MW 10x8 / N38 - magnes neodymowy walcowy
magnes neodymowy walcowy
Numer katalogowy 010013
GTIN/EAN: 5906301810124
Średnica Ø
10 mm [±0,1 mm]
Wysokość
8 mm [±0,1 mm]
Waga
4.71 g
Kierunek magnesowania
↑ osiowy
Udźwig
3.38 kg / 33.16 N
Indukcja magnetyczna
525.10 mT / 5251 Gs
Powłoka
[NiCuNi] nikiel
2.18 ZŁ z VAT / szt. + cena za transport
1.770 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?
Skontaktuj się z nami telefonicznie
+48 888 99 98 98
alternatywnie skontaktuj się przez
formularz kontaktowy
przez naszą stronę.
Parametry a także wygląd magnesu przetestujesz u nas w
kalkulatorze siły.
Zamówienia złożone przed 14:00 realizujemy jeszcze dziś!
Dane techniczne produktu - MW 10x8 / N38 - magnes neodymowy walcowy
Specyfikacja / charakterystyka - MW 10x8 / N38 - magnes neodymowy walcowy
| właściwości | wartości |
|---|---|
| Nr kat. | 010013 |
| GTIN/EAN | 5906301810124 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Średnica Ø | 10 mm [±0,1 mm] |
| Wysokość | 8 mm [±0,1 mm] |
| Waga | 4.71 g |
| Kierunek magnesowania | ↑ osiowy |
| Udźwig ~ ? | 3.38 kg / 33.16 N |
| Indukcja magnetyczna ~ ? | 525.10 mT / 5251 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [min. - maks.] ? | 12.2-12.6 | kGs |
| remanencja Br [min. - maks.] ? | 1220-1260 | mT |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [min. - maks.] ? | 36-38 | BH max MGOe |
| gęstość energii [min. - maks.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Temperatura Curie TC | 312 - 380 | °C |
| Temperatura Curie TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅cm |
| Siła wyginania | 250 | MPa |
| Wytrzymałość na ściskanie | 1000~1100 | MPa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 10-6 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Symulacja fizyczna magnesu - dane
Przedstawione dane stanowią rezultat symulacji fizycznej. Wartości bazują na algorytmach dla materiału Nd2Fe14B. Rzeczywiste parametry mogą nieznacznie się różnić. Prosimy traktować te wyliczenia jako punkt odniesienia przy projektowaniu systemów.
Tabela 1: Siła prostopadła statyczna (udźwig vs dystans) - wykres oddziaływania
MW 10x8 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg/lbs/g/N) | Status ryzyka |
|---|---|---|---|
| 0 mm |
5247 Gs
524.7 mT
|
3.38 kg / 7.45 lbs
3380.0 g / 33.2 N
|
mocny |
| 1 mm |
4204 Gs
420.4 mT
|
2.17 kg / 4.78 lbs
2169.6 g / 21.3 N
|
mocny |
| 2 mm |
3243 Gs
324.3 mT
|
1.29 kg / 2.85 lbs
1291.0 g / 12.7 N
|
słaby uchwyt |
| 3 mm |
2454 Gs
245.4 mT
|
0.74 kg / 1.63 lbs
739.6 g / 7.3 N
|
słaby uchwyt |
| 5 mm |
1403 Gs
140.3 mT
|
0.24 kg / 0.53 lbs
241.5 g / 2.4 N
|
słaby uchwyt |
| 10 mm |
428 Gs
42.8 mT
|
0.02 kg / 0.05 lbs
22.5 g / 0.2 N
|
słaby uchwyt |
| 15 mm |
177 Gs
17.7 mT
|
0.00 kg / 0.01 lbs
3.8 g / 0.0 N
|
słaby uchwyt |
| 20 mm |
89 Gs
8.9 mT
|
0.00 kg / 0.00 lbs
1.0 g / 0.0 N
|
słaby uchwyt |
| 30 mm |
31 Gs
3.1 mT
|
0.00 kg / 0.00 lbs
0.1 g / 0.0 N
|
słaby uchwyt |
| 50 mm |
8 Gs
0.8 mT
|
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
słaby uchwyt |
Tabela 2: Równoległa siła ześlizgu (pion)
MW 10x8 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg/lbs/g/N) |
|---|---|---|
| 0 mm | Stal (~0.2) |
0.68 kg / 1.49 lbs
676.0 g / 6.6 N
|
| 1 mm | Stal (~0.2) |
0.43 kg / 0.96 lbs
434.0 g / 4.3 N
|
| 2 mm | Stal (~0.2) |
0.26 kg / 0.57 lbs
258.0 g / 2.5 N
|
