MW 100x30 / N38 - magnes neodymowy walcowy
magnes neodymowy walcowy
Numer katalogowy 010002
GTIN/EAN: 5906301810025
Średnica Ø
100 mm [±0,1 mm]
Wysokość
30 mm [±0,1 mm]
Waga
1767.15 g
Kierunek magnesowania
↑ osiowy
Udźwig
215.17 kg / 2110.78 N
Indukcja magnetyczna
318.96 mT / 3190 Gs
Powłoka
[NiCuNi] nikiel
650.01 ZŁ z VAT / szt. + cena za transport
528.46 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?
Zadzwoń i zapytaj
+48 888 99 98 98
lub pisz poprzez
formularz zapytania
w sekcji kontakt.
Właściwości oraz budowę elementów magnetycznych sprawdzisz dzięki naszemu
naszym kalkulatorze magnetycznym.
Zamów do 14:00, a wyślemy dziś!
Szczegółowa specyfikacja MW 100x30 / N38 - magnes neodymowy walcowy
Specyfikacja / charakterystyka - MW 100x30 / N38 - magnes neodymowy walcowy
| właściwości | wartości |
|---|---|
| Nr kat. | 010002 |
| GTIN/EAN | 5906301810025 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Średnica Ø | 100 mm [±0,1 mm] |
| Wysokość | 30 mm [±0,1 mm] |
| Waga | 1767.15 g |
| Kierunek magnesowania | ↑ osiowy |
| Udźwig ~ ? | 215.17 kg / 2110.78 N |
| Indukcja magnetyczna ~ ? | 318.96 mT / 3190 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [min. - maks.] ? | 12.2-12.6 | kGs |
| remanencja Br [min. - maks.] ? | 1220-1260 | mT |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [min. - maks.] ? | 36-38 | BH max MGOe |
| gęstość energii [min. - maks.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Temperatura Curie TC | 312 - 380 | °C |
| Temperatura Curie TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅cm |
| Siła wyginania | 250 | MPa |
| Wytrzymałość na ściskanie | 1000~1100 | MPa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 10-6 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Analiza fizyczna magnesu neodymowego - raport
Niniejsze informacje są bezpośredni efekt symulacji matematycznej. Wartości bazują na modelach dla klasy Nd2Fe14B. Rzeczywiste warunki mogą nieznacznie różnić się od wartości teoretycznych. Prosimy traktować te wyliczenia jako wstępny drogowskaz dla projektantów.
Tabela 1: Udźwig statyczny prostopadły (udźwig vs odległość) - spadek mocy
MW 100x30 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg/lbs/g/N) | Status ryzyka |
|---|---|---|---|
| 0 mm |
3189 Gs
318.9 mT
|
215.17 kg / 474.37 lbs
215170.0 g / 2110.8 N
|
miażdżący |
| 1 mm |
3143 Gs
314.3 mT
|
208.96 kg / 460.68 lbs
208959.6 g / 2049.9 N
|
miażdżący |
| 2 mm |
3094 Gs
309.4 mT
|
202.53 kg / 446.51 lbs
202531.7 g / 1986.8 N
|
miażdżący |
| 3 mm |
3044 Gs
304.4 mT
|
195.98 kg / 432.07 lbs
195982.5 g / 1922.6 N
|
miażdżący |
| 5 mm |
2939 Gs
293.9 mT
|
182.65 kg / 402.68 lbs
182651.7 g / 1791.8 N
|
miażdżący |
| 10 mm |
2657 Gs
265.7 mT
|
149.35 kg / 329.26 lbs
149349.8 g / 1465.1 N
|
miażdżący |
| 15 mm |
2366 Gs
236.6 mT
|
118.41 kg / 261.05 lbs
118412.6 g / 1161.6 N
|
miażdżący |
| 20 mm |
2081 Gs
