MP 16x8/4x3 / N38 - magnes neodymowy pierścieniowy
magnes neodymowy pierścieniowy
Numer katalogowy 030396
GTIN/EAN: 5906301812333
Średnica
16 mm [±0,1 mm]
Średnica wewnętrzna Ø
8/4 mm [±0,1 mm]
Wysokość
3 mm [±0,1 mm]
Waga
4.24 g
Kierunek magnesowania
↑ osiowy
Udźwig
2.78 kg / 27.29 N
Indukcja magnetyczna
217.61 mT / 2176 Gs
Powłoka
[NiCuNi] nikiel
2.50 ZŁ z VAT / szt. + cena za transport
2.03 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?
Zadzwoń do nas
+48 22 499 98 98
lub zostaw wiadomość przez
nasz formularz online
na stronie kontaktowej.
Parametry i budowę magnesów obliczysz dzięki naszemu
kalkulatorze siły.
Zamów do 14:00, a wyślemy dziś!
Dane - MP 16x8/4x3 / N38 - magnes neodymowy pierścieniowy
Specyfikacja / charakterystyka - MP 16x8/4x3 / N38 - magnes neodymowy pierścieniowy
| właściwości | wartości |
|---|---|
| Nr kat. | 030396 |
| GTIN/EAN | 5906301812333 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Średnica | 16 mm [±0,1 mm] |
| Średnica wewnętrzna Ø | 8/4 mm [±0,1 mm] |
| Wysokość | 3 mm [±0,1 mm] |
| Waga | 4.24 g |
| Kierunek magnesowania | ↑ osiowy |
| Udźwig ~ ? | 2.78 kg / 27.29 N |
| Indukcja magnetyczna ~ ? | 217.61 mT / 2176 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [min. - maks.] ? | 12.2-12.6 | kGs |
| remanencja Br [min. - maks.] ? | 1220-1260 | mT |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [min. - maks.] ? | 36-38 | BH max MGOe |
| gęstość energii [min. - maks.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Temperatura Curie TC | 312 - 380 | °C |
| Temperatura Curie TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅cm |
| Siła wyginania | 250 | MPa |
| Wytrzymałość na ściskanie | 1000~1100 | MPa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 10-6 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Analiza techniczna magnesu - parametry techniczne
Niniejsze wartości stanowią bezpośredni efekt symulacji matematycznej. Wyniki oparte są na modelach dla materiału Nd2Fe14B. Realne osiągi mogą różnić się od wartości teoretycznych. Prosimy traktować te dane jako wstępny drogowskaz podczas planowania montażu.
Tabela 1: Siła prostopadła statyczna (udźwig vs dystans) - charakterystyka
MP 16x8/4x3 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg)(gram)(Niuton) | Status ryzyka |
|---|---|---|---|
| 0 mm |
1882 Gs
188.2 mT
|
2.78 kg / 2780.0 g
27.3 N
|
średnie ryzyko |
| 1 mm |
1746 Gs
174.6 mT
|
2.39 kg / 2392.4 g
23.5 N
|
średnie ryzyko |
| 2 mm |
1561 Gs
156.1 mT
|
1.91 kg / 1913.9 g
18.8 N
|
słaby uchwyt |
| 3 mm |
1357 Gs
135.7 mT
|
1.45 kg / 1445.8 g
14.2 N
|
słaby uchwyt |
| 5 mm |
969 Gs
96.9 mT
|
0.74 kg / 737.7 g
7.2 N
|
słaby uchwyt |
| 10 mm |
387 Gs
38.7 mT
|
0.12 kg / 117.4 g
1.2 N
|
słaby uchwyt |
| 15 mm |
171 Gs
17.1 mT
|
0.02 kg / 22.9 g
0.2 N
|
słaby uchwyt |
| 20 mm |
87 Gs
8.7 mT
|
0.01 kg / 5.9 g
0.1 N
|
słaby uchwyt |
| 30 mm |
30 Gs
3.0 mT
|
0.00 kg / 0.7 g
0.0 N
|
słaby uchwyt |
| 50 mm |
7 Gs
0.7 mT
|
0.00 kg / 0.0 g
0.0 N
|
słaby uchwyt |
Tabela 2: Siła równoległa obsunięcia (ściana)
MP 16x8/4x3 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg)(gram)(Niuton) |
|---|---|---|
| 0 mm | Stal (~0.2) |
0.56 kg / 556.0 g
5.5 N
|
| 1 mm | Stal (~0.2) |
0.48 kg / 478.0 g
4.7 N
|
| 2 mm | Stal (~0.2) |
0.38 kg / 382.0 g
3.7 N
|
| 3 mm | Stal (~0.2) |
0.29 kg / 290.0 g
2.8 N
|
| 5 mm | Stal (~0.2) |
0.15 kg / 148.0 g
