MP 16x8/4x3 / N38 - magnes neodymowy pierścieniowy
magnes neodymowy pierścieniowy
Numer katalogowy 030396
GTIN/EAN: 5906301812333
Średnica
16 mm [±0,1 mm]
Średnica wewnętrzna Ø
8/4 mm [±0,1 mm]
Wysokość
3 mm [±0,1 mm]
Waga
4.24 g
Kierunek magnesowania
↑ osiowy
Udźwig
2.78 kg / 27.29 N
Indukcja magnetyczna
217.61 mT / 2176 Gs
Powłoka
[NiCuNi] nikiel
2.50 ZŁ z VAT / szt. + cena za transport
2.03 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?
Zadzwoń i zapytaj
+48 22 499 98 98
alternatywnie pisz poprzez
formularz zgłoszeniowy
na stronie kontaktowej.
Moc i budowę magnesów neodymowych sprawdzisz w naszym
narzędziu online do obliczeń.
Realizacja tego samego dnia przy zamówieniu do 14:00.
Szczegóły techniczne - MP 16x8/4x3 / N38 - magnes neodymowy pierścieniowy
Specyfikacja / charakterystyka - MP 16x8/4x3 / N38 - magnes neodymowy pierścieniowy
| właściwości | wartości |
|---|---|
| Nr kat. | 030396 |
| GTIN/EAN | 5906301812333 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Średnica | 16 mm [±0,1 mm] |
| Średnica wewnętrzna Ø | 8/4 mm [±0,1 mm] |
| Wysokość | 3 mm [±0,1 mm] |
| Waga | 4.24 g |
| Kierunek magnesowania | ↑ osiowy |
| Udźwig ~ ? | 2.78 kg / 27.29 N |
| Indukcja magnetyczna ~ ? | 217.61 mT / 2176 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [min. - maks.] ? | 12.2-12.6 | kGs |
| remanencja Br [min. - maks.] ? | 1220-1260 | mT |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [min. - maks.] ? | 36-38 | BH max MGOe |
| gęstość energii [min. - maks.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Temperatura Curie TC | 312 - 380 | °C |
| Temperatura Curie TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅cm |
| Siła wyginania | 250 | MPa |
| Wytrzymałość na ściskanie | 1000~1100 | MPa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 10-6 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Analiza inżynierska magnesu - parametry techniczne
Poniższe dane stanowią bezpośredni efekt analizy matematycznej. Wyniki oparte są na modelach dla klasy Nd2Fe14B. Rzeczywiste osiągi mogą odbiegać od wyników symulacji. Prosimy traktować te wyliczenia jako punkt odniesienia przy projektowaniu systemów.
Tabela 1: Udźwig statyczny prostopadły (siła vs odległość) - spadek mocy
MP 16x8/4x3 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg/lbs/g/N) | Status ryzyka |
|---|---|---|---|
| 0 mm |
1882 Gs
188.2 mT
|
2.78 kg / 6.13 lbs
2780.0 g / 27.3 N
|
średnie ryzyko |
| 1 mm |
1746 Gs
174.6 mT
|
2.39 kg / 5.27 lbs
2392.4 g / 23.5 N
|
średnie ryzyko |
| 2 mm |
1561 Gs
156.1 mT
|
1.91 kg / 4.22 lbs
1913.9 g / 18.8 N
|
niskie ryzyko |
| 3 mm |
1357 Gs
135.7 mT
|
1.45 kg / 3.19 lbs
1445.8 g / 14.2 N
|
niskie ryzyko |
| 5 mm |
969 Gs
96.9 mT
|
0.74 kg / 1.63 lbs
737.7 g / 7.2 N
|
niskie ryzyko |
| 10 mm |
387 Gs
38.7 mT
|
0.12 kg / 0.26 lbs
117.4 g / 1.2 N
|
niskie ryzyko |
| 15 mm |
171 Gs
17.1 mT
|
0.02 kg / 0.05 lbs
22.9 g / 0.2 N
|
niskie ryzyko |
| 20 mm |
87 Gs
8.7 mT
|
0.01 kg / 0.01 lbs
5.9 g / 0.1 N
|
niskie ryzyko |
| 30 mm |
30 Gs
3.0 mT
|
0.00 kg / 0.00 lbs
0.7 g / 0.0 N
|
niskie ryzyko |
| 50 mm |
7 Gs
0.7 mT
|
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
niskie ryzyko |
Tabela 2: Siła równoległa obsunięcia (pion)
MP 16x8/4x3 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg/lbs/g/N) |
|---|---|---|
| 0 mm | Stal (~0.2) |
0.56 kg / 1.23 lbs
556.0 g / 5.5 N
|
| 1 mm | Stal (~0.2) |