208.1 mT
|
91.64 kg / 202.03 lbs
91640.5 g / 899.0 N
|
miażdżący |
| 30 mm |
1573 Gs
157.3 mT
|
52.34 kg / 115.40 lbs
52344.5 g / 513.5 N
|
miażdżący |
| 50 mm |
874 Gs
87.4 mT
|
16.14 kg / 35.58 lbs
16140.3 g / 158.3 N
|
miażdżący |
Tabela 2: Równoległa siła obsunięcia (ściana)
MW 100x30 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg/lbs/g/N) |
|---|---|---|
| 0 mm | Stal (~0.2) |
43.03 kg / 94.87 lbs
43034.0 g / 422.2 N
|
| 1 mm | Stal (~0.2) |
41.79 kg / 92.14 lbs
41792.0 g / 410.0 N
|
| 2 mm | Stal (~0.2) |
40.51 kg / 89.30 lbs
40506.0 g / 397.4 N
|
| 3 mm | Stal (~0.2) |
39.20 kg / 86.41 lbs
39196.0 g / 384.5 N
|
| 5 mm | Stal (~0.2) |
36.53 kg / 80.53 lbs
36530.0 g / 358.4 N
|
| 10 mm | Stal (~0.2) |
29.87 kg / 65.85 lbs
29870.0 g / 293.0 N
|
| 15 mm | Stal (~0.2) |
23.68 kg / 52.21 lbs
23682.0 g / 232.3 N
|
| 20 mm | Stal (~0.2) |
18.33 kg / 40.41 lbs
18328.0 g / 179.8 N
|
| 30 mm | Stal (~0.2) |
10.47 kg / 23.08 lbs
10468.0 g / 102.7 N
|
| 50 mm | Stal (~0.2) |
3.23 kg / 7.12 lbs
3228.0 g / 31.7 N
|
Tabela 3: Montaż pionowy (ścinanie) - zachowanie na śliskim podłożu
MW 100x30 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg/lbs/g/N) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
64.55 kg / 142.31 lbs
64551.0 g / 633.2 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
43.03 kg / 94.87 lbs
43034.0 g / 422.2 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
21.52 kg / 47.44 lbs
21517.0 g / 211.1 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
107.59 kg / 237.18 lbs
107585.0 g / 1055.4 N
|
Tabela 4: Efektywność materiałowa (nasycenie) - dobór blachy
MW 100x30 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg/lbs/g/N) |
|---|---|---|
| 0.5 mm |
|
7.17 kg / 15.81 lbs
7172.3 g / 70.4 N
|
| 1 mm |
|
17.93 kg / 39.53 lbs
17930.8 g / 175.9 N
|
| 2 mm |
|
35.86 kg / 79.06 lbs
35861.7 g / 351.8 N
|
| 3 mm |
|
53.79 kg / 118.59 lbs
53792.5 g / 527.7 N
|
| 5 mm |
|
89.65 kg / 197.65 lbs
89654.2 g / 879.5 N
|
| 10 mm |
|
179.31 kg / 395.31 lbs
179308.3 g / 1759.0 N
|
| 11 mm |
|
197.24 kg / 434.84 lbs
197239.2 g / 1934.9 N
|
| 12 mm |
|
215.17 kg / 474.37 lbs
215170.0 g / 2110.8 N
|
Tabela 5: Stabilność termiczna (stabilność) - spadek mocy
MW 100x30 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig (kg/lbs/g/N) | Status |
|---|---|---|---|
| 20 °C | 0.0% |
215.17 kg / 474.37 lbs
215170.0 g / 2110.8 N
|
OK |
| 40 °C | -2.2% |
210.44 kg / 463.93 lbs
210436.3 g / 2064.4 N
|
OK |
| 60 °C | -4.4% |
205.70 kg / 453.50 lbs
205702.5 g / 2017.9 N
|
|
| 80 °C | -6.6% |
200.97 kg / 443.06 lbs
200968.8 g / 1971.5 N
|
|
| 100 °C | -28.8% |
153.20 kg / 337.75 lbs
153201.0 g / 1502.9 N
|
Tabela 6: Interakcja magnes-magnes (odpychanie) - siły w układzie
MW 100x30 / N38
| Szczelina (mm) | Przyciąganie (kg/lbs) (N-S) | Opór ścinania (kg/lbs/g/N) | Odpychanie (kg/lbs) (N-N) |
|---|---|---|---|
| 0 mm |