1.5 N
|
| 10 mm | Stal (~0.2) |
0.02 kg / 24.0 g
0.2 N
|
| 15 mm | Stal (~0.2) |
0.00 kg / 4.0 g
0.0 N
|
| 20 mm | Stal (~0.2) |
0.00 kg / 2.0 g
0.0 N
|
| 30 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
Tabela 3: Siła na ścianie (poślizg) - zachowanie na śliskim podłożu
MP 16x8/4x3 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
0.83 kg / 834.0 g
8.2 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
0.56 kg / 556.0 g
5.5 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
0.28 kg / 278.0 g
2.7 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
1.39 kg / 1390.0 g
13.6 N
|
Tabela 4: Efektywność materiałowa (wpływ podłoża) - dobór blachy
MP 16x8/4x3 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg) |
|---|---|---|
| 0.5 mm |
|
0.28 kg / 278.0 g
2.7 N
|
| 1 mm |
|
0.70 kg / 695.0 g
6.8 N
|
| 2 mm |
|
1.39 kg / 1390.0 g
13.6 N
|
| 5 mm |
|
2.78 kg / 2780.0 g
27.3 N
|
| 10 mm |
|
2.78 kg / 2780.0 g
27.3 N
|
Tabela 5: Stabilność termiczna (stabilność) - spadek mocy
MP 16x8/4x3 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig | Status |
|---|---|---|---|
| 20 °C | 0.0% |
2.78 kg / 2780.0 g
27.3 N
|
OK |
| 40 °C | -2.2% |
2.72 kg / 2718.8 g
26.7 N
|
OK |
| 60 °C | -4.4% |
2.66 kg / 2657.7 g
26.1 N
|
|
| 80 °C | -6.6% |
2.60 kg / 2596.5 g
25.5 N
|
|
| 100 °C | -28.8% |
1.98 kg / 1979.4 g
19.4 N
|
Tabela 6: Dwa magnesy (przyciąganie) - kolizja pól
MP 16x8/4x3 / N38
| Szczelina (mm) | Przyciąganie (kg) (N-S) | Odpychanie (kg) (N-N) |
|---|---|---|
| 0 mm |
3.50 kg / 3498 g
34.3 N
3 330 Gs
|
N/A |
| 1 mm |
3.28 kg / 3279 g
32.2 N
3 644 Gs
|
2.95 kg / 2951 g
28.9 N
~0 Gs
|
| 2 mm |
3.01 kg / 3010 g
29.5 N
3 492 Gs
|
2.71 kg / 2709 g
26.6 N
~0 Gs
|
| 3 mm |
2.71 kg / 2715 g
26.6 N
3 316 Gs
|
2.44 kg / 2443 g
24.0 N
~0 Gs
|
| 5 mm |
2.11 kg / 2106 g
20.7 N
2 920 Gs
|
1.90 kg / 1896 g
18.6 N
~0 Gs
|
| 10 mm |
0.93 kg / 928 g
9.1 N
1 939 Gs
|
0.84 kg / 835 g
8.2 N
~0 Gs
|
| 20 mm |
0.15 kg / 148 g
1.4 N
773 Gs
|
0.13 kg / 133 g
1.3 N
~0 Gs
|
| 50 mm |
0.00 kg / 2 g
0.0 N
98 Gs
|
0.00 kg / 0 g
0.0 N
~0 Gs
|
Tabela 7: Strefy ochronne (elektronika) - ostrzeżenia
MP 16x8/4x3 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 6.0 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 4.5 cm |
| Zegarek mechaniczny | 20 Gs (2.0 mT) | 3.5 cm |
| Telefon / Smartfon | 40 Gs (4.0 mT) | 3.0 cm |
| Pilot do auta | 50 Gs (5.0 mT) | 2.5 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 1.0 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 1.0 cm |
Tabela 8: Zderzenia (energia kinetyczna) - ostrzeżenie
MP 16x8/4x3 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
26.50 km/h
(7.36 m/s)
|
0.11 J | |
| 30 mm |
44.74 km/h
(12.43 m/s)
|
0.33 J | |
| 50 mm |
57.74 km/h
(16.04 m/s)
|
0.55 J | |
| 100 mm |
81.66 km/h
(22.68 m/s)
|
1.09 J |
Tabela 9: Specyfikacja ochrony powierzchni
MP 16x8/4x3 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
Tabela 10: Dane elektryczne (Strumień)
MP 16x8/4x3 / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 3 743 Mx | 37.4 µWb |
| Współczynnik Pc | 0.24 | Niski (Płaski) |
Tabela 11: Fizyka poszukiwań podwodnych
MP 16x8/4x3 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 2.78 kg | Standard |
| Woda (dno rzeki) |
3.18 kg
(+0.40 kg Zysk z wyporności)
|
+14.5% |
1. Ześlizg (ściana)
*Pamiętaj: Na pionowej ścianie magnes zachowa tylko ~20-30% siły prostopadłej.