| 3 mm | Stal (~0.2) |
0.15 kg / 0.33 lbs
148.0 g / 1.5 N
|
| 5 mm | Stal (~0.2) |
0.05 kg / 0.11 lbs
48.0 g / 0.5 N
|
| 10 mm | Stal (~0.2) |
0.00 kg / 0.01 lbs
4.0 g / 0.0 N
|
| 15 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
| 20 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
| 30 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
Tabela 3: Montaż pionowy (poślizg) - zachowanie na śliskim podłożu
MW 10x8 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg/lbs/g/N) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
1.01 kg / 2.24 lbs
1014.0 g / 9.9 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
0.68 kg / 1.49 lbs
676.0 g / 6.6 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
0.34 kg / 0.75 lbs
338.0 g / 3.3 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
1.69 kg / 3.73 lbs
1690.0 g / 16.6 N
|
Tabela 4: Grubość stali (wpływ podłoża) - straty mocy
MW 10x8 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg/lbs/g/N) |
|---|---|---|
| 0.5 mm |
|
0.34 kg / 0.75 lbs
338.0 g / 3.3 N
|
| 1 mm |
|
0.85 kg / 1.86 lbs
845.0 g / 8.3 N
|
| 2 mm |
|
1.69 kg / 3.73 lbs
1690.0 g / 16.6 N
|
| 3 mm |
|
2.54 kg / 5.59 lbs
2535.0 g / 24.9 N
|
| 5 mm |
|
3.38 kg / 7.45 lbs
3380.0 g / 33.2 N
|
| 10 mm |
|
3.38 kg / 7.45 lbs
3380.0 g / 33.2 N
|
| 11 mm |
|
3.38 kg / 7.45 lbs
3380.0 g / 33.2 N
|
| 12 mm |
|
3.38 kg / 7.45 lbs
3380.0 g / 33.2 N
|
Tabela 5: Stabilność termiczna (stabilność) - limit termiczny
MW 10x8 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig (kg/lbs/g/N) | Status |
|---|---|---|---|
| 20 °C | 0.0% |
3.38 kg / 7.45 lbs
3380.0 g / 33.2 N
|
OK |
| 40 °C | -2.2% |
3.31 kg / 7.29 lbs
3305.6 g / 32.4 N
|
OK |
| 60 °C | -4.4% |
3.23 kg / 7.12 lbs
3231.3 g / 31.7 N
|
OK |
| 80 °C | -6.6% |
3.16 kg / 6.96 lbs
3156.9 g / 31.0 N
|
|
| 100 °C | -28.8% |
2.41 kg / 5.31 lbs
2406.6 g / 23.6 N
|
Tabela 6: Interakcja magnes-magnes (odpychanie) - kolizja pól
MW 10x8 / N38
| Szczelina (mm) | Przyciąganie (kg/lbs) (N-S) | Siła zsuwania (kg/lbs/g/N) | Odpychanie (kg/lbs) (N-N) |
|---|---|---|---|
| 0 mm |
13.33 kg / 29.39 lbs
5 906 Gs
|
2.00 kg / 4.41 lbs
2000 g / 19.6 N
|
N/A |
| 1 mm |
10.82 kg / 23.85 lbs
9 454 Gs
|
1.62 kg / 3.58 lbs
1623 g / 15.9 N
|
9.74 kg / 21.47 lbs
~0 Gs
|
| 2 mm |
8.56 kg / 18.86 lbs
8 408 Gs
|
1.28 kg / 2.83 lbs
1284 g / 12.6 N
|
7.70 kg / 16.98 lbs
~0 Gs
|
| 3 mm |
6.65 kg / 14.65 lbs
7 410 Gs
|
1.00 kg / 2.20 lbs
997 g / 9.8 N
|
5.98 kg / 13.19 lbs
~0 Gs
|
| 5 mm |
3.86 kg / 8.52 lbs
5 650 Gs
|
0.58 kg / 1.28 lbs
580 g / 5.7 N
|
3.48 kg / 7.67 lbs
~0 Gs
|
| 10 mm |
0.95 kg / 2.10 lbs
2 805 Gs
|
0.14 kg / 0.32 lbs
143 g / 1.4 N
|
0.86 kg / 1.89 lbs
~0 Gs
|
| 20 mm |
0.09 kg / 0.20 lbs
857 Gs
|
0.01 kg / 0.03 lbs
13 g / 0.1 N
|
0.08 kg / 0.18 lbs
~0 Gs
|
| 50 mm |
0.00 kg / 0.00 lbs
101 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 60 mm |
0.00 kg / 0.00 lbs
63 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 70 mm |
0.00 kg / 0.00 lbs
42 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 80 mm |
0.00 kg / 0.00 lbs
29 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 90 mm |
0.00 kg / 0.00 lbs
21 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 100 mm |
0.00 kg / 0.00 lbs
16 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
Tabela 7: Zagrożenia (elektronika) - środki ostrożności
