ø 12.5 mm [±0,1 mm]
Wysokość 2 mm [±0,1 mm]
Waga 1.84 g
Kierunek magnesowania ↑ osiowy
Udźwig ~ ? 1.42 kg / 13.89 N
Indukcja magnetyczna ~ ? 188.88 mT / 1889 Gs
Powłoka [NiCuNi] nikiel
Tolerancja wykonania ±0.1 mm

Własności magnetyczne materiału N38

Specyfikacja / charakterystyka MW 12.5x2 / N38 - magnes neodymowy walcowy
właściwości wartości jednostki
remanencja Br [min. - maks.] ? 12.2-12.6 kGs
remanencja Br [min. - maks.] ? 1220-1260 mT
koercja bHc ? 10.8-11.5 kOe
koercja bHc ? 860-915 kA/m
faktyczna wewnętrzna siła iHc ≥ 12 kOe
faktyczna wewnętrzna siła iHc ≥ 955 kA/m
gęstość energii [min. - maks.] ? 36-38 BH max MGOe
gęstość energii [min. - maks.] ? 287-303 BH max KJ/m
max. temperatura ? ≤ 80 °C

Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C

Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
właściwości wartości jednostki
Twardość Vickersa ≥550 Hv
Gęstość ≥7.4 g/cm3
Temperatura Curie TC 312 - 380 °C
Temperatura Curie TF 593 - 716 °F
Specyficzna oporność 150 μΩ⋅cm
Siła wyginania 250 MPa
Wytrzymałość na ściskanie 1000~1100 MPa
Rozszerzenie termiczne równoległe (∥) do orientacji (M) (3-4) x 10-6 °C-1
Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) -(1-3) x 10-6 °C-1
Moduł Younga 1.7 x 104 kg/mm²

Analiza fizyczna magnesu - raport

Poniższe wartości stanowią wynik analizy matematycznej. Wyniki bazują na modelach dla klasy Nd2Fe14B. Rzeczywiste parametry mogą odbiegać od wyników symulacji. Prosimy traktować te wyliczenia jako punkt odniesienia przy projektowaniu systemów.

Tabela 1: Siła prostopadła statyczna (siła vs odległość) - wykres oddziaływania
MW 12.5x2 / N38

Dystans (mm) Indukcja (Gauss) / mT Udźwig (kg/lbs/g/N) Status ryzyka
0 mm 1888 Gs
188.8 mT
1.42 kg / 3.13 lbs
1420.0 g / 13.9 N
niskie ryzyko
1 mm 1703 Gs
170.3 mT
1.16 kg / 2.55 lbs
1155.6 g / 11.3 N
niskie ryzyko
2 mm 1453 Gs
145.3 mT
0.84 kg / 1.85 lbs
840.3 g / 8.2 N
niskie ryzyko
3 mm 1190 Gs
119.0 mT
0.56 kg / 1.24 lbs
564.1 g / 5.5 N
niskie ryzyko
5 mm 752 Gs
75.2 mT
0.23 kg / 0.50 lbs
225.0 g / 2.2 N
niskie ryzyko
10 mm 241 Gs
24.1 mT
0.02 kg / 0.05 lbs
23.2 g / 0.2 N
niskie ryzyko
15 mm 96 Gs
9.6 mT
0.00 kg / 0.01 lbs
3.7 g / 0.0 N
niskie ryzyko
20 mm 46 Gs
4.6 mT
0.00 kg / 0.00 lbs
0.9 g / 0.0 N
niskie ryzyko
30 mm 15 Gs
1.5 mT
0.00 kg / 0.00 lbs
0.1 g / 0.0 N
niskie ryzyko
50 mm 4 Gs
0.4 mT
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
niskie ryzyko

