MW 12x10 / N38 - magnes neodymowy walcowy
magnes neodymowy walcowy
Numer katalogowy 010016
GTIN/EAN: 5906301810155
Średnica Ø
12 mm [±0,1 mm]
Wysokość
10 mm [±0,1 mm]
Waga
8.48 g
Kierunek magnesowania
↑ osiowy
Udźwig
4.83 kg / 47.41 N
Indukcja magnetyczna
531.09 mT / 5311 Gs
Powłoka
[NiCuNi] nikiel
3.03 ZŁ z VAT / szt. + cena za transport
2.46 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?
Dzwoń do nas
+48 888 99 98 98
alternatywnie zostaw wiadomość przez
formularz kontaktowy
na stronie kontaktowej.
Udźwig oraz budowę magnesów testujesz w naszym
kalkulatorze siły.
Zamówienia złożone do godziny 14:00 zostaną wysłane tego samego dnia roboczego.
Właściwości fizyczne MW 12x10 / N38 - magnes neodymowy walcowy
Specyfikacja / charakterystyka - MW 12x10 / N38 - magnes neodymowy walcowy
| właściwości | wartości |
|---|---|
| Nr kat. | 010016 |
| GTIN/EAN | 5906301810155 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Średnica Ø | 12 mm [±0,1 mm] |
| Wysokość | 10 mm [±0,1 mm] |
| Waga | 8.48 g |
| Kierunek magnesowania | ↑ osiowy |
| Udźwig ~ ? | 4.83 kg / 47.41 N |
| Indukcja magnetyczna ~ ? | 531.09 mT / 5311 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [min. - maks.] ? | 12.2-12.6 | kGs |
| remanencja Br [min. - maks.] ? | 1220-1260 | mT |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [min. - maks.] ? | 36-38 | BH max MGOe |
| gęstość energii [min. - maks.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Temperatura Curie TC | 312 - 380 | °C |
| Temperatura Curie TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅cm |
| Siła wyginania | 250 | MPa |
| Wytrzymałość na ściskanie | 1000~1100 | MPa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 10-6 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Symulacja fizyczna magnesu - dane
Poniższe dane stanowią bezpośredni efekt analizy inżynierskiej. Wyniki oparte są na algorytmach dla materiału Nd2Fe14B. Realne osiągi mogą odbiegać od wyników symulacji. Prosimy traktować te wyliczenia jako wstępny drogowskaz przy projektowaniu systemów.
Tabela 1: Siła prostopadła statyczna (udźwig vs odległość) - spadek mocy
MW 12x10 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg/lbs/g/N) | Status ryzyka |
|---|---|---|---|
| 0 mm |
5308 Gs
530.8 mT
|
4.83 kg / 10.65 lbs
4830.0 g / 47.4 N
|
średnie ryzyko |
| 1 mm |
4424 Gs
442.4 mT
|
3.36 kg / 7.40 lbs
3355.3 g / 32.9 N
|
średnie ryzyko |
| 2 mm |
3585 Gs
358.5 mT
|
2.20 kg / 4.86 lbs
2203.4 g / 21.6 N
|
średnie ryzyko |
| 3 mm |
2857 Gs
285.7 mT
|
1.40 kg / 3.08 lbs
1399.2 g / 13.7 N
|
niskie ryzyko |
| 5 mm |
1787 Gs
178.7 mT
|
0.55 kg / 1.21 lbs
547.8 g / 5.4 N
|
niskie ryzyko |
| 10 mm |
622 Gs
62.2 mT
|
0.07 kg / 0.15 lbs
66.3 g / 0.7 N
|
niskie ryzyko |
| 15 mm |
272 Gs
27.2 mT
|
0.01 kg / 0.03 lbs
12.7 g / 0.1 N
|
niskie ryzyko |
| 20 mm |
141 Gs
14.1 mT
|
0.00 kg / 0.01 lbs
3.4 g / 0.0 N
|
niskie ryzyko |
| 30 mm |
52 Gs
5.2 mT
|
0.00 kg / 0.00 lbs
0.5 g / 0.0 N
|
niskie ryzyko |
| 50 mm |
13 Gs
1.3 mT
|
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
niskie ryzyko |
Tabela 2: Równoległa siła zsuwania (pion)
MW 12x10 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg/lbs/g/N) |
|---|---|---|
| 0 mm | Stal (~0.2) |
0.97 kg / 2.13 lbs
966.0 g / 9.5 N
|
| 1 mm | Stal (~0.2) |
0.67 kg / 1.48 lbs
672.0 g / 6.6 N
|
| 2 mm | Stal (~0.2) |
0.44 kg / 0.97 lbs