2. Nasycenie magnetyczne
*Cienka blacha (np. blacha karoseryjna) znacząco ogranicza siłę trzymania.
3. Spadek mocy w temperaturze
*W klasie N38 krytyczny próg to 80°C.
4. Krzywa odmagnesowania i punkt pracy (B-H)
wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 0.24
Niniejsza symulacja obrazuje stabilność magnetyczną wybranego magnesu w konkretnych warunkach geometrycznych. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.
Skład chemiczny materiału
| żelazo (Fe) | 64% – 68% |
| neodym (Nd) | 29% – 32% |
| bor (B) | 1.1% – 1.2% |
| dysproz (Dy) | 0.5% – 2.0% |
| powłoka (Ni-Cu-Ni) | < 0.05% |
Ekologia i recykling (GPSR)
| recyklowalność (EoL) | 100% |
| surowce z recyklingu | ~10% (pre-cons) |
| ślad węglowy | low / zredukowany |
| kod odpadu (EWC) | 16 02 16 |
Sprawdź inne oferty
Wady i zalety neodymowych magnesów Nd2Fe14B.
Mocne strony
- Ich parametry są stabilne w czasie; po 10 latach eksploatacji zmniejszenie udźwigu to marginalne ~1%.
- Zewnętrzne pola magnetyczne nie powodują ich szybkiego rozmagnesowania – posiadają dużą zdolność koercji.
- Warstwa ochronna (np. niklowa) zapewnia im metaliczny połysk, co ma znaczenie estetyczne.
- Wytwarzają niezwykle silne pole magnetyczne na swojej powierzchni, co jest ich znakiem rozpoznawczym.
- Są przystosowane do pracy w gorącym otoczeniu – wybrane modele znoszą temperaturę do 230°C (zależnie od proporcji).
- Można je precyzyjnie obrabiać do specyficznych wymiarów, co ułatwia ich adaptację w skomplikowanych urządzeniach.
- Stanowią kluczowy element w technologiach przyszłości, zasilając układy napędowe, urządzenia medyczne czy elektronikę użytkową.
- Dzięki kompaktowości, nie wymagają dużej przestrzeni, a jednocześnie zapewniają wysoką skuteczność.
Ograniczenia
- Pamiętaj o ich kruchości – bez zabezpieczenia mogą pękać przy gwałtownym zwarciu.
- Wrażliwość na ciepło: przekroczenie 80°C może trwale osłabić magnes (zależnie od bryły). Rozwiązaniem są nasze magnesy wysokotemperaturowe [AH].
- Brak odporności na wodę skutkuje utlenianiem. Do zadań zewnętrznych sugerujemy wyłącznie magnesy zabezpieczone antykorozyjnie (plastik/guma).
- Obróbka jest trudna – wykonanie gwintu w samym magnesie jest ryzykowne. Lepiej wybrać gotowe uchwyty magnetyczne (magnes w obudowie).
- Ryzyko połknięcia – drobne magnesy są niebezpieczne dla dzieci. Połknięcie kilku sztuk grozi operacją. Dodatkowo mogą utrudniać badania (np. rezonans).