Tabela 2: Równoległa siła ześlizgu (pion)
MW 12.5x2 / N38

Dystans (mm) Współczynnik tarcia Udźwig (kg/lbs/g/N)
0 mm Stal (~0.2) 0.28 kg / 0.63 lbs
284.0 g / 2.8 N
1 mm Stal (~0.2) 0.23 kg / 0.51 lbs
232.0 g / 2.3 N
2 mm Stal (~0.2) 0.17 kg / 0.37 lbs
168.0 g / 1.6 N
3 mm Stal (~0.2) 0.11 kg / 0.25 lbs
112.0 g / 1.1 N
5 mm Stal (~0.2) 0.05 kg / 0.10 lbs
46.0 g / 0.5 N
10 mm Stal (~0.2) 0.00 kg / 0.01 lbs
4.0 g / 0.0 N
15 mm Stal (~0.2) 0.00 kg / 0.00 lbs
0.0 g / 0.0 N
20 mm Stal (~0.2) 0.00 kg / 0.00 lbs
0.0 g / 0.0 N
30 mm Stal (~0.2) 0.00 kg / 0.00 lbs
0.0 g / 0.0 N
50 mm Stal (~0.2) 0.00 kg / 0.00 lbs
0.0 g / 0.0 N

Tabela 3: Montaż pionowy (poślizg) - udźwig wertykalny
MW 12.5x2 / N38

Rodzaj powierzchni Współczynnik tarcia / % Mocy Maks. ciężar (kg/lbs/g/N)
Stal surowa
µ = 0.3 30% Nominalnej Siły
0.43 kg / 0.94 lbs
426.0 g / 4.2 N
Stal malowana (standard)
µ = 0.2 20% Nominalnej Siły
0.28 kg / 0.63 lbs
284.0 g / 2.8 N
Stal tłusta/śliska
µ = 0.1 10% Nominalnej Siły
0.14 kg / 0.31 lbs
142.0 g / 1.4 N
Magnes z gumą antypoślizgową
µ = 0.5 50% Nominalnej Siły
0.71 kg / 1.57 lbs
710.0 g / 7.0 N

Tabela 4: Efektywność materiałowa (nasycenie) - dobór blachy
MW 12.5x2 / N38

Grubość blachy (mm) % mocy Realny udźwig (kg/lbs/g/N)
0.5 mm
10%
0.14 kg / 0.31 lbs
142.0 g / 1.4 N
1 mm
25%
0.36 kg / 0.78 lbs
355.0 g / 3.5 N
2 mm
50%
0.71 kg / 1.57 lbs
710.0 g / 7.0 N
3 mm
75%
1.07 kg / 2.35 lbs
1065.0 g / 10.4 N
5 mm
100%
1.42 kg / 3.13 lbs
1420.0 g / 13.9 N
10 mm
100%
1.42 kg / 3.13 lbs
1420.0 g / 13.9 N
11 mm
100%
1.42 kg / 3.13 lbs
1420.0 g / 13.9 N
12 mm
100%
1.42 kg / 3.13 lbs
1420.0 g / 13.9 N

Tabela 5: Stabilność termiczna (zachowanie materiału) - próg odporności
MW 12.5x2 / N38

Temp. otoczenia (°C) Strata mocy Pozostały udźwig (kg/lbs/g/N) Status
20 °C 0.0% 1.42 kg / 3.13 lbs
1420.0 g / 13.9 N
OK
40 °C -2.2% 1.39 kg / 3.06 lbs
1388.8 g / 13.6 N
OK
60 °C -4.4% 1.36 kg / 2.99 lbs
1357.5 g / 13.3 N
80 °C -6.6% 1.33 kg / 2.92 lbs
1326.3 g / 13.0 N
100 °C -28.8% 1.01 kg / 2.23 lbs
1011.0 g / 9.9 N

