MW 12x10 / N38 - magnes neodymowy walcowy
magnes neodymowy walcowy
Numer katalogowy 010016
GTIN/EAN: 5906301810155
Średnica Ø
12 mm [±0,1 mm]
Wysokość
10 mm [±0,1 mm]
Waga
8.48 g
Kierunek magnesowania
↑ osiowy
Udźwig
4.83 kg / 47.41 N
Indukcja magnetyczna
531.09 mT / 5311 Gs
Powłoka
[NiCuNi] nikiel
3.03 ZŁ z VAT / szt. + cena za transport
2.46 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?
Dzwoń do nas
+48 888 99 98 98
albo daj znać poprzez
formularz
w sekcji kontakt.
Właściwości oraz budowę elementów magnetycznych sprawdzisz dzięki naszemu
kalkulatorze magnetycznym.
Realizacja tego samego dnia przy zamówieniu do 14:00.
Specyfikacja - MW 12x10 / N38 - magnes neodymowy walcowy
Specyfikacja / charakterystyka - MW 12x10 / N38 - magnes neodymowy walcowy
| właściwości | wartości |
|---|---|
| Nr kat. | 010016 |
| GTIN/EAN | 5906301810155 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Średnica Ø | 12 mm [±0,1 mm] |
| Wysokość | 10 mm [±0,1 mm] |
| Waga | 8.48 g |
| Kierunek magnesowania | ↑ osiowy |
| Udźwig ~ ? | 4.83 kg / 47.41 N |
| Indukcja magnetyczna ~ ? | 531.09 mT / 5311 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [min. - maks.] ? | 12.2-12.6 | kGs |
| remanencja Br [min. - maks.] ? | 1220-1260 | mT |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [min. - maks.] ? | 36-38 | BH max MGOe |
| gęstość energii [min. - maks.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Temperatura Curie TC | 312 - 380 | °C |
| Temperatura Curie TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅cm |
| Siła wyginania | 250 | MPa |
| Wytrzymałość na ściskanie | 1000~1100 | MPa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 10-6 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Analiza techniczna magnesu neodymowego - parametry techniczne
Przedstawione wartości stanowią bezpośredni efekt symulacji matematycznej. Wartości zostały wyliczone na modelach dla materiału Nd2Fe14B. Rzeczywiste parametry mogą nieznacznie odbiegać od wyników symulacji. Traktuj te dane jako pomoc pomocniczą podczas planowania montażu.
Tabela 1: Udźwig statyczny prostopadły (siła vs dystans) - spadek mocy
MW 12x10 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg/lbs/g/N) | Status ryzyka |
|---|---|---|---|
| 0 mm |
5308 Gs
530.8 mT
|
4.83 kg / 10.65 lbs
4830.0 g / 47.4 N
|
uwaga |
| 1 mm |
4424 Gs
442.4 mT
|
3.36 kg / 7.40 lbs
3355.3 g / 32.9 N
|
uwaga |
| 2 mm |
3585 Gs
358.5 mT
|
2.20 kg / 4.86 lbs
2203.4 g / 21.6 N
|
uwaga |
| 3 mm |
2857 Gs
285.7 mT
|
1.40 kg / 3.08 lbs
1399.2 g / 13.7 N
|
słaby uchwyt |
| 5 mm |
1787 Gs
178.7 mT
|
0.55 kg / 1.21 lbs
547.8 g / 5.4 N
|
słaby uchwyt |
| 10 mm |
622 Gs
62.2 mT
|
0.07 kg / 0.15 lbs
66.3 g / 0.7 N
|
słaby uchwyt |
| 15 mm |
272 Gs
27.2 mT
|
0.01 kg / 0.03 lbs
12.7 g / 0.1 N
|
słaby uchwyt |
| 20 mm |
141 Gs
14.1 mT
|
0.00 kg / 0.01 lbs
3.4 g / 0.0 N
|
słaby uchwyt |
| 30 mm |
52 Gs
5.2 mT
|
0.00 kg / 0.00 lbs
0.5 g / 0.0 N
|
słaby uchwyt |
| 50 mm |
13 Gs
1.3 mT
|
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
słaby uchwyt |
Tabela 2: Siła równoległa ześlizgu (pion)
MW 12x10 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg/lbs/g/N) |
|---|---|---|
| 0 mm | Stal (~0.2) |
0.97 kg / 2.13 lbs
966.0 g / 9.5 N
|
| 1 mm | Stal (~0.2) |
0.67 kg / 1.48 lbs
672.0 g / 6.6 N
|
| 2 mm | Stal (~0.2) |
0.44 kg / 0.97 lbs
440.0 g / 4.3 N
|
| 3 mm | Stal (~0.2) |
