MW 10x6 / N38 - magnes neodymowy walcowy
magnes neodymowy walcowy
Numer katalogowy 010012
GTIN/EAN: 5906301810117
Średnica Ø
10 mm [±0,1 mm]
Wysokość
6 mm [±0,1 mm]
Waga
3.53 g
Kierunek magnesowania
↑ osiowy
Udźwig
3.38 kg / 33.12 N
Indukcja magnetyczna
475.73 mT / 4757 Gs
Powłoka
[NiCuNi] nikiel
1.045 ZŁ z VAT / szt. + cena za transport
0.850 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?
Zadzwoń i zapytaj
+48 22 499 98 98
ewentualnie skontaktuj się korzystając z
formularz zapytania
na stronie kontakt.
Siłę i wygląd magnesów przetestujesz u nas w
kalkulatorze mocy.
Zamówienia złożone przed 14:00 realizujemy jeszcze dziś!
Parametry - MW 10x6 / N38 - magnes neodymowy walcowy
Specyfikacja / charakterystyka - MW 10x6 / N38 - magnes neodymowy walcowy
| właściwości | wartości |
|---|---|
| Nr kat. | 010012 |
| GTIN/EAN | 5906301810117 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Średnica Ø | 10 mm [±0,1 mm] |
| Wysokość | 6 mm [±0,1 mm] |
| Waga | 3.53 g |
| Kierunek magnesowania | ↑ osiowy |
| Udźwig ~ ? | 3.38 kg / 33.12 N |
| Indukcja magnetyczna ~ ? | 475.73 mT / 4757 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [min. - maks.] ? | 12.2-12.6 | kGs |
| remanencja Br [min. - maks.] ? | 1220-1260 | mT |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [min. - maks.] ? | 36-38 | BH max MGOe |
| gęstość energii [min. - maks.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Temperatura Curie TC | 312 - 380 | °C |
| Temperatura Curie TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅cm |
| Siła wyginania | 250 | MPa |
| Wytrzymałość na ściskanie | 1000~1100 | MPa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 10-6 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Analiza inżynierska magnesu neodymowego - dane
Poniższe informacje są bezpośredni efekt kalkulacji inżynierskiej. Wyniki oparte są na algorytmach dla materiału Nd2Fe14B. Realne osiągi mogą nieznacznie odbiegać od wyników symulacji. Traktuj te wyliczenia jako punkt odniesienia dla projektantów.
Tabela 1: Udźwig statyczny prostopadły (udźwig vs odległość) - wykres oddziaływania
MW 10x6 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg/lbs/g/N) | Status ryzyka |
|---|---|---|---|
| 0 mm |
4754 Gs
475.4 mT
|
3.38 kg / 7.45 lbs
3380.0 g / 33.2 N
|
mocny |
| 1 mm |
3829 Gs
382.9 mT
|
2.19 kg / 4.83 lbs
2193.1 g / 21.5 N
|
mocny |
| 2 mm |
2955 Gs
295.5 mT
|
1.31 kg / 2.88 lbs
1306.0 g / 12.8 N
|
słaby uchwyt |
| 3 mm |
2230 Gs
223.0 mT
|
0.74 kg / 1.64 lbs
743.7 g / 7.3 N
|
słaby uchwyt |
| 5 mm |
1260 Gs
126.0 mT
|
0.24 kg / 0.52 lbs
237.5 g / 2.3 N
|
słaby uchwyt |
| 10 mm |
372 Gs
37.2 mT
|
0.02 kg / 0.05 lbs
20.7 g / 0.2 N
|
słaby uchwyt |
| 15 mm |
150 Gs
15.0 mT
|
0.00 kg / 0.01 lbs
3.3 g / 0.0 N
|
słaby uchwyt |
| 20 mm |
74 Gs
7.4 mT
|
0.00 kg / 0.00 lbs
0.8 g / 0.0 N
|
słaby uchwyt |
| 30 mm |
25 Gs
2.5 mT
|
0.00 kg / 0.00 lbs
0.1 g / 0.0 N
|
słaby uchwyt |
| 50 mm |
6 Gs
0.6 mT
|
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
słaby uchwyt |
Tabela 2: Siła równoległa zsuwania (ściana)
MW 10x6 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg/lbs/g/N) |
|---|---|---|
| 0 mm | Stal (~0.2) |
0.68 kg / 1.49 lbs
676.0 g / 6.6 N
|
| 1 mm | Stal (~0.2) |
0.44 kg / 0.97 lbs
438.0 g / 4.3 N
|
| 2 mm | Stal (~0.2) |
0.26 kg / 0.58 lbs
262.0 g / 2.6 N