MW 10x8 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 6.0 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 5.0 cm |
| Zegarek mechaniczny | 20 Gs (2.0 mT) | 4.0 cm |
| Telefon / Smartfon | 40 Gs (4.0 mT) | 3.0 cm |
| Kluczyk samochodowy | 50 Gs (5.0 mT) | 3.0 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 1.5 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 1.0 cm |
Tabela 8: Zderzenia (ryzyko pęknięcia) - skutki zderzenia
MW 10x8 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
27.13 km/h
(7.54 m/s)
|
0.13 J | |
| 30 mm |
46.80 km/h
(13.00 m/s)
|
0.40 J | |
| 50 mm |
60.41 km/h
(16.78 m/s)
|
0.66 J | |
| 100 mm |
85.43 km/h
(23.73 m/s)
|
1.33 J |
Tabela 9: Specyfikacja ochrony powierzchni
MW 10x8 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
Tabela 10: Dane konstrukcyjne (Strumień)
MW 10x8 / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 4 183 Mx | 41.8 µWb |
| Współczynnik Pc | 0.79 | Wysoki (Stabilny) |
Tabela 11: Zastosowanie podwodne
MW 10x8 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 3.38 kg | Standard |
| Woda (dno rzeki) |
3.87 kg
(+0.49 kg zysk z wyporności)
|
+14.5% |
1. Montaż na ścianie (ześlizg)
*Uwaga: Na powierzchni pionowej magnes zachowa zaledwie ~20-30% nominalnego udźwigu.
2. Nasycenie magnetyczne
*Zbyt cienki metal (np. blacha karoseryjna) drastycznie redukuje udźwig magnesu.
3. Stabilność termiczna
*Dla materiału N38 maksymalna temperatura to 80°C.
4. Krzywa odmagnesowania i punkt pracy (B-H)
wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 0.79
Powyższy wykres prezentuje charakterystykę magnetyczną materiału w drugim kwadrancie pętli histerezy. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.
Skład chemiczny materiału
| żelazo (Fe) | 64% – 68% |
| neodym (Nd) | 29% – 32% |
| bor (B) | 1.1% – 1.2% |
| dysproz (Dy) | 0.5% – 2.0% |
| powłoka (Ni-Cu-Ni) | < 0.05% |
Zrównoważony rozwój
| recyklowalność (EoL) | 100% |
| surowce z recyklingu | ~10% (pre-cons) |
| ślad węglowy | low / zredukowany |
| kod odpadu (EWC) | 16 02 16 |
Inne propozycje
Zalety i wady neodymowych magnesów Nd2Fe14B.
Mocne strony
- Utrzymują swoje właściwości przez lata – szacuje się, że po dekadzie słabną o niezauważalny 1%.
- Inne źródła magnetyzmu nie powodują ich utraty mocy – posiadają wysoki współczynnik koercji.
- Powłoka ochronna (np. niklowa) zapewnia im metaliczny połysk, co podnosi ich walory wizualne.
- Wytwarzają skoncentrowane pole magnetyczne przy biegunach, co jest ich znakiem rozpoznawczym.
- Są przystosowane do pracy w gorącym otoczeniu – wybrane modele znoszą temperaturę do 230°C (zależnie od proporcji).
- Możliwość uzyskania skomplikowanych kształtów sprawia, że są doskonałe do nietypowych zastosowań.
- Znajdują szerokie zastosowanie w nowoczesnej technice – od dysków twardych i motorów elektrycznych, po zaawansowaną aparaturę medyczną.
- Idealny stosunek wielkości do siły – są małe, ale niezwykle mocne, co pozwala na ich montaż w ciasnych przestrzeniach.
Słabe strony
- Pamiętaj o ich kruchości – bez odpowiedniej obudowy mogą pękać przy gwałtownym zwarciu.
- Klasyczne neodymy tracą moc powyżej 80°C. Jeśli potrzebujesz pracy w wyższych temperaturach, zastosuj serię [AH] (odporną do 230°C).
- Nie lubią wody – szybko rdzewieją. Jeśli planujesz montaż w ogrodzie, jedynym słusznym wyborem są magnesy w gumowej otulinie.