Tabela 6: Dwa magnesy (przyciąganie) - kolizja pól
MW 12.5x2 / N38

Szczelina (mm) Przyciąganie (kg/lbs) (N-S) Opór ścinania (kg/lbs/g/N) Odpychanie (kg/lbs) (N-N)
0 mm 2.70 kg / 5.95 lbs
3 338 Gs
0.40 kg / 0.89 lbs
405 g / 4.0 N
N/A
1 mm 2.47 kg / 5.45 lbs
3 616 Gs
0.37 kg / 0.82 lbs
371 g / 3.6 N
2.23 kg / 4.91 lbs
~0 Gs
2 mm 2.20 kg / 4.84 lbs
3 407 Gs
0.33 kg / 0.73 lbs
329 g / 3.2 N
1.98 kg / 4.36 lbs
~0 Gs
3 mm 1.89 kg / 4.18 lbs
3 165 Gs
0.28 kg / 0.63 lbs
284 g / 2.8 N
1.71 kg / 3.76 lbs
~0 Gs
5 mm 1.32 kg / 2.91 lbs
2 640 Gs
0.20 kg / 0.44 lbs
198 g / 1.9 N
1.19 kg / 2.62 lbs
~0 Gs
10 mm 0.43 kg / 0.94 lbs
1 503 Gs
0.06 kg / 0.14 lbs
64 g / 0.6 N
0.38 kg / 0.85 lbs
~0 Gs
20 mm 0.04 kg / 0.10 lbs
483 Gs
0.01 kg / 0.01 lbs
7 g / 0.1 N
0.04 kg / 0.09 lbs
~0 Gs
50 mm 0.00 kg / 0.00 lbs
51 Gs
0.00 kg / 0.00 lbs
0 g / 0.0 N
0.00 kg / 0.00 lbs
~0 Gs
60 mm 0.00 kg / 0.00 lbs
31 Gs
0.00 kg / 0.00 lbs
0 g / 0.0 N
0.00 kg / 0.00 lbs
~0 Gs
70 mm 0.00 kg / 0.00 lbs
20 Gs
0.00 kg / 0.00 lbs
0 g / 0.0 N
0.00 kg / 0.00 lbs
~0 Gs
80 mm 0.00 kg / 0.00 lbs
14 Gs
0.00 kg / 0.00 lbs
0 g / 0.0 N
0.00 kg / 0.00 lbs
~0 Gs
90 mm 0.00 kg / 0.00 lbs
10 Gs
0.00 kg / 0.00 lbs
0 g / 0.0 N
0.00 kg / 0.00 lbs
~0 Gs
100 mm 0.00 kg / 0.00 lbs
7 Gs
0.00 kg / 0.00 lbs
0 g / 0.0 N
0.00 kg / 0.00 lbs
~0 Gs

Tabela 7: Zagrożenia (elektronika) - ostrzeżenia
MW 12.5x2 / N38

Obiekt / Urządzenie Limit (Gauss) / mT Bezpieczny dystans
Rozrusznik serca 5 Gs (0.5 mT) 4.5 cm
Implant słuchowy 10 Gs (1.0 mT) 3.5 cm
Zegarek mechaniczny 20 Gs (2.0 mT) 3.0 cm
Telefon / Smartfon 40 Gs (4.0 mT) 2.5 cm
Pilot do auta 50 Gs (5.0 mT) 2.0 cm
Karta płatnicza 400 Gs (40.0 mT) 1.0 cm
Dysk twardy HDD 600 Gs (60.0 mT) 1.0 cm

Tabela 8: Dynamika (energia kinetyczna) - skutki zderzenia
MW 12.5x2 / N38

Start z (mm) Prędkość (km/h) Energia (J) Przewidywany skutek
10 mm 28.30 km/h
(7.86 m/s)
0.06 J
30 mm 48.53 km/h
(13.48 m/s)
0.17 J
50 mm 62.65 km/h
(17.40 m/s)
0.28 J
100 mm 88.60 km/h
(24.61 m/s)
0.56 J

Tabela 9: Parametry powłoki (trwałość)
MW 12.5x2 / N38

Parametr techniczny Wartość / opis
Rodzaj powłoki [NiCuNi] nikiel
Struktura warstw Nikiel - Miedź - Nikiel
Grubość warstwy 10-20 µm
Test mgły solnej (SST) ? 24 h
Zalecane środowisko Tylko wnętrza (sucho)

Tabela 10: Dane elektryczne (Strumień)
MW 12.5x2 / N38

Parametr Wartość Jedn. SI / Opis
Strumień (Flux) 2 810 Mx 28.1 µWb
Współczynnik Pc 0.24 Niski (Płaski)