492.55 kg / 1085.88 lbs
4 762 Gs
|
73.88 kg / 162.88 lbs
73882 g / 724.8 N
|
N/A |
| 1 mm |
485.56 kg / 1070.47 lbs
6 333 Gs
|
72.83 kg / 160.57 lbs
72834 g / 714.5 N
|
437.00 kg / 963.42 lbs
~0 Gs
|
| 2 mm |
478.33 kg / 1054.54 lbs
6 286 Gs
|
71.75 kg / 158.18 lbs
71749 g / 703.9 N
|
430.50 kg / 949.08 lbs
~0 Gs
|
| 3 mm |
471.01 kg / 1038.40 lbs
6 238 Gs
|
70.65 kg / 155.76 lbs
70652 g / 693.1 N
|
423.91 kg / 934.56 lbs
~0 Gs
|
| 5 mm |
456.15 kg / 1005.64 lbs
6 139 Gs
|
68.42 kg / 150.85 lbs
68422 g / 671.2 N
|
410.53 kg / 905.07 lbs
~0 Gs
|
| 10 mm |
418.11 kg / 921.77 lbs
5 877 Gs
|
62.72 kg / 138.27 lbs
62716 g / 615.2 N
|
376.30 kg / 829.59 lbs
~0 Gs
|
| 20 mm |
341.88 kg / 753.71 lbs
5 314 Gs
|
51.28 kg / 113.06 lbs
51282 g / 503.1 N
|
307.69 kg / 678.34 lbs
~0 Gs
|
| 50 mm |
159.49 kg / 351.61 lbs
3 630 Gs
|
23.92 kg / 52.74 lbs
23923 g / 234.7 N
|
143.54 kg / 316.45 lbs
~0 Gs
|
| 60 mm |
119.82 kg / 264.16 lbs
3 146 Gs
|
17.97 kg / 39.62 lbs
17973 g / 176.3 N
|
107.84 kg / 237.75 lbs
~0 Gs
|
| 70 mm |
89.40 kg / 197.09 lbs
2 718 Gs
|
13.41 kg / 29.56 lbs
13410 g / 131.6 N
|
80.46 kg / 177.38 lbs
~0 Gs
|
| 80 mm |
66.51 kg / 146.64 lbs
2 344 Gs
|
9.98 kg / 22.00 lbs
9977 g / 97.9 N
|
59.86 kg / 131.97 lbs
~0 Gs
|
| 90 mm |
49.50 kg / 109.14 lbs
2 022 Gs
|
7.43 kg / 16.37 lbs
7426 g / 72.8 N
|
44.55 kg / 98.22 lbs
~0 Gs
|
| 100 mm |
36.95 kg / 81.45 lbs
1 747 Gs
|
5.54 kg / 12.22 lbs
5542 g / 54.4 N
|
33.25 kg / 73.31 lbs
~0 Gs
|
Tabela 7: Zagrożenia (implanty) - ostrzeżenia
MW 100x30 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 44.0 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 34.5 cm |
| Zegarek mechaniczny | 20 Gs (2.0 mT) | 27.0 cm |
| Telefon / Smartfon | 40 Gs (4.0 mT) | 21.0 cm |
| Pilot do auta | 50 Gs (5.0 mT) | 19.0 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 8.0 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 6.5 cm |
Tabela 8: Dynamika (energia kinetyczna) - skutki zderzenia
MW 100x30 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
15.21 km/h
(4.22 m/s)
|
15.77 J | |
| 30 mm |
22.01 km/h
(6.11 m/s)
|
33.03 J | |
| 50 mm |
26.02 km/h
(7.23 m/s)
|
46.17 J | |
| 100 mm |
35.32 km/h
(9.81 m/s)
|
85.04 J |
Tabela 9: Trwałość powłoki antykorozyjnej
MW 100x30 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
Tabela 10: Dane konstrukcyjne (Strumień)
MW 100x30 / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 269 425 Mx | 2694.3 µWb |
| Współczynnik Pc | 0.40 | Niski (Płaski) |
Tabela 11: Fizyka poszukiwań podwodnych
MW 100x30 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 215.17 kg | Standard |
| Woda (dno rzeki) |
246.37 kg
(+31.20 kg zysk z wyporności)
|
+14.5% |
1. Ześlizg (ściana)
*Uwaga: Na pionowej ścianie magnes utrzyma tylko ~20-30% nominalnego udźwigu.
2. Wpływ grubości blachy
*Zbyt cienki metal (np. obudowa PC 0.5mm) wyraźnie redukuje udźwig magnesu.
3. Praