MW 10x30 / N38 - magnes neodymowy walcowy
magnes neodymowy walcowy
Numer katalogowy 010009
GTIN/EAN: 5906301810087
Średnica Ø
10 mm [±0,1 mm]
Wysokość
30 mm [±0,1 mm]
Waga
17.67 g
Kierunek magnesowania
↑ osiowy
Udźwig
1.92 kg / 18.79 N
Indukcja magnetyczna
610.80 mT / 6108 Gs
Powłoka
[NiCuNi] nikiel
8.61 ZŁ z VAT / szt. + cena za transport
7.00 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?
Dzwoń do nas
+48 888 99 98 98
lub skontaktuj się korzystając z
nasz formularz online
przez naszą stronę.
Parametry i kształt magnesów neodymowych zobaczysz dzięki naszemu
kalkulatorze siły.
Wysyłka tego samego dnia dla zamówień do godz. 14:00.
Parametry techniczne - MW 10x30 / N38 - magnes neodymowy walcowy
Specyfikacja / charakterystyka - MW 10x30 / N38 - magnes neodymowy walcowy
| właściwości | wartości |
|---|---|
| Nr kat. | 010009 |
| GTIN/EAN | 5906301810087 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Średnica Ø | 10 mm [±0,1 mm] |
| Wysokość | 30 mm [±0,1 mm] |
| Waga | 17.67 g |
| Kierunek magnesowania | ↑ osiowy |
| Udźwig ~ ? | 1.92 kg / 18.79 N |
| Indukcja magnetyczna ~ ? | 610.80 mT / 6108 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [min. - maks.] ? | 12.2-12.6 | kGs |
| remanencja Br [min. - maks.] ? | 1220-1260 | mT |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [min. - maks.] ? | 36-38 | BH max MGOe |
| gęstość energii [min. - maks.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Temperatura Curie TC | 312 - 380 | °C |
| Temperatura Curie TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅cm |
| Siła wyginania | 250 | MPa |
| Wytrzymałość na ściskanie | 1000~1100 | MPa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 10-6 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Symulacja techniczna magnesu - dane
Poniższe wartości stanowią bezpośredni efekt kalkulacji inżynierskiej. Wyniki zostały wyliczone na algorytmach dla klasy Nd2Fe14B. Rzeczywiste parametry mogą różnić się od wartości teoretycznych. Traktuj te dane jako punkt odniesienia dla projektantów.
Tabela 1: Udźwig statyczny prostopadły (siła vs dystans) - spadek mocy
MW 10x30 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg/lbs/g/N) | Status ryzyka |
|---|---|---|---|
| 0 mm |
6103 Gs
610.3 mT
|
1.92 kg / 4.23 lbs
1920.0 g / 18.8 N
|
słaby uchwyt |
| 1 mm |
4905 Gs
490.5 mT
|
1.24 kg / 2.73 lbs
1240.1 g / 12.2 N
|
słaby uchwyt |
| 2 mm |
3823 Gs
382.3 mT
|
0.75 kg / 1.66 lbs
753.3 g / 7.4 N
|
słaby uchwyt |
| 3 mm |
2940 Gs
294.0 mT
|
0.45 kg / 0.98 lbs
445.6 g / 4.4 N
|
słaby uchwyt |
| 5 mm |
1754 Gs
175.4 mT
|
0.16 kg / 0.35 lbs
158.5 g / 1.6 N
|
słaby uchwyt |
| 10 mm |
607 Gs
60.7 mT
|
0.02 kg / 0.04 lbs
19.0 g / 0.2 N
|
słaby uchwyt |
| 15 mm |
280 Gs
28.0 mT
|
0.00 kg / 0.01 lbs
4.0 g / 0.0 N
|
słaby uchwyt |
| 20 mm |
154 Gs
15.4 mT
|
0.00 kg / 0.00 lbs
1.2 g / 0.0 N
|
słaby uchwyt |
| 30 mm |
63 Gs
6.3 mT
|
0.00 kg / 0.00 lbs
0.2 g / 0.0 N
|
słaby uchwyt |
| 50 mm |
19 Gs
1.9 mT
|
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
słaby uchwyt |
Tabela 2: Równoległa siła ześlizgu (pion)
MW 10x30 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg/lbs/g/N) |
|---|---|---|
| 0 mm | Stal (~0.2) |
0.38 kg / 0.85 lbs
384.0 g / 3.8 N
|
| 1 mm | Stal (~0.2) |
0.25 kg / 0.55 lbs
248.0 g / 2.4 N
|
| 2 mm | Stal (~0.2) |
0.15 kg / 0.33 lbs
150.0 g / 1.5 N
|
| 3 mm | Stal (~0.2) |