|
| 3 mm | Stal (~0.2) |
0.15 kg / 0.33 lbs
148.0 g / 1.5 N
|
| 5 mm | Stal (~0.2) |
0.05 kg / 0.11 lbs
48.0 g / 0.5 N
|
| 10 mm | Stal (~0.2) |
0.00 kg / 0.01 lbs
4.0 g / 0.0 N
|
| 15 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
| 20 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
| 30 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
Tabela 3: Montaż pionowy (poślizg) - zachowanie na śliskim podłożu
MW 10x6 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg/lbs/g/N) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
1.01 kg / 2.24 lbs
1014.0 g / 9.9 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
0.68 kg / 1.49 lbs
676.0 g / 6.6 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
0.34 kg / 0.75 lbs
338.0 g / 3.3 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
1.69 kg / 3.73 lbs
1690.0 g / 16.6 N
|
Tabela 4: Grubość stali (nasycenie) - dobór blachy
MW 10x6 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg/lbs/g/N) |
|---|---|---|
| 0.5 mm |
|
0.34 kg / 0.75 lbs
338.0 g / 3.3 N
|
| 1 mm |
|
0.85 kg / 1.86 lbs
845.0 g / 8.3 N
|
| 2 mm |
|
1.69 kg / 3.73 lbs
1690.0 g / 16.6 N
|
| 3 mm |
|
2.54 kg / 5.59 lbs
2535.0 g / 24.9 N
|
| 5 mm |
|
3.38 kg / 7.45 lbs
3380.0 g / 33.2 N
|
| 10 mm |
|
3.38 kg / 7.45 lbs
3380.0 g / 33.2 N
|
| 11 mm |
|
3.38 kg / 7.45 lbs
3380.0 g / 33.2 N
|
| 12 mm |
|
3.38 kg / 7.45 lbs
3380.0 g / 33.2 N
|
Tabela 5: Praca w cieple (stabilność) - spadek mocy
MW 10x6 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig (kg/lbs/g/N) | Status |
|---|---|---|---|
| 20 °C | 0.0% |
3.38 kg / 7.45 lbs
3380.0 g / 33.2 N
|
OK |
| 40 °C | -2.2% |
3.31 kg / 7.29 lbs
3305.6 g / 32.4 N
|
OK |
| 60 °C | -4.4% |
3.23 kg / 7.12 lbs
3231.3 g / 31.7 N
|
OK |
| 80 °C | -6.6% |
3.16 kg / 6.96 lbs
3156.9 g / 31.0 N
|
|
| 100 °C | -28.8% |
2.41 kg / 5.31 lbs
2406.6 g / 23.6 N
|
Tabela 6: Dwa magnesy (odpychanie) - kolizja pól
MW 10x6 / N38
| Szczelina (mm) | Przyciąganie (kg/lbs) (N-S) | Opór ścinania (kg/lbs/g/N) | Odpychanie (kg/lbs) (N-N) |
|---|---|---|---|
| 0 mm |
10.94 kg / 24.12 lbs
5 711 Gs
|
1.64 kg / 3.62 lbs
1641 g / 16.1 N
|
N/A |
| 1 mm |
8.94 kg / 19.71 lbs
8 595 Gs
|
1.34 kg / 2.96 lbs
1341 g / 13.2 N
|
8.05 kg / 17.74 lbs
~0 Gs
|
| 2 mm |
7.10 kg / 15.65 lbs
7 658 Gs
|
1.06 kg / 2.35 lbs
1065 g / 10.4 N
|
6.39 kg / 14.09 lbs
~0 Gs
|
| 3 mm |
5.52 kg / 12.17 lbs
6 754 Gs
|
0.83 kg / 1.83 lbs
828 g / 8.1 N
|
4.97 kg / 10.96 lbs
~0 Gs
|
| 5 mm |
3.20 kg / 7.06 lbs
5 143 Gs
|
0.48 kg / 1.06 lbs
480 g / 4.7 N
|
2.88 kg / 6.35 lbs
~0 Gs
|
| 10 mm |
0.77 kg / 1.70 lbs
2 520 Gs
|
0.12 kg / 0.25 lbs
115 g / 1.1 N
|
0.69 kg / 1.53 lbs
~0 Gs
|
| 20 mm |
0.07 kg / 0.15 lbs
745 Gs
|
0.01 kg / 0.02 lbs
10 g / 0.1 N
|
0.06 kg / 0.13 lbs
~0 Gs
|
| 50 mm |
0.00 kg / 0.00 lbs
83 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 60 mm |
0.00 kg / 0.00 lbs
51 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 70 mm |
0.00 kg / 0.00 lbs
33 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 80 mm |
0.00 kg / 0.00 lbs
23 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 90 mm |
0.00 kg / 0.00 lbs
17 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 100 mm |
0.00 kg / 0.00 lbs
12 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
Tabela 7: Zagrożenia (implanty) - ostrzeżenia