Tabela 11: Praca w wodzie (Magnet Fishing)
MW 12.5x2 / N38

Środowisko Efektywny udźwig stali Efekt
Powietrze (ląd) 1.42 kg Standard
Woda (dno rzeki) 1.63 kg
(+0.21 kg zysk z wyporności)
+14.5%
Ryzyko rdzy: Pamiętaj o dokładnym wytarciu magnesu po wyjęciu z wody i nałożeniu warstwy ochronnej (np. oleju), aby uniknąć korozji.
1. Ześlizg (ściana)

*Uwaga: Na powierzchni pionowej magnes utrzyma zaledwie ~20-30% siły oderwania.

2. Nasycenie magnetyczne

*Zbyt cienki metal (np. blacha karoseryjna) drastycznie osłabia siłę trzymania.

3. Praca w cieple

*W klasie N38 maksymalna temperatura to 80°C.

4. Krzywa odmagnesowania i punkt pracy (B-H)

wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 0.24

Niniejsza symulacja obrazuje stabilność magnetyczną wybranego magnesu w konkretnych warunkach geometrycznych. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.

Parametry inżynierskie i GPSR
Specyfikacja materiałowa
żelazo (Fe) 64% – 68%
neodym (Nd) 29% – 32%
bor (B) 1.1% – 1.2%
dysproz (Dy) 0.5% – 2.0%
powłoka (Ni-Cu-Ni) < 0.05%
Ekologia i recykling (GPSR)
recyklowalność (EoL) 100%
surowce z recyklingu ~10% (pre-cons)
ślad węglowy low / zredukowany
kod odpadu (EWC) 16 02 16
Karta bezpieczeństwa (GPSR)
podmiot odpowiedzialny
Dhit sp. z o.o.
ul. Kościuszki 6A, 05-850 Ożarów Mazowiecki
tel: +48 22 499 98 98 | e-mail: bok@dhit.pl
numer partii/typ
id: 010014-2026
Kalkulator miar
Udźwig magnesu

Moc pola

Inne produkty

Oferowany produkt to wyjątkowo silny magnes w kształcie walca, który został wykonany z trwałego materiału NdFeB, co przy wymiarach Ø12.5x2 mm gwarantuje optymalną moc. Model MW 12.5x2 / N38 charakteryzuje się wysoką powtarzalnością wymiarową oraz przemysłową jakością wykonania, dzięki czemu jest to rozwiązanie doskonałe dla profesjonalnych inżynierów i konstruktorów. Jako magnes cylindryczny o imponującej sile (ok. 1.42 kg), produkt ten jest dostępny od ręki z naszego polskiego centrum logistycznego, co zapewnia szybką realizację zamówienia. Dodatkowo, jego powłoka Ni-Cu-Ni chroni go przed korozją w standardowych warunkach pracy, gwarantując estetyczny wygląd i trwałość przez lata.
Z powodzeniem znajduje zastosowanie w modelarstwie, zaawansowanej automatyce oraz szeroko pojętym przemyśle, służąc jako element mocujący lub wykonawczy. Dzięki sile przyciągania 13.89 N przy wadze zaledwie 1.84 g, ten magnes cylindryczny jest niezastąpiony w elektronice oraz wszędzie tam, gdzie liczy się każdy gram.
Ponieważ nasze magnesy mają tolerancję ±0,1mm, najlepszą metodą jest wklejanie ich w otwory o średnicy minimalnie większej (np. 12.5,1 mm) przy użyciu dwuskładnikowych klejów epoksydowych. Dla zapewnienia długotrwałej wytrzymałości w przemyśle, stosuje się specjalistyczne kleje przemysłowe, które są bezpieczne dla niklu i wypełniają szczelinę, gwarantując trwałość połączenia.
Magnesy N38 są wystarczająco silne do 90% zastosowań w modelarstwie i budowie maszyn, gdzie nie jest wymagana skrajna miniaturyzacja przy zachowaniu maksymalnej siły. Jeśli potrzebujesz jeszcze mocniejszych magnesów w tej samej objętości (Ø12.5x2), skontaktuj się z nami w sprawie wyższych klas (np. N50, N52), jednak N38 jest standardem w ciągłej sprzedaży w naszym magazynie.
Prezentowany produkt to magnes neodymowy o precyzyjnie określonych parametrach: średnica 12.5 mm i wysokość 2 mm. Wartość 13.89 N oznacza, że magnes jest w stanie utrzymać ciężar wielokrotnie przewyższający jego masę własną 1.84 g. Produkt posiada powłokę [NiCuNi], która zabezpiecza go przed utlenianiem, nadając mu estetyczny, srebrzysty połysk.
Ten walec jest magnesowany osiowo (wzdłuż wysokości 2 mm), co oznacza, że bieguny N i S znajdują się na płaskich, okrągłych powierzchniach. Taki układ jest standardowy przy łączeniu magnesów w stosy (np. w filtrach) lub przy montażu w gniazdach na dnie otworu. Na zamówienie możemy wykonać również wersje magnesowane diametralnie, jeśli Twój projekt tego wymaga.