0.48 kg / 1.05 lbs
478.0 g / 4.7 N
|
| 2 mm | Stal (~0.2) |
0.38 kg / 0.84 lbs
382.0 g / 3.7 N
|
| 3 mm | Stal (~0.2) |
0.29 kg / 0.64 lbs
290.0 g / 2.8 N
|
| 5 mm | Stal (~0.2) |
0.15 kg / 0.33 lbs
148.0 g / 1.5 N
|
| 10 mm | Stal (~0.2) |
0.02 kg / 0.05 lbs
24.0 g / 0.2 N
|
| 15 mm | Stal (~0.2) |
0.00 kg / 0.01 lbs
4.0 g / 0.0 N
|
| 20 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
2.0 g / 0.0 N
|
| 30 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
Tabela 3: Siła na ścianie (poślizg) - zachowanie na śliskim podłożu
MP 16x8/4x3 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg/lbs/g/N) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
0.83 kg / 1.84 lbs
834.0 g / 8.2 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
0.56 kg / 1.23 lbs
556.0 g / 5.5 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
0.28 kg / 0.61 lbs
278.0 g / 2.7 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
1.39 kg / 3.06 lbs
1390.0 g / 13.6 N
|
Tabela 4: Grubość stali (nasycenie) - dobór blachy
MP 16x8/4x3 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg/lbs/g/N) |
|---|---|---|
| 0.5 mm |
|
0.28 kg / 0.61 lbs
278.0 g / 2.7 N
|
| 1 mm |
|
0.70 kg / 1.53 lbs
695.0 g / 6.8 N
|
| 2 mm |
|
1.39 kg / 3.06 lbs
1390.0 g / 13.6 N
|
| 3 mm |
|
2.09 kg / 4.60 lbs
2085.0 g / 20.5 N
|
| 5 mm |
|
2.78 kg / 6.13 lbs
2780.0 g / 27.3 N
|
| 10 mm |
|
2.78 kg / 6.13 lbs
2780.0 g / 27.3 N
|
| 11 mm |
|
2.78 kg / 6.13 lbs
2780.0 g / 27.3 N
|
| 12 mm |
|
2.78 kg / 6.13 lbs
2780.0 g / 27.3 N
|
Tabela 5: Stabilność termiczna (stabilność) - spadek mocy
MP 16x8/4x3 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig (kg/lbs/g/N) | Status |
|---|---|---|---|
| 20 °C | 0.0% |
2.78 kg / 6.13 lbs
2780.0 g / 27.3 N
|
OK |
| 40 °C | -2.2% |
2.72 kg / 5.99 lbs
2718.8 g / 26.7 N
|
OK |
| 60 °C | -4.4% |
2.66 kg / 5.86 lbs
2657.7 g / 26.1 N
|
|
| 80 °C | -6.6% |
2.60 kg / 5.72 lbs
2596.5 g / 25.5 N
|
|
| 100 °C | -28.8% |
1.98 kg / 4.36 lbs
1979.4 g / 19.4 N
|
Tabela 6: Interakcja magnes-magnes (odpychanie) - zasięg pola
MP 16x8/4x3 / N38
| Szczelina (mm) | Przyciąganie (kg/lbs) (N-S) | Siła zsuwania (kg/lbs/g/N) | Odpychanie (kg/lbs) (N-N) |
|---|---|---|---|
| 0 mm |
3.50 kg / 7.71 lbs
3 330 Gs
|
0.52 kg / 1.16 lbs
525 g / 5.1 N
|
N/A |
| 1 mm |
3.28 kg / 7.23 lbs
3 644 Gs
|
0.49 kg / 1.08 lbs
492 g / 4.8 N
|
2.95 kg / 6.51 lbs
~0 Gs
|
| 2 mm |
3.01 kg / 6.64 lbs
3 492 Gs
|
0.45 kg / 1.00 lbs
452 g / 4.4 N
|
2.71 kg / 5.97 lbs
~0 Gs
|
| 3 mm |
2.71 kg / 5.98 lbs
3 316 Gs
|
0.41 kg / 0.90 lbs
407 g / 4.0 N
|
2.44 kg / 5.39 lbs
~0 Gs
|
| 5 mm |
2.11 kg / 4.64 lbs
2 920 Gs
|
0.32 kg / 0.70 lbs
316 g / 3.1 N
|
1.90 kg / 4.18 lbs
~0 Gs
|
| 10 mm |
0.93 kg / 2.05 lbs
1 939 Gs
|
0.14 kg / 0.31 lbs
139 g / 1.4 N
|
0.84 kg / 1.84 lbs
~0 Gs
|
| 20 mm |
0.15 kg / 0.33 lbs
773 Gs
|
0.02 kg / 0.05 lbs
22 g / 0.2 N
|
0.13 kg / 0.29 lbs
~0 Gs
|
| 50 mm |
0.00 kg / 0.01 lbs
98 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 60 mm |
0.00 kg / 0.00 lbs
60 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 70 mm |
0.00 kg / 0.00 lbs
40 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 80 mm |
0.00 kg / 0.00 lbs
27 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 90 mm |
0.00 kg / 0.00 lbs
20 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 100 mm |
0.00 kg / 0.00 lbs
14 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