MW 10x6 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 5.5 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 4.5 cm |
| Zegarek mechaniczny | 20 Gs (2.0 mT) | 3.5 cm |
| Telefon / Smartfon | 40 Gs (4.0 mT) | 3.0 cm |
| Kluczyk samochodowy | 50 Gs (5.0 mT) | 2.5 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 1.0 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 1.0 cm |
Tabela 8: Zderzenia (ryzyko pęknięcia) - ostrzeżenie
MW 10x6 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
31.33 km/h
(8.70 m/s)
|
0.13 J | |
| 30 mm |
54.05 km/h
(15.01 m/s)
|
0.40 J | |
| 50 mm |
69.78 km/h
(19.38 m/s)
|
0.66 J | |
| 100 mm |
98.69 km/h
(27.41 m/s)
|
1.33 J |
Tabela 9: Odporność na korozję
MW 10x6 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
Tabela 10: Dane elektryczne (Strumień)
MW 10x6 / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 3 767 Mx | 37.7 µWb |
| Współczynnik Pc | 0.66 | Wysoki (Stabilny) |
Tabela 11: Fizyka poszukiwań podwodnych
MW 10x6 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 3.38 kg | Standard |
| Woda (dno rzeki) |
3.87 kg
(+0.49 kg zysk z wyporności)
|
+14.5% |
1. Siła zsuwająca
*Ważne: Na pionowej ścianie magnes utrzyma zaledwie ~20-30% siły oderwania.
2. Nasycenie magnetyczne
*Cienka blacha (np. obudowa PC 0.5mm) drastycznie redukuje udźwig magnesu.
3. Praca w cieple
*Dla standardowych magnesów maksymalna temperatura to 80°C.
4. Krzywa odmagnesowania i punkt pracy (B-H)
wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 0.66
Niniejsza symulacja obrazuje stabilność magnetyczną wybranego magnesu w konkretnych warunkach geometrycznych. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.
Specyfikacja materiałowa
| żelazo (Fe) | 64% – 68% |
| neodym (Nd) | 29% – 32% |
| bor (B) | 1.1% – 1.2% |
| dysproz (Dy) | 0.5% – 2.0% |
| powłoka (Ni-Cu-Ni) | < 0.05% |
Dane środowiskowe
| recyklowalność (EoL) | 100% |
| surowce z recyklingu | ~10% (pre-cons) |
| ślad węglowy | low / zredukowany |
| kod odpadu (EWC) | 16 02 16 |
Inne propozycje
Zalety oraz wady magnesów z neodymu Nd2Fe14B.
Plusy
- Praktycznie nie ulegają osłabieniu w czasie; po 10 latach eksploatacji zmniejszenie udźwigu to marginalne ~1%.
- Są stabilne magnetycznie, gdyż wykazują potężną odporność na zewnętrzne czynniki.
- Powłoka ochronna (np. niklowa) zapewnia im metaliczny połysk, co ma znaczenie estetyczne.
- Indukcja magnetyczna na powierzchni tych magnesów jest imponująca, co czyni je najsilniejszymi w swojej klasie.
- Wersje specjalistyczne funkcjonują w temperaturach sięgających 230°C, zachowując swoje parametry.
- Dają się łatwo formować do niestandardowych wymiarów, co ułatwia ich adaptację w skomplikowanych urządzeniach.
- Znajdują szerokie zastosowanie w przemyśle high-tech – od dysków twardych i motorów elektrycznych, po precyzyjną diagnostykę.
- Dzięki kompaktowości, nie wymagają dużej przestrzeni, a jednocześnie zapewniają silne pole.
Słabe strony
- Są wrażliwe na uderzenia – materiał jest kruchy i może odprysnąć. Zabezpieczenie w postaci obudowy to dobre rozwiązanie.
- Gorąco to wróg neodymów – powyżej 80°C tracą właściwości. Do zadań specjalnych polecamy wersje odporne [AH], działającą stabilnie aż do 230°C.
- Nie lubią wody – szybko rdzewieją. Jeśli planujesz montaż w ogrodzie, najlepszą opcją są magnesy w gumowej otulinie.