Wady i zalety magnesów z neodymu Nd2Fe14B.

Zalety

Należy pamiętać, iż obok wysokiej mocy, produkty te wyróżniają się następującymi plusami:
  • Są niezwykle trwałe – przez okres ok. 10 lat tracą maksymalnie ~1% swojej mocy (wg danych).
  • Trudno je rozmagnesować, gdyż wykazują wysoką odporność na zewnętrzne czynniki.
  • Warstwa ochronna (np. niklowa) zapewnia im metaliczny połysk, co podnosi ich walory wizualne.
  • Wytwarzają skoncentrowane pole magnetyczne na swojej powierzchni, co jest ich kluczową cechą.
  • Dzięki zaawansowanej technologii radzą sobie w temperaturach sięgających 230°C, zachowując swoje właściwości.
  • Duża swoboda w projektowaniu kształtu i wymiaru to ich ogromny plus w inżynierii.
  • Pełnią kluczową rolę w rozwoju technologii, będąc sercem silników, pamięci masowych i sprzętu medycznego.
  • Dzięki kompaktowości, nie wymagają dużej przestrzeni, a jednocześnie zapewniają wysoką skuteczność.

Wady

Warto znać też słabe strony magnesów neodymowych:
  • Uwaga na uszkodzenia mechaniczne – bez odpowiedniej obudowy mogą pękać przy gwałtownym zwarciu.
  • Gorąco to wróg neodymów – powyżej 80°C tracą właściwości. Do zadań specjalnych polecamy wersje odporne [AH], działającą stabilnie aż do 230°C.
  • Nie lubią wody – szybko rdzewieją. Jeśli planujesz montaż w ogrodzie, najlepszą opcją są magnesy w plastikowej osłonie.
  • Obróbka jest trudna – wiercenie otworów w samym magnesie jest ryzykowne. Zalecamy gotowe uchwyty magnetyczne (magnes w obudowie).
  • Ryzyko połknięcia – drobne magnesy są niebezpieczne dla dzieci. Połknięcie kilku sztuk grozi poważnymi obrażeniami. Dodatkowo mogą zakłócać badania (np. rezonans).
  • Cena – są bardziej kosztowne niż magnesy ferrytowe, co przy wielkich nakładach może być barierą.

Parametry udźwigu

Maksymalny udźwig magnesuco ma na to wpływ?

Siła trzymania 1.42 kg jest wartością teoretyczną maksymalną przeprowadzonego w specyficznych, idealnych warunkach:
  • przy zastosowaniu zwory ze stali niskowęglowej, zapewniającej maksymalne skupienie pola
  • której grubość to min. 10 mm
  • z powierzchnią oczyszczoną i gładką
  • przy zerowej szczelinie (bez powłok)
  • dla siły przyłożonej pod kątem prostym (w osi magnesu)
  • w stabilnej temperaturze pokojowej