- Obróbka jest trudna – wykonanie gwintu w samym magnesie jest ryzykowne. Lepiej wybrać gotowe uchwyty magnetyczne (magnes w obudowie).
- Drobne magnesy to ryzyko – połknięcie wymaga interwencji chirurga. Mogą też być problemem przy diagnostyce MRI.
- Wyższa cena w porównaniu do tańszych zamienników to ich minus, szczególnie przy dużych ilościach.
Analiza siły trzymania
Najlepsza nośność magnesu w idealnych parametrach – od czego zależy?
- z zastosowaniem płyty ze stali niskowęglowej, działającej jako idealny przewodnik strumienia
- posiadającej masywność minimum 10 mm dla pełnego zamknięcia strumienia
- charakteryzującej się równą strukturą
- przy zerowej szczelinie (brak powłok)
- podczas odrywania w kierunku pionowym do powierzchni mocowania
- w temperaturze pokojowej
Udźwig w praktyce – czynniki wpływu
- Dystans – obecność ciała obcego (rdza, taśma, szczelina) przerywa obwód magnetyczny, co obniża moc gwałtownie (nawet o 50% przy 0,5 mm).
- Kierunek działania siły – maksymalny parametr uzyskujemy tylko przy prostopadłym odrywaniu. Opór przy zsuwaniu magnesu po blasze jest standardowo wielokrotnie mniejsza (ok. 1/5 udźwigu).
- Grubość ścianki – cienki materiał nie pozwala na pełne wykorzystanie magnesu. Część pola magnetycznego przenika na wylot, zamiast zamienić się w udźwig.
- Skład materiału – różne stopy reaguje tak samo. Dodatki stopowe pogarszają interakcję z magnesem.
- Gładkość – pełny kontakt uzyskamy tylko na wypolerowanej stali. Wszelkie rysy i nierówności tworzą poduszki powietrzne, redukując siłę.
- Warunki termiczne – magnesy neodymowe posiadają ujemny współczynnik temperaturowy. W wyższych temperaturach są słabsze, a w niskich zyskują na sile (do pewnej granicy).
Pomiar udźwigu przeprowadzano na blachach o gładkiej powierzchni o optymalnej grubości, przy prostopadłym działaniu siły, natomiast przy próbie przesunięcia magnesu nośność jest mniejsza nawet 75%. Dodatkowo, nawet niewielka szczelina między magnesem, a blachą redukuje nośność.
Ostrzeżenia
Trwała utrata siły
Typowe magnesy neodymowe (typ N) tracą właściwości po przekroczeniu temperatury 80°C. Uszkodzenie jest permanentne.
Obróbka mechaniczna
Ryzyko wybuchu: Pył neodymowy jest skrajnie łatwopalny. Nie modyfikuj mechanicznie magnesów amatorsko, gdyż może to wywołać pożar.
Implanty medyczne
Osoby z stymulatorem serca muszą utrzymać bezpieczną odległość od magnesów. Silny magnes może rozregulować pracę implantu.
Uwaga: zadławienie
Bezwzględnie zabezpiecz magnesy przed dostępem dzieci. Niebezpieczeństwo połknięcia jest bardzo duże, a konsekwencje zwarcia magnesów wewnątrz organizmu są dramatyczne.
Ochrona oczu
Ryzyko skaleczenia. Magnesy mogą eksplodować przy niekontrolowanym uderzeniu, wyrzucając ostre odłamki w powietrze. Ochrona wzroku wymagana.
Niszczenie danych
Nie zbliżaj magnesów do portfela, laptopa czy ekranu. Magnes może zniszczyć te urządzenia oraz wymazać paski magnetyczne z kart.
Ryzyko uczulenia
Uwaga na nikiel: powłoka Ni-Cu-Ni zawiera nikiel. W przypadku wystąpienia świądu lub podrażnienia, należy bezzwłocznie zakończyć pracę z magnesami i użyć środków ochronnych.
Świadome użytkowanie
Zanim zaczniesz, zapoznaj się z zasadami. Gwałtowne złączenie może połamać magnes lub uszkodzić palce. Bądź przewidujący.
Siła zgniatająca
Duże magnesy mogą zmiażdżyć palce w ułamku sekundy. Pod żadnym pozorem wkładaj dłoni pomiędzy dwa silne magnesy.
Wpływ na smartfony
Intensywne promieniowanie magnetyczne zakłóca działanie magnetometrów w smartfonach i nawigacjach GPS. Zachowaj odstęp magnesów od telefonu, aby nie uszkodzić czujników.