- Ze względu na twardość, nie zaleca się gwintowania magnesu. Bezpieczniej użyć magnesu wklejonego w stalowy kubek z gwintem.
- Uważaj na małe części – połknięcie wymaga interwencji chirurga. Mogą też być problemem przy badaniach lekarskich.
- Za jakość trzeba płacić – magnesy neodymowe są droższe od ceramicznych, co wpływa na ekonomię rozwiązania.
Analiza siły trzymania
Optymalny udźwig magnesu neodymowego – co ma na to wpływ?
- na bloku wykonanej ze stali miękkiej, efektywnie zamykającej pole magnetyczne
- której grubość sięga przynajmniej 10 mm
- z powierzchnią idealnie równą
- bez żadnej przerwy powietrznej pomiędzy magnesem a stalą
- przy prostopadłym kierunku działania siły (kąt 90 stopni)
- przy temperaturze otoczenia pokojowej
Determinanty praktycznego udźwigu magnesu
- Dystans (pomiędzy magnesem a metalem), bowiem nawet mikroskopijna przerwa (np. 0,5 mm) powoduje redukcję udźwigu nawet o 50% (dotyczy to także farby, korozji czy zanieczyszczeń).
- Kierunek siły – parametr katalogowy dotyczy ciągnięcia w pionie. Przy próbie przesunięcia, magnes wykazuje dużo słabiej (zazwyczaj ok. 20-30% siły maksymalnej).
- Grubość stali – za chuda stal nie przyjmuje całego pola, przez co część strumienia jest tracona na drugą stronę.
- Skład materiału – różne stopy przyciąga się identycznie. Wysoka zawartość węgla pogarszają efekt przyciągania.
- Jakość powierzchni – im równiejsza powierzchnia, tym lepsze przyleganie i wyższy udźwig. Nierówności działają jak mikroszczeliny.
- Wpływ temperatury – wysoka temperatura osłabia pole magnetyczne. Zbyt wysoka temperatura może trwale uszkodzić magnes.
Siłę trzymania testowano na powierzchni blachy o grubości 20 mm, kiedy działała siła prostopadła, jednak przy próbie przesunięcia magnesu udźwig jest mniejszy nawet 5 razy. Dodatkowo, nawet drobny odstęp między magnesem, a blachą zmniejsza udźwig.
Bezpieczna praca z magnesami neodymowymi
Rozruszniki serca
Osoby z rozrusznikiem serca muszą zachować bezwzględny dystans od magnesów. Pole magnetyczne może zakłócić pracę implantu.
Magnesy są kruche
Mimo niklowej powłoki, neodym jest kruchy i nie znosi udarów. Nie rzucaj, gdyż magnes może się rozpaść na ostre, niebezpieczne kawałki.
Pył jest łatwopalny
Wiercenie i cięcie magnesów neodymowych grozi pożarem. Proszek magnetyczny reaguje gwałtownie z tlenem i jest trudny do gaszenia.
Przegrzanie magnesu
Unikaj gorąca. Magnesy neodymowe są wrażliwe na temperaturę. Jeśli wymagasz odporności powyżej 80°C, wybierz magnesy odporne na ciepło (H, SH, UH).
Uczulenie na powłokę
Informacja alergiczna: powłoka Ni-Cu-Ni zawiera nikiel. W przypadku wystąpienia świądu lub podrażnienia, należy bezzwłocznie przerwać pracę z magnesami i użyć środków ochronnych.
Zagrożenie dla nawigacji
Intensywne promieniowanie magnetyczne wpływa negatywnie na funkcjonowanie czujników w smartfonach i urządzeniach lokalizacyjnych. Trzymaj z dala magnesów od telefonu, aby uniknąć awarii czujników.
Siła zgniatająca
Chroń dłonie. Dwa duże magnesy zderzą błyskawicznie z siłą wielu ton, miażdżąc wszystko na swojej drodze. Zachowaj ekstremalną uwagę!
Urządzenia elektroniczne
Nie zbliżaj magnesów do portfela, laptopa czy telewizora. Magnes może zniszczyć te urządzenia oraz skasować dane z kart.
Chronić przed dziećmi
Te produkty magnetyczne to nie zabawki. Przypadkowe zjedzenie dwóch lub więcej magnesów może doprowadzić do ich zaciśnięciem jelit, co stwarza śmiertelne niebezpieczeństwo i wymaga natychmiastowej operacji.
Zasady obsługi
Używaj magnesy z rozwagą. Ich gigantyczny udźwig może zaskoczyć nawet doświadczonych użytkowników. Planuj ruchy i respektuj ich siły.