Wpływ czynników na nośność magnesu w praktyce

Trzeba mieć na uwadze, że udźwig roboczy będzie inne pod wpływem poniższych elementów, zaczynając od najistotniejszych:
  • Przerwa między magnesem a stalą – nawet ułamek milimetra odległości (spowodowany np. lakierem lub nierównością) znacząco osłabia efektywność magnesu, często o połowę przy zaledwie 0,5 mm.
  • Kierunek działania siły – największą siłę mamy tylko przy prostopadłym odrywaniu. Siła ścinająca magnesu po powierzchni jest zazwyczaj kilkukrotnie niższa (ok. 1/5 udźwigu).
  • Grubość metalu – im cieńsza blacha, tym słabsze trzymanie. Strumień magnetyczny przenika na wylot, zamiast generować siłę.
  • Rodzaj materiału – najlepszym wyborem jest stal o wysokiej przenikalności. Żeliwo mogą mieć gorsze właściwości magnetyczne.
  • Wykończenie powierzchni – pełny kontakt uzyskamy tylko na gładkiej stali. Chropowata faktura tworzą poduszki powietrzne, osłabiając magnes.
  • Temperatura – wzrost temperatury powoduje tymczasowy spadek indukcji. Warto sprawdzić limit termiczny dla danego modelu.

Udźwig określano używając blachy o gładkiej powierzchni o optymalnej grubości (min. 20 mm), przy działaniu siły prostopadłej, z kolei przy siłach działających równolegle nośność jest mniejsza nawet pięciokrotnie. Ponadto, nawet minimalna przerwa pomiędzy magnesem, a blachą zmniejsza nośność.

Zasady bezpieczeństwa pracy z magnesami neodymowymi
Moc przyciągania

Zanim zaczniesz, przeczytaj instrukcję. Gwałtowne złączenie może zniszczyć magnes lub uszkodzić palce. Myśl o krok do przodu.

Zagrożenie wybuchem pyłu

Szlifowanie magnesów neodymowych grozi pożarem. Pył neodymowy reaguje gwałtownie z tlenem i jest trudny do gaszenia.

Poważne obrażenia

Ryzyko obrażeń: Siła przyciągania jest tak duża, że może wywołać rany, zmiażdżenia, a nawet otwarte złamania. Stosuj solidne rękawice ochronne.

Niklowa powłoka a alergia

Część populacji posiada alergię kontaktową na nikiel, którym zabezpieczane są magnesy neodymowe. Częste dotykanie może powodować zaczerwienienie skóry. Wskazane jest używanie rękawiczek ochronnych.

Wpływ na zdrowie

Ostrzeżenie dla sercowców: Promieniowanie magnetyczne wpływa na urządzenia medyczne. Utrzymuj co najmniej 30 cm odstępu lub poproś inną osobę obsługę magnesów.

Niszczenie danych

Nie zbliżaj magnesów do dokumentów, komputera czy telewizora. Pole magnetyczne może zniszczyć te urządzenia oraz wymazać paski magnetyczne z kart.

Wrażliwość na ciepło

Chroń przed wysoką temperaturą. Magnesy neodymowe są nieodporne na ciepło. Jeśli wymagasz odporności powyżej 80°C, wybierz specjalne serie wysokotemperaturowe (H, SH, UH).

Wpływ na smartfony

Uwaga: magnesy neodymowe wytwarzają pole, które mylą systemy nawigacji. Zachowaj odpowiednią odległość od komórki, tabletu i nawigacji.

Magnesy są kruche

Ryzyko skaleczenia. Magnesy mogą eksplodować przy gwałtownym złączeniu, wyrzucając kawałki metalu w powietrze. Ochrona wzroku wymagana.

Zagrożenie dla najmłodszych

Zawsze chroń magnesy przed dostępem dzieci. Ryzyko zadławienia jest bardzo duże, a konsekwencje połączenia się magnesów wewnątrz organizmu są dramatyczne.

Ważne! Szukasz szczegółów? Przeczytaj nasz artykuł: Czy magnesy są groźne?
Dhit sp. z o.o.

e-mail: bok@dhit.pl

tel: +48 888 99 98 98