Tabela 7: Zagrożenia (elektronika) - środki ostrożności
MP 16x8/4x3 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 6.0 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 4.5 cm |
| Zegarek mechaniczny | 20 Gs (2.0 mT) | 3.5 cm |
| Telefon / Smartfon | 40 Gs (4.0 mT) | 3.0 cm |
| Kluczyk samochodowy | 50 Gs (5.0 mT) | 2.5 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 1.0 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 1.0 cm |
Tabela 8: Energia uderzenia (ryzyko pęknięcia) - ostrzeżenie
MP 16x8/4x3 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
26.50 km/h
(7.36 m/s)
|
0.11 J | |
| 30 mm |
44.74 km/h
(12.43 m/s)
|
0.33 J | |
| 50 mm |
57.74 km/h
(16.04 m/s)
|
0.55 J | |
| 100 mm |
81.66 km/h
(22.68 m/s)
|
1.09 J |
Tabela 9: Odporność na korozję
MP 16x8/4x3 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
Tabela 10: Dane elektryczne (Strumień)
MP 16x8/4x3 / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 3 743 Mx | 37.4 µWb |
| Współczynnik Pc | 0.24 | Niski (Płaski) |
Tabela 11: Hydrostatyka i wyporność
MP 16x8/4x3 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 2.78 kg | Standard |
| Woda (dno rzeki) |
3.18 kg
(+0.40 kg zysk z wyporności)
|
+14.5% |
1. Siła zsuwająca
*Pamiętaj: Na powierzchni pionowej magnes utrzyma zaledwie ok. 20-30% siły prostopadłej.
2. Grubość podłoża
*Zbyt cienki metal (np. blacha karoseryjna) znacząco osłabia udźwig magnesu.
3. Spadek mocy w temperaturze
*Dla materiału N38 granica bezpieczeństwa to 80°C.
4. Krzywa odmagnesowania i punkt pracy (B-H)
wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 0.24
Powyższy wykres prezentuje charakterystykę magnetyczną materiału w drugim kwadrancie pętli histerezy. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.
Specyfikacja materiałowa
| żelazo (Fe) | 64% – 68% |
| neodym (Nd) | 29% – 32% |
| bor (B) | 1.1% – 1.2% |
| dysproz (Dy) | 0.5% – 2.0% |
| powłoka (Ni-Cu-Ni) | < 0.05% |
Dane środowiskowe
| recyklowalność (EoL) | 100% |
| surowce z recyklingu | ~10% (pre-cons) |
| ślad węglowy | low / zredukowany |
| kod odpadu (EWC) | 16 02 16 |
Sprawdź inne oferty
Zalety oraz wady magnesów neodymowych Nd2Fe14B.
Zalety
- Długowieczność to ich atut – po upływie dekady utrata mocy wynosi tylko ~1% (wg testów).
- Charakteryzują się wyjątkową odpornością na demagnetyzację, nawet w obecności innych silnych magnesów.
- Powłoka ochronna (np. niklowa) zapewnia im metaliczny połysk, co ma znaczenie estetyczne.
- Generują skoncentrowane pole magnetyczne przy biegunach, co jest ich kluczową cechą.
- Wersje specjalistyczne funkcjonują w temperaturach sięgających 230°C, zachowując swoje właściwości.
- Elastyczność kształtowania – można je wykonać w rozmaitych formach, dopasowanych do wymagań klienta.
- Stanowią kluczowy element w innowacjach, zasilając układy napędowe, urządzenia medyczne czy komputery.
- Mały rozmiar, wielka moc – przy niewielkich gabarytach oferują potężny udźwig, co jest kluczowe przy budowie małych urządzeń.
Minusy
- Ze względu na brak elastyczności, wymagają ostrożności. Silne uderzenie może je zniszczyć, stąd zalecenie stosowania osłon.
- Wrażliwość na ciepło: przekroczenie 80°C może trwale osłabić magnes (zależnie od bryły). Rozwiązaniem są nasze magnesy wysokotemperaturowe [AH].
- Nie lubią wody – szybko rdzewieją. Jeśli planujesz montaż na dworze, najlepszą opcją są magnesy w plastikowej osłonie.