0.28 kg / 0.62 lbs
280.0 g / 2.7 N
|
| 5 mm | Stal (~0.2) |
0.11 kg / 0.24 lbs
110.0 g / 1.1 N
|
| 10 mm | Stal (~0.2) |
0.01 kg / 0.03 lbs
14.0 g / 0.1 N
|
| 15 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
2.0 g / 0.0 N
|
| 20 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
| 30 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
Tabela 3: Siła na ścianie (poślizg) - udźwig wertykalny
MW 12x10 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg/lbs/g/N) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
1.45 kg / 3.19 lbs
1449.0 g / 14.2 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
0.97 kg / 2.13 lbs
966.0 g / 9.5 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
0.48 kg / 1.06 lbs
483.0 g / 4.7 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
2.42 kg / 5.32 lbs
2415.0 g / 23.7 N
|
Tabela 4: Grubość stali (nasycenie) - straty mocy
MW 12x10 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg/lbs/g/N) |
|---|---|---|
| 0.5 mm |
|
0.48 kg / 1.06 lbs
483.0 g / 4.7 N
|
| 1 mm |
|
1.21 kg / 2.66 lbs
1207.5 g / 11.8 N
|
| 2 mm |
|
2.42 kg / 5.32 lbs
2415.0 g / 23.7 N
|
| 3 mm |
|
3.62 kg / 7.99 lbs
3622.5 g / 35.5 N
|
| 5 mm |
|
4.83 kg / 10.65 lbs
4830.0 g / 47.4 N
|
| 10 mm |
|
4.83 kg / 10.65 lbs
4830.0 g / 47.4 N
|
| 11 mm |
|
4.83 kg / 10.65 lbs
4830.0 g / 47.4 N
|
| 12 mm |
|
4.83 kg / 10.65 lbs
4830.0 g / 47.4 N
|
Tabela 5: Wytrzymałość temperaturowa (zachowanie materiału) - próg odporności
MW 12x10 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig (kg/lbs/g/N) | Status |
|---|---|---|---|
| 20 °C | 0.0% |
4.83 kg / 10.65 lbs
4830.0 g / 47.4 N
|
OK |
| 40 °C | -2.2% |
4.72 kg / 10.41 lbs
4723.7 g / 46.3 N
|
OK |
| 60 °C | -4.4% |
4.62 kg / 10.18 lbs
4617.5 g / 45.3 N
|
OK |
| 80 °C | -6.6% |
4.51 kg / 9.95 lbs
4511.2 g / 44.3 N
|
|
| 100 °C | -28.8% |
3.44 kg / 7.58 lbs
3439.0 g / 33.7 N
|
Tabela 6: Dwa magnesy (przyciąganie) - zasięg pola
MW 12x10 / N38
| Szczelina (mm) | Przyciąganie (kg/lbs) (N-S) | Opór ścinania (kg/lbs/g/N) | Odpychanie (kg/lbs) (N-N) |
|---|---|---|---|
| 0 mm |
19.64 kg / 43.30 lbs
5 928 Gs
|
2.95 kg / 6.50 lbs
2946 g / 28.9 N
|
N/A |
| 1 mm |
16.52 kg / 36.43 lbs
9 736 Gs
|
2.48 kg / 5.46 lbs
2479 g / 24.3 N
|
14.87 kg / 32.79 lbs
~0 Gs
|
| 2 mm |
13.64 kg / 30.08 lbs
8 847 Gs
|
2.05 kg / 4.51 lbs
2047 g / 20.1 N
|
12.28 kg / 27.07 lbs
~0 Gs
|
| 3 mm |
11.12 kg / 24.51 lbs
7 986 Gs
|
1.67 kg / 3.68 lbs
1668 g / 16.4 N
|
10.01 kg / 22.06 lbs
~0 Gs
|
| 5 mm |
7.16 kg / 15.79 lbs
6 410 Gs
|
1.07 kg / 2.37 lbs
1074 g / 10.5 N
|
6.45 kg / 14.21 lbs
~0 Gs
|
| 10 mm |
2.23 kg / 4.91 lbs
3 575 Gs
|
0.33 kg / 0.74 lbs
334 g / 3.3 N
|
2.00 kg / 4.42 lbs
~0 Gs
|
| 20 mm |
0.27 kg / 0.59 lbs
1 244 Gs
|
0.04 kg / 0.09 lbs
40 g / 0.4 N
|
0.24 kg / 0.54 lbs
~0 Gs
|
| 50 mm |
0.00 kg / 0.01 lbs
164 Gs
|
0.00 kg / 0.00 lbs
1 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 60 mm |
0.00 kg / 0.00 lbs
104 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 70 mm |
0.00 kg / 0.00 lbs
70 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 80 mm |
0.00 kg / 0.00 lbs
49 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 90 mm |
0.00 kg / 0.00 lbs
36 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 100 mm |
0.00 kg / 0.00 lbs
27 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
Tabela 7: Zagrożenia (implanty) - ostrzeżenia