0.09 kg / 0.20 lbs
90.0 g / 0.9 N
|
| 5 mm | Stal (~0.2) |
0.03 kg / 0.07 lbs
32.0 g / 0.3 N
|
| 10 mm | Stal (~0.2) |
0.00 kg / 0.01 lbs
4.0 g / 0.0 N
|
| 15 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
| 20 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
| 30 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
Tabela 3: Montaż pionowy (poślizg) - udźwig wertykalny
MW 10x30 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg/lbs/g/N) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
0.58 kg / 1.27 lbs
576.0 g / 5.7 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
0.38 kg / 0.85 lbs
384.0 g / 3.8 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
0.19 kg / 0.42 lbs
192.0 g / 1.9 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
0.96 kg / 2.12 lbs
960.0 g / 9.4 N
|
Tabela 4: Grubość stali (nasycenie) - dobór blachy
MW 10x30 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg/lbs/g/N) |
|---|---|---|
| 0.5 mm |
|
0.19 kg / 0.42 lbs
192.0 g / 1.9 N
|
| 1 mm |
|
0.48 kg / 1.06 lbs
480.0 g / 4.7 N
|
| 2 mm |
|
0.96 kg / 2.12 lbs
960.0 g / 9.4 N
|
| 3 mm |
|
1.44 kg / 3.17 lbs
1440.0 g / 14.1 N
|
| 5 mm |
|
1.92 kg / 4.23 lbs
1920.0 g / 18.8 N
|
| 10 mm |
|
1.92 kg / 4.23 lbs
1920.0 g / 18.8 N
|
| 11 mm |
|
1.92 kg / 4.23 lbs
1920.0 g / 18.8 N
|
| 12 mm |
|
1.92 kg / 4.23 lbs
1920.0 g / 18.8 N
|
Tabela 5: Praca w cieple (stabilność) - próg odporności
MW 10x30 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig (kg/lbs/g/N) | Status |
|---|---|---|---|
| 20 °C | 0.0% |
1.92 kg / 4.23 lbs
1920.0 g / 18.8 N
|
OK |
| 40 °C | -2.2% |
1.88 kg / 4.14 lbs
1877.8 g / 18.4 N
|
OK |
| 60 °C | -4.4% |
1.84 kg / 4.05 lbs
1835.5 g / 18.0 N
|
OK |
| 80 °C | -6.6% |
1.79 kg / 3.95 lbs
1793.3 g / 17.6 N
|
|
| 100 °C | -28.8% |
1.37 kg / 3.01 lbs
1367.0 g / 13.4 N
|
Tabela 6: Interakcja magnes-magnes (przyciąganie) - siły w układzie
MW 10x30 / N38
| Szczelina (mm) | Przyciąganie (kg/lbs) (N-S) | Siła zsuwania (kg/lbs/g/N) | Odpychanie (kg/lbs) (N-N) |
|---|---|---|---|
| 0 mm |
18.04 kg / 39.76 lbs
6 166 Gs
|
2.71 kg / 5.96 lbs
2705 g / 26.5 N
|
N/A |
| 1 mm |
14.65 kg / 32.31 lbs
11 003 Gs
|
2.20 kg / 4.85 lbs
2198 g / 21.6 N
|
13.19 kg / 29.08 lbs
~0 Gs
|
| 2 mm |
11.65 kg / 25.68 lbs
9 810 Gs
|
1.75 kg / 3.85 lbs
1747 g / 17.1 N
|
10.48 kg / 23.11 lbs
~0 Gs
|
| 3 mm |
9.13 kg / 20.12 lbs
8 684 Gs
|
1.37 kg / 3.02 lbs
1369 g / 13.4 N
|
8.21 kg / 18.11 lbs
~0 Gs
|
| 5 mm |
5.45 kg / 12.02 lbs
6 710 Gs
|
0.82 kg / 1.80 lbs
818 g / 8.0 N
|
4.91 kg / 10.82 lbs
~0 Gs
|
| 10 mm |
1.49 kg / 3.28 lbs
3 507 Gs
|
0.22 kg / 0.49 lbs
223 g / 2.2 N
|
1.34 kg / 2.95 lbs
~0 Gs
|
| 20 mm |
0.18 kg / 0.39 lbs
1 213 Gs
|
0.03 kg / 0.06 lbs
27 g / 0.3 N
|
0.16 kg / 0.35 lbs
~0 Gs
|
| 50 mm |
0.00 kg / 0.01 lbs
190 Gs
|
0.00 kg / 0.00 lbs
1 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 60 mm |
0.00 kg / 0.00 lbs
126 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 70 mm |
0.00 kg / 0.00 lbs
88 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 80 mm |
0.00 kg / 0.00 lbs
64 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 90 mm |
0.00 kg / 0.00 lbs
48 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 100 mm |
0.00 kg / 0.00 lbs
37 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
Tabela 7: Bezpieczeństwo (BHP) (implanty) - środki ostrożności