- Trudności montażowe: zamiast próbować gwintować kruchy magnes, skorzystaj z uchwytów w stalowej obudowie, które posiadają gotowe mocowania.
- Drobne magnesy to ryzyko – połknięcie wymaga interwencji chirurga. Mogą też być problemem przy badaniach lekarskich.
- Za jakość trzeba płacić – magnesy neodymowe są droższe od ceramicznych, co wpływa na budżet projektu.
Parametry udźwigu
Maksymalna siła przyciągania magnesu – co ma na to wpływ?
- przy użyciu blachy ze specjalnej stali pomiarowej, zapewniającej pełne nasycenie magnetyczne
- której wymiar poprzeczny wynosi ok. 10 mm
- z powierzchnią oczyszczoną i gładką
- przy zerowej szczelinie (bez zanieczyszczeń)
- przy pionowym wektorze siły (kąt 90 stopni)
- w warunkach ok. 20°C
Udźwig w warunkach rzeczywistych – czynniki
- Odstęp (między magnesem a metalem), bowiem nawet bardzo mała odległość (np. 0,5 mm) może spowodować drastyczny spadek udźwigu nawet o 50% (dotyczy to także farby, korozji czy zanieczyszczeń).
- Kierunek siły – parametr katalogowy dotyczy odrywania w pionie. Przy sile działającej równolegle, magnes trzyma znacznie mniejszą moc (zazwyczaj ok. 20-30% siły nominalnej).
- Grubość elementu – dla pełnej efektywności, stal musi być odpowiednio gruba. Cienka blacha limituje udźwig (magnes „przebija” ją na wylot).
- Typ metalu – nie każda stal reaguje tak samo. Dodatki stopowe osłabiają efekt przyciągania.
- Stan powierzchni – szlifowane elementy zapewniają maksymalny styk, co poprawia nasycenie pola. Nierówny metal zmniejszają efektywność.
- Czynnik termiczny – gorące środowisko osłabia pole magnetyczne. Zbyt wysoka temperatura może trwale rozmagnesować magnes.
Siłę trzymania sprawdzano na powierzchni blachy o grubości 20 mm, kiedy przyłożono siłę prostopadłą, natomiast przy próbie przesunięcia magnesu udźwig jest mniejszy nawet pięć razy. Ponadto, nawet drobny odstęp między powierzchnią magnesu, a blachą zmniejsza udźwig.
BHP przy magnesach
Bezpieczna praca
Przed użyciem, zapoznaj się z zasadami. Gwałtowne złączenie może zniszczyć magnes lub zranić dłoń. Bądź przewidujący.
Uszkodzenia czujników
Pamiętaj: magnesy neodymowe wytwarzają pole, które mylą elektronikę precyzyjną. Utrzymuj bezpieczny dystans od telefonu, tabletu i nawigacji.
Podatność na pękanie
Magnesy neodymowe to materiał ceramiczny, co oznacza, że są łamliwe jak szkło. Upadek dwóch magnesów wywoła ich rozpryśnięcie na drobne kawałki.
Maksymalna temperatura
Unikaj gorąca. Magnesy neodymowe są wrażliwe na temperaturę. Jeśli potrzebujesz odporności powyżej 80°C, wybierz specjalne serie wysokotemperaturowe (H, SH, UH).
Niszczenie danych
Zagrożenie dla danych: Magnesy neodymowe mogą uszkodzić nośniki danych oraz urządzenia precyzyjne (rozruszniki serca, protezy słuchu, zegarki mechaniczne).
Ostrzeżenie dla alergików
Wiedza medyczna potwierdza, że powłoka niklowa (standardowe zabezpieczenie magnesów) jest silnym alergenem. Jeśli Twoja skóra źle reaguje na metale, unikaj trzymania magnesów gołą dłonią lub zakup magnesy powlekane tworzywem.
Rozruszniki serca
Zagrożenie życia: Magnesy neodymowe mogą dezaktywować stymulatory i defibrylatory. Unikaj kontaktu, jeśli masz wszczepione urządzenia wspomagające.
Uwaga: zadławienie
Neodymowe magnesy nie służą do zabawy. Połknięcie dwóch lub więcej magnesów może skutkować ich przyciągnięciem przez ścianki jelit, co stanowi stan krytyczny i wymaga pilnej interwencji chirurgicznej.
Ryzyko złamań
Chroń dłonie. Dwa duże magnesy zderzą z ogromną prędkością z siłą kilkuset kilogramów, miażdżąc wszystko na swojej drodze. Bądź ostrożny!
Łatwopalność
Uwaga na ogień: Pył neodymowy jest skrajnie łatwopalny. Nie poddawaj magnesów obróbce w warunkach domowych, gdyż może to wywołać pożar.