MW 12x10 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 7.5 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 6.0 cm |
| Zegarek mechaniczny | 20 Gs (2.0 mT) | 4.5 cm |
| Telefon / Smartfon | 40 Gs (4.0 mT) | 3.5 cm |
| Kluczyk samochodowy | 50 Gs (5.0 mT) | 3.5 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 1.5 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 1.5 cm |
Tabela 8: Energia uderzenia (energia kinetyczna) - skutki zderzenia
MW 12x10 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
24.27 km/h
(6.74 m/s)
|
0.19 J | |
| 30 mm |
41.69 km/h
(11.58 m/s)
|
0.57 J | |
| 50 mm |
53.82 km/h
(14.95 m/s)
|
0.95 J | |
| 100 mm |
76.11 km/h
(21.14 m/s)
|
1.90 J |
Tabela 9: Odporność na korozję
MW 12x10 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
Tabela 10: Dane elektryczne (Pc)
MW 12x10 / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 6 105 Mx | 61.1 µWb |
| Współczynnik Pc | 0.81 | Wysoki (Stabilny) |
Tabela 11: Zastosowanie podwodne
MW 12x10 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 4.83 kg | Standard |
| Woda (dno rzeki) |
5.53 kg
(+0.70 kg zysk z wyporności)
|
+14.5% |
1. Montaż na ścianie (ześlizg)
*Uwaga: Na pionowej ścianie magnes utrzyma tylko ~20-30% siły prostopadłej.
2. Efektywność, a grubość stali
*Cienka blacha (np. obudowa PC 0.5mm) znacząco redukuje siłę trzymania.
3. Spadek mocy w temperaturze
*Dla standardowych magnesów granica bezpieczeństwa to 80°C.
4. Krzywa odmagnesowania i punkt pracy (B-H)
wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 0.81
Niniejsza symulacja obrazuje stabilność magnetyczną wybranego magnesu w konkretnych warunkach geometrycznych. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.
Specyfikacja materiałowa
| żelazo (Fe) | 64% – 68% |
| neodym (Nd) | 29% – 32% |
| bor (B) | 1.1% – 1.2% |
| dysproz (Dy) | 0.5% – 2.0% |
| powłoka (Ni-Cu-Ni) | < 0.05% |
Dane środowiskowe
| recyklowalność (EoL) | 100% |
| surowce z recyklingu | ~10% (pre-cons) |
| ślad węglowy | low / zredukowany |
| kod odpadu (EWC) | 16 02 16 |
Inne oferty
Wady i zalety magnesów z neodymu Nd2Fe14B.
Korzyści
- Praktycznie nie ulegają osłabieniu w czasie; po 10 latach eksploatacji zmniejszenie udźwigu to znikome ~1%.
- Pozostają niewrażliwe na wpływ innych pól, co czyni je odpornymi na rozmagnesowanie w trudnych warunkach.
- Powłoka ochronna (np. niklowa) zapewnia im atrakcyjny wygląd, co ma znaczenie estetyczne.
- Wyróżniają się bardzo wysoką gęstością pola na powierzchni, co umożliwia mocne przyciąganie z dużą mocą.
- Odpowiedni skład sprawia, że wykazują odporność na wysokie temperatury (zależnie od kształtu, nawet do 230°C).
- Opcja produkcji skomplikowanych kształtów sprawia, że są doskonałe do indywidualnych zastosowań.
- Znajdują powszechne zastosowanie w przemyśle high-tech – od napędów HDD i silników, po zaawansowaną diagnostykę.
- Dzięki kompaktowości, zajmują mało miejsca, a jednocześnie zapewniają wysoką skuteczność.
Słabe strony
- Ze względu na brak elastyczności, wymagają ostrożności. Silne uderzenie może je zniszczyć, stąd zalecenie stosowania osłon.
- Wysoka temperatura to wróg neodymów – powyżej 80°C tracą właściwości. Do zadań specjalnych polecamy wersje odporne [AH], działającą stabilnie aż do 230°C.
- Brak odporności na wodę skutkuje utlenianiem. Do zadań zewnętrznych rekomendujemy wyłącznie magnesy zabezpieczone antykorozyjnie (plastik/guma).