440.0 g / 4.3 N
|
| 3 mm | Stal (~0.2) |
0.28 kg / 0.62 lbs
280.0 g / 2.7 N
|
| 5 mm | Stal (~0.2) |
0.11 kg / 0.24 lbs
110.0 g / 1.1 N
|
| 10 mm | Stal (~0.2) |
0.01 kg / 0.03 lbs
14.0 g / 0.1 N
|
| 15 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
2.0 g / 0.0 N
|
| 20 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
| 30 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
Tabela 3: Montaż pionowy (ścinanie) - udźwig wertykalny
MW 12x10 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg/lbs/g/N) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
1.45 kg / 3.19 lbs
1449.0 g / 14.2 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
0.97 kg / 2.13 lbs
966.0 g / 9.5 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
0.48 kg / 1.06 lbs
483.0 g / 4.7 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
2.42 kg / 5.32 lbs
2415.0 g / 23.7 N
|
Tabela 4: Efektywność materiałowa (wpływ podłoża) - dobór blachy
MW 12x10 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg/lbs/g/N) |
|---|---|---|
| 0.5 mm |
|
0.48 kg / 1.06 lbs
483.0 g / 4.7 N
|
| 1 mm |
|
1.21 kg / 2.66 lbs
1207.5 g / 11.8 N
|
| 2 mm |
|
2.42 kg / 5.32 lbs
2415.0 g / 23.7 N
|
| 3 mm |
|
3.62 kg / 7.99 lbs
3622.5 g / 35.5 N
|
| 5 mm |
|
4.83 kg / 10.65 lbs
4830.0 g / 47.4 N
|
| 10 mm |
|
4.83 kg / 10.65 lbs
4830.0 g / 47.4 N
|
| 11 mm |
|
4.83 kg / 10.65 lbs
4830.0 g / 47.4 N
|
| 12 mm |
|
4.83 kg / 10.65 lbs
4830.0 g / 47.4 N
|
Tabela 5: Wytrzymałość temperaturowa (stabilność) - próg odporności
MW 12x10 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig (kg/lbs/g/N) | Status |
|---|---|---|---|
| 20 °C | 0.0% |
4.83 kg / 10.65 lbs
4830.0 g / 47.4 N
|
OK |
| 40 °C | -2.2% |
4.72 kg / 10.41 lbs
4723.7 g / 46.3 N
|
OK |
| 60 °C | -4.4% |
4.62 kg / 10.18 lbs
4617.5 g / 45.3 N
|
OK |
| 80 °C | -6.6% |
4.51 kg / 9.95 lbs
4511.2 g / 44.3 N
|
|
| 100 °C | -28.8% |
3.44 kg / 7.58 lbs
3439.0 g / 33.7 N
|
Tabela 6: Dwa magnesy (odpychanie) - kolizja pól
MW 12x10 / N38
| Szczelina (mm) | Przyciąganie (kg/lbs) (N-S) | Siła zsuwania (kg/lbs/g/N) | Odpychanie (kg/lbs) (N-N) |
|---|---|---|---|
| 0 mm |
19.64 kg / 43.30 lbs
5 928 Gs
|
2.95 kg / 6.50 lbs
2946 g / 28.9 N
|
N/A |
| 1 mm |
16.52 kg / 36.43 lbs
9 736 Gs
|
2.48 kg / 5.46 lbs
2479 g / 24.3 N
|
14.87 kg / 32.79 lbs
~0 Gs
|
| 2 mm |
13.64 kg / 30.08 lbs
8 847 Gs
|
2.05 kg / 4.51 lbs
2047 g / 20.1 N
|
12.28 kg / 27.07 lbs
~0 Gs
|
| 3 mm |
11.12 kg / 24.51 lbs
7 986 Gs
|
1.67 kg / 3.68 lbs
1668 g / 16.4 N
|
10.01 kg / 22.06 lbs
~0 Gs
|
| 5 mm |
7.16 kg / 15.79 lbs
6 410 Gs
|
1.07 kg / 2.37 lbs
1074 g / 10.5 N
|
6.45 kg / 14.21 lbs
~0 Gs
|
| 10 mm |
2.23 kg / 4.91 lbs
3 575 Gs
|
0.33 kg / 0.74 lbs
334 g / 3.3 N
|
2.00 kg / 4.42 lbs
~0 Gs
|
| 20 mm |
0.27 kg / 0.59 lbs
1 244 Gs
|
0.04 kg / 0.09 lbs
40 g / 0.4 N
|
0.24 kg / 0.54 lbs
~0 Gs
|
| 50 mm |
0.00 kg / 0.01 lbs
164 Gs
|
0.00 kg / 0.00 lbs
1 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 60 mm |
0.00 kg / 0.00 lbs
104 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 70 mm |
0.00 kg / 0.00 lbs
70 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 80 mm |
0.00 kg / 0.00 lbs
49 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 90 mm |
0.00 kg / 0.00 lbs
36 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 100 mm |
0.00 kg / 0.00 lbs
27 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