MW 10x30 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 8.5 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 6.5 cm |
| Zegarek mechaniczny | 20 Gs (2.0 mT) | 5.0 cm |
| Telefon / Smartfon | 40 Gs (4.0 mT) | 4.0 cm |
| Immobilizer | 50 Gs (5.0 mT) | 3.5 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 1.5 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 1.5 cm |
Tabela 8: Energia uderzenia (ryzyko pęknięcia) - skutki zderzenia
MW 10x30 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
10.58 km/h
(2.94 m/s)
|
0.08 J | |
| 30 mm |
18.21 km/h
(5.06 m/s)
|
0.23 J | |
| 50 mm |
23.51 km/h
(6.53 m/s)
|
0.38 J | |
| 100 mm |
33.24 km/h
(9.23 m/s)
|
0.75 J |
Tabela 9: Specyfikacja ochrony powierzchni
MW 10x30 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
Tabela 10: Dane konstrukcyjne (Flux)
MW 10x30 / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 5 528 Mx | 55.3 µWb |
| Współczynnik Pc | 1.38 | Wysoki (Stabilny) |
Tabela 11: Zastosowanie podwodne
MW 10x30 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 1.92 kg | Standard |
| Woda (dno rzeki) |
2.20 kg
(+0.28 kg zysk z wyporności)
|
+14.5% |
1. Montaż na ścianie (ześlizg)
*Ważne: Na pionowej ścianie magnes utrzyma jedynie ~20-30% siły prostopadłej.
2. Grubość podłoża
*Cienka blacha (np. obudowa PC 0.5mm) drastycznie osłabia siłę trzymania.
3. Wytrzymałość temperaturowa
*W klasie N38 maksymalna temperatura to 80°C.
4. Krzywa odmagnesowania i punkt pracy (B-H)
wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 1.38
Powyższy wykres prezentuje charakterystykę magnetyczną materiału w drugim kwadrancie pętli histerezy. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.
Specyfikacja materiałowa
| żelazo (Fe) | 64% – 68% |
| neodym (Nd) | 29% – 32% |
| bor (B) | 1.1% – 1.2% |
| dysproz (Dy) | 0.5% – 2.0% |
| powłoka (Ni-Cu-Ni) | < 0.05% |
Ekologia i recykling (GPSR)
| recyklowalność (EoL) | 100% |
| surowce z recyklingu | ~10% (pre-cons) |
| ślad węglowy | low / zredukowany |
| kod odpadu (EWC) | 16 02 16 |
Zobacz też inne propozycje
Zalety oraz wady neodymowych magnesów Nd2Fe14B.
Korzyści
- Zachowują swoje właściwości przez lata – szacuje się, że po dekadzie słabną o symboliczny 1%.
- Inne źródła magnetyzmu nie wpływają na ich szybkiego rozmagnesowania – posiadają wysoki współczynnik koercji.
- Wykończenie materiałami takimi jak nikiel, srebro lub złoto nadaje im czysty i gładki charakter.
- Oferują najwyższą indukcję magnetyczną bezpośrednio na powierzchni, co przekłada się na skuteczność.
- Są przystosowane do pracy w gorącym otoczeniu – wybrane modele znoszą temperaturę do 230°C (zależnie od wymiarów).
- Elastyczność kształtowania – można je wykonać w dowolnych formach, dopasowanych do konkretnego projektu.
- Występują wszędzie tam, gdzie liczy się precyzja: w automatyce, medycynie oraz systemach IT.
- Idealny stosunek wielkości do siły – są małe, ale bardzo silne, co pozwala na ich montaż w precyzyjnych mechanizmach.
Słabe strony
- Delikatność mechaniczna to ich mankament. Łatwo ulegają uszkodzeniu przy upadku, dlatego zalecamy osłony lub uchwyty.
- Gorąco to wróg neodymów – powyżej 80°C tracą właściwości. Do zadań specjalnych polecamy wersje odporne [AH], działającą stabilnie aż do 230°C.
- Ryzyko korozji: bez osłony magnes zardzewieje na deszczu. Rozważ wersje powlekane tworzywem do zastosowań zewnętrznych.
- Ze względu na twardość, nie zaleca się gwintowania magnesu. Prościej użyć magnesu wklejonego w stalowy kubek z gwintem.
- Uważaj na małe części – połknięcie wymaga interwencji chirurga. Mogą też być problemem przy diagnostyce MRI.
- Za jakość trzeba płacić – magnesy neodymowe są droższe od ceramicznych, co wpływa na ekonomię rozwiązania.
Analiza siły trzymania
Wytrzymałość na oderwanie magnesu w warunkach idealnych – co ma na to wpływ?
- przy kontakcie z zwory ze stali niskowęglowej, gwarantującej maksymalne skupienie pola
- o grubości wynoszącej minimum 10 mm
- charakteryzującej się równą strukturą
- przy zerowej szczelinie (bez powłok)
- przy osiowym kierunku działania siły (kąt 90 stopni)
- w temperaturze pokojowej
Kluczowe elementy wpływające na udźwig
- Szczelina powietrzna (między magnesem a blachą), bowiem nawet niewielka odległość (np. 0,5 mm) powoduje zmniejszenie siły nawet o 50% (dotyczy to także farby, korozji czy brudu).
- Kierunek siły – parametr katalogowy dotyczy odrywania w pionie. Przy sile działającej równolegle, magnes wykazuje znacznie mniejszą moc (zazwyczaj ok. 20-30% siły nominalnej).
- Grubość stali – za chuda płyta powoduje nasycenie magnetyczne, przez co część strumienia jest tracona na drugą stronę.
- Skład materiału – różne stopy przyciąga się identycznie. Wysoka zawartość węgla osłabiają efekt przyciągania.
- Struktura powierzchni – im gładsza i bardziej polerowana powierzchnia, tym lepsze przyleganie i silniejsze trzymanie. Chropowatość działają jak mikroszczeliny.
- Temperatura – podgrzanie magnesu powoduje tymczasowy spadek indukcji. Należy pamiętać o maksymalną temperaturę pracy dla danego modelu.
Udźwig wyznaczano stosując gładkiej blachy o właściwej grubości (min. 20 mm), przy działaniu siły prostopadłej, z kolei przy działaniu siły na zsuwanie udźwig jest mniejszy nawet 5 razy. Co więcej, nawet minimalna przerwa pomiędzy magnesem, a blachą obniża nośność.
Ostrzeżenia
Uszkodzenia ciała
Silne magnesy mogą zmiażdżyć palce błyskawicznie. Pod żadnym pozorem umieszczaj dłoni pomiędzy dwa przyciągające się elementy.
Ostrzeżenie dla alergików
Badania wskazują, że powłoka niklowa (standardowe zabezpieczenie magnesów) jest częstą przyczyną uczuleń. Jeśli Twoja skóra źle reaguje na metale, unikaj trzymania magnesów gołą dłonią lub wybierz magnesy powlekane tworzywem.
Interferencja medyczna
Dla posiadaczy implantów: Promieniowanie magnetyczne wpływa na urządzenia medyczne. Zachowaj co najmniej 30 cm odstępu lub poproś inną osobę pracę z magnesów.
Interferencja magnetyczna
Pamiętaj: magnesy neodymowe generują pole, które mylą systemy nawigacji. Utrzymuj odpowiednią odległość od telefonu, tabletu i urządzeń GPS.
Rozprysk materiału
Mimo metalicznego wyglądu, neodym jest kruchy i nie znosi udarów. Unikaj uderzeń, gdyż magnes może się pokruszyć na drobiny.
Ogromna siła
Stosuj magnesy odpowiedzialnie. Ich gigantyczny udźwig może zszokować nawet doświadczonych użytkowników. Bądź skupiony i nie lekceważ ich siły.
Wrażliwość na ciepło
Typowe magnesy neodymowe (typ N) tracą moc po osiągnięciu temperatury 80°C. Strata siły jest trwała i nieodwracalna.
Pył jest łatwopalny
Obróbka mechaniczna magnesów neodymowych stwarza ryzyko zapłonu. Proszek magnetyczny utlenia się błyskawicznie z tlenem i jest trudny do gaszenia.
Urządzenia elektroniczne
Nie zbliżaj magnesów do dokumentów, komputera czy ekranu. Magnes może zniszczyć te urządzenia oraz wymazać paski magnetyczne z kart.
Tylko dla dorosłych
Silne magnesy nie służą do zabawy. Inhalacja dwóch lub więcej magnesów może skutkować ich przyciągnięciem przez ścianki jelit, co stanowi stan krytyczny i wiąże się z koniecznością pilnej interwencji chirurgicznej.