- Wysoki koszt zakupu w porównaniu do ferrytów to ich minus, szczególnie przy zakupach hurtowych.
Parametry udźwigu
Najlepsza nośność magnesu w idealnych parametrach – od czego zależy?
- przy użyciu zwory ze specjalnej stali pomiarowej, gwarantującej pełne nasycenie magnetyczne
- o grubości wynoszącej minimum 10 mm
- z płaszczyzną wolną od rys
- bez najmniejszej warstwy izolującej pomiędzy magnesem a stalą
- dla siły przyłożonej pod kątem prostym (na odrywanie, nie zsuwanie)
- w temperaturze pokojowej
Kluczowe elementy wpływające na udźwig
- Szczelina między powierzchniami – nawet ułamek milimetra dystansu (spowodowany np. lakierem lub brudem) zmniejsza efektywność magnesu, często o połowę przy zaledwie 0,5 mm.
- Kąt odrywania – należy wiedzieć, że magnes ma największą siłę prostopadle. Przy zsuwaniu w dół, udźwig spada drastycznie, często do poziomu 20-30% wartości nominalnej.
- Grubość metalu – im cieńsza blacha, tym słabsze trzymanie. Strumień magnetyczny przechodzi przez materiał, zamiast zamienić się w udźwig.
- Gatunek stali – idealnym podłożem jest stal o wysokiej przenikalności. Stale hartowane mogą przyciągać słabiej.
- Wykończenie powierzchni – idealny styk jest możliwy tylko na gładkiej stali. Chropowata faktura zmniejszają realną powierzchnię styku, osłabiając magnes.
- Warunki termiczne – spieki NdFeB posiadają wrażliwość na temperaturę. W wyższych temperaturach tracą moc, a w niskich zyskują na sile (do pewnej granicy).
Udźwig określano z wykorzystaniem gładkiej blachy o optymalnej grubości (min. 20 mm), przy siłach działających pionowo, natomiast przy działaniu siły na zsuwanie siła trzymania jest mniejsza nawet 75%. Ponadto, nawet drobny odstęp pomiędzy powierzchnią magnesu, a blachą redukuje udźwig.
BHP przy magnesach
Podatność na pękanie
Chroń oczy. Magnesy mogą pęknąć przy gwałtownym złączeniu, rozrzucając kawałki metalu w powietrze. Ochrona wzroku wymagana.
Uszkodzenia ciała
Ryzyko obrażeń: Siła przyciągania jest tak duża, że może wywołać krwiaki, zgniecenia, a nawet otwarte złamania. Używaj grubych rękawic.
Zagrożenie wybuchem pyłu
Szlifowanie magnesów neodymowych grozi pożarem. Pył neodymowy reaguje gwałtownie z tlenem i jest niebezpieczny.
Dla uczulonych
Ostrzeżenie dla alergików: warstwa ochronna Ni-Cu-Ni zawiera nikiel. W przypadku pojawienia się świądu lub podrażnienia, należy bezzwłocznie zakończyć pracę z magnesami i zabezpieczyć dłonie.
Zasady obsługi
Bądź ostrożny. Magnesy neodymowe działają z dużej odległości i zwierają z impetem, często szybciej niż zdążysz zareagować.
Temperatura pracy
Kontroluj ciepło. Ekspozycja magnesu na wysoką temperaturę zdegraduje jego domenę magnetyczną i siłę przyciągania.
Wpływ na zdrowie
Ostrzeżenie dla sercowców: Silne pole magnetyczne zakłóca urządzenia medyczne. Utrzymuj co najmniej 30 cm odstępu lub poproś inną osobę pracę z magnesów.
Urządzenia elektroniczne
Bardzo silne oddziaływanie może zniszczyć zapis na kartach kredytowych, dyskach twardych i innych pamięciach. Utrzymuj odległość min. 10 cm.
Wpływ na smartfony
Moduły GPS i smartfony są niezwykle podatne na wpływ magnesów. Bezpośredni kontakt z silnym magnesem może rozalibrować sensory w Twoim telefonie.
Uwaga: zadławienie
Silne magnesy to nie zabawki. Przypadkowe zjedzenie kilku magnesów może doprowadzić do ich zaciśnięciem jelit, co stanowi śmiertelne niebezpieczeństwo i wymaga natychmiastowej operacji.