Tabela 7: Zagrożenia (implanty) - ostrzeżenia
MW 12x10 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 7.5 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 6.0 cm |
| Zegarek mechaniczny | 20 Gs (2.0 mT) | 4.5 cm |
| Telefon / Smartfon | 40 Gs (4.0 mT) | 3.5 cm |
| Kluczyk samochodowy | 50 Gs (5.0 mT) | 3.5 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 1.5 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 1.5 cm |
Tabela 8: Energia uderzenia (ryzyko pęknięcia) - ostrzeżenie
MW 12x10 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
24.27 km/h
(6.74 m/s)
|
0.19 J | |
| 30 mm |
41.69 km/h
(11.58 m/s)
|
0.57 J | |
| 50 mm |
53.82 km/h
(14.95 m/s)
|
0.95 J | |
| 100 mm |
76.11 km/h
(21.14 m/s)
|
1.90 J |
Tabela 9: Trwałość powłoki antykorozyjnej
MW 12x10 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
Tabela 10: Dane konstrukcyjne (Flux)
MW 12x10 / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 6 105 Mx | 61.1 µWb |
| Współczynnik Pc | 0.81 | Wysoki (Stabilny) |
Tabela 11: Praca w wodzie (Magnet Fishing)
MW 12x10 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 4.83 kg | Standard |
| Woda (dno rzeki) |
5.53 kg
(+0.70 kg zysk z wyporności)
|
+14.5% |
1. Ześlizg (ściana)
*Uwaga: Na powierzchni pionowej magnes utrzyma zaledwie ~20-30% siły prostopadłej.
2. Wpływ grubości blachy
*Cienka blacha (np. blacha karoseryjna) drastycznie osłabia siłę trzymania.
3. Praca w cieple
*W klasie N38 granica bezpieczeństwa to 80°C.
4. Krzywa odmagnesowania i punkt pracy (B-H)
wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 0.81
Niniejsza symulacja obrazuje stabilność magnetyczną wybranego magnesu w konkretnych warunkach geometrycznych. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.
Skład chemiczny materiału
| żelazo (Fe) | 64% – 68% |
| neodym (Nd) | 29% – 32% |
| bor (B) | 1.1% – 1.2% |
| dysproz (Dy) | 0.5% – 2.0% |
| powłoka (Ni-Cu-Ni) | < 0.05% |
Dane środowiskowe
| recyklowalność (EoL) | 100% |
| surowce z recyklingu | ~10% (pre-cons) |
| ślad węglowy | low / zredukowany |
| kod odpadu (EWC) | 16 02 16 |
Zobacz też inne propozycje
Zalety i wady magnesów neodymowych Nd2Fe14B.
Korzyści
- Utrzymują swoje właściwości przez lata – zakłada się, że po dekadzie słabną o symboliczny 1%.
- Wyróżniają się wyjątkową odpornością na demagnetyzację, nawet w silnych polach zewnętrznych.
- Łączą moc z estetyką – dzięki powłokom ich powierzchnia jest błyszcząca i wygląda estetycznie.
- Oferują maksymalną indukcję magnetyczną bezpośrednio na powierzchni, co przekłada się na skuteczność.
- Są przystosowane do pracy w gorącym otoczeniu – wybrane modele znoszą temperaturę do 230°C (zależnie od proporcji).
- Duża swoboda w doborze kształtu i wymiaru to ich ogromny plus w konstrukcjach.
- Występują wszędzie tam, gdzie liczy się precyzja: w napędach, rezonansach oraz systemach IT.
- Doskonała relacja wielkości do siły – są małe, ale niezwykle mocne, co pozwala na ich montaż w ciasnych przestrzeniach.
Słabe strony
- Delikatność mechaniczna to ich mankament. Mogą pęknąć przy upadku, dlatego warto stosować obudowy lub uchwyty.
- Ograniczenia termiczne – dla zwykłych magnesów limit to 80°C. W trudnych warunkach (do 230°C) należy używać modele z oznaczeniem [AH].
- Wilgoć powoduje korozję w mokrym otoczeniu. Na zewnątrz konieczne jest użycie magnesów wodoszczelnych (np. w gumie).
- Nie należy ich nawiercać – do montażu śrubowego przeznaczone są specjalne uchwyty magnetyczne z wbudowanym gwintem.
- Produkt niebezpieczny po połknięciu. Bezwzględnie chronić przed dziećmi. Wewnątrz ciała magnesy mogą się połączyć, powodując uszkodzenia jelit.
- Za jakość trzeba płacić – magnesy neodymowe są droższe od ceramicznych, co wpływa na ekonomię rozwiązania.
Charakterystyka udźwigu
Wytrzymałość magnetyczna na maksimum – co się na to składa?
- na bloku wykonanej ze stali konstrukcyjnej, efektywnie zamykającej strumień magnetyczny
- posiadającej masywność min. 10 mm dla pełnego zamknięcia strumienia
- o szlifowanej powierzchni styku
- w warunkach braku dystansu (metal do metalu)
- przy osiowym kierunku działania siły (kąt 90 stopni)
- przy temperaturze otoczenia pokojowej
Determinanty praktycznego udźwigu magnesu
- Szczelina – obecność jakiejkolwiek warstwy (farba, taśma, szczelina) działa jak izolator, co redukuje moc lawinowo (nawet o 50% przy 0,5 mm).
- Sposób obciążenia – deklarowany udźwig dotyczy ciągnięcia w pionie. Przy sile działającej równolegle, magnes trzyma dużo słabiej (często ok. 20-30% siły maksymalnej).
- Grubość podłoża – dla pełnej efektywności, stal musi być odpowiednio gruba. Blacha "papierowa" limituje udźwig (magnes „przebija” ją na wylot).
- Gatunek stali – idealnym podłożem jest czysta stal żelazna. Stale nierdzewne mogą przyciągać słabiej.
- Wykończenie powierzchni – idealny styk jest możliwy tylko na wypolerowanej stali. Chropowata faktura tworzą poduszki powietrzne, osłabiając magnes.
- Temperatura pracy – magnesy neodymowe posiadają ujemny współczynnik temperaturowy. Gdy jest gorąco są słabsze, a w niskich mogą być silniejsze (do pewnej granicy).
Udźwig mierzono stosując blachy o gładkiej powierzchni o optymalnej grubości (min. 20 mm), przy siłach działających pionowo, natomiast przy próbie przesunięcia magnesu siła trzymania jest mniejsza nawet 5 razy. Co więcej, nawet minimalna przerwa między magnesem, a blachą redukuje siłę trzymania.
BHP przy magnesach
Smartfony i tablety
Silne pole magnetyczne wpływa negatywnie na funkcjonowanie czujników w smartfonach i nawigacjach GPS. Trzymaj z dala magnesów od telefonu, aby nie uszkodzić czujników.
Uszkodzenia ciała
Chroń dłonie. Dwa duże magnesy złączą się błyskawicznie z siłą kilkuset kilogramów, miażdżąc wszystko na swojej drodze. Bądź ostrożny!
Nie lekceważ mocy
Bądź ostrożny. Magnesy neodymowe przyciągają z dużej odległości i zwierają z impetem, często szybciej niż jesteś w stanie przewidzieć.
Ochrona urządzeń
Potężne pole magnetyczne może zniszczyć zapis na kartach kredytowych, nośnikach HDD i innych nośnikach magnetycznych. Utrzymuj odległość min. 10 cm.
Pył jest łatwopalny
Szlifowanie magnesów neodymowych grozi pożarem. Pył neodymowy utlenia się błyskawicznie z tlenem i jest trudny do gaszenia.
Ochrona oczu
Ryzyko skaleczenia. Magnesy mogą pęknąć przy niekontrolowanym uderzeniu, rozrzucając ostre odłamki w powietrze. Noś okulary.
Ostrzeżenie dla alergików
Pewna grupa użytkowników posiada alergię kontaktową na nikiel, którym zabezpieczane są magnesy neodymowe. Długotrwała ekspozycja może skutkować wysypkę. Sugerujemy stosowanie rękawic bezlateksowych.
Nie dawać dzieciom
Bezwzględnie chroń magnesy przed dostępem dzieci. Ryzyko zadławienia jest wysokie, a konsekwencje zwarcia magnesów wewnątrz organizmu są nieodwracalne.
Nie przegrzewaj magnesów
Kontroluj ciepło. Ekspozycja magnesu na wysoką temperaturę zdegraduje jego strukturę magnetyczną i siłę przyciągania.
Interferencja medyczna
Pacjenci z kardiowerterem muszą zachować bezwzględny dystans od magnesów. Silny magnes może rozregulować pracę urządzenia ratującego życie.