- Ze względu na twardość, nie zaleca się gwintowania magnesu. Bezpieczniej użyć magnesu wklejonego w stalowy kubek z gwintem.
- Zachowaj ostrożność – połknięcie magnesów przez dziecko to stan krytyczny. Ponadto, ich obecność w ciele komplikuje diagnostykę obrazową.
- Wysoki koszt zakupu w porównaniu do tańszych zamienników to ich minus, szczególnie przy zakupach hurtowych.
Analiza siły trzymania
Maksymalny udźwig magnesu – co się na to składa?
- przy kontakcie z zwory ze specjalnej stali pomiarowej, gwarantującej maksymalne skupienie pola
- o grubości wynoszącej minimum 10 mm
- z płaszczyzną wolną od rys
- w warunkach bezszczelinowych (powierzchnia do powierzchni)
- podczas odrywania w kierunku prostopadłym do płaszczyzny mocowania
- w standardowej temperaturze otoczenia
Co wpływa na udźwig w praktyce
- Przerwa między powierzchniami – nawet ułamek milimetra dystansu (spowodowany np. okleiną lub brudem) zmniejsza efektywność magnesu, często o połowę przy zaledwie 0,5 mm.
- Kierunek siły – należy wiedzieć, że magnes najmocniej trzyma prostopadle. Przy zsuwaniu w dół, siła trzymania spada znacząco, często do poziomu 20-30% wartości maksymalnej.
- Grubość podłoża – aby wykorzystać 100% mocy, stal musi być odpowiednio gruba. Blacha "papierowa" ogranicza siłę przyciągania (magnes „przebija” ją na wylot).
- Skład materiału – nie każda stal reaguje tak samo. Dodatki stopowe osłabiają efekt przyciągania.
- Faktura blachy – powierzchnie gładkie gwarantują idealne doleganie, co zwiększa siłę. Nierówny metal osłabiają chwyt.
- Ciepło – spieki NdFeB posiadają wrażliwość na temperaturę. Gdy jest gorąco są słabsze, a na mrozie mogą być silniejsze (do pewnej granicy).
Udźwig mierzono używając gładkiej blachy o optymalnej grubości (min. 20 mm), przy działaniu siły prostopadłej, jednak przy działaniu siły na zsuwanie udźwig jest mniejszy nawet 75%. Co więcej, nawet minimalna przerwa pomiędzy powierzchnią magnesu, a blachą obniża nośność.
Zasady bezpieczeństwa pracy z magnesami neodymowymi
Łatwopalność
Szlifowanie magnesów neodymowych grozi pożarem. Proszek magnetyczny utlenia się błyskawicznie z tlenem i jest trudny do gaszenia.
Ochrona dłoni
Bloki magnetyczne mogą zdruzgotać palce błyskawicznie. Pod żadnym pozorem umieszczaj dłoni pomiędzy dwa silne magnesy.
Utrata mocy w cieple
Uważaj na temperaturę. Podgrzanie magnesu na wysoką temperaturę zdegraduje jego strukturę magnetyczną i siłę przyciągania.
Karty i dyski
Zagrożenie dla danych: Magnesy neodymowe mogą uszkodzić karty bankomatowe oraz delikatną elektronikę (rozruszniki serca, aparaty słuchowe, czasomierze).
Ryzyko połknięcia
Silne magnesy to nie zabawki. Przypadkowe zjedzenie dwóch lub więcej magnesów może skutkować ich złączeniem się w jelitach, co stwarza śmiertelne niebezpieczeństwo i wiąże się z koniecznością pilnej interwencji chirurgicznej.
Niklowa powłoka a alergia
Pewna grupa użytkowników posiada alergię kontaktową na pierwiastek nikiel, którym zabezpieczane są nasze produkty. Długotrwała ekspozycja może wywołać wysypkę. Rekomendujemy noszenie rękawic bezlateksowych.
Trzymaj z dala od elektroniki
Ważna informacja: magnesy neodymowe wytwarzają pole, które dezorientują elektronikę precyzyjną. Zachowaj bezpieczny dystans od komórki, tabletu i nawigacji.
Siła neodymu
Przed przystąpieniem do pracy, przeczytaj instrukcję. Niekontrolowane przyciągnięcie może zniszczyć magnes lub zranić dłoń. Bądź przewidujący.
Podatność na pękanie
Choć wyglądają jak stal, neodym jest delikatny i nieodporny na uderzenia. Unikaj uderzeń, gdyż magnes może się pokruszyć na drobiny.
Interferencja medyczna
Zagrożenie życia: Magnesy neodymowe mogą dezaktywować rozruszniki serca i defibrylatory. Nie zbliżaj się, jeśli posiadasz urządzenia wspomagające.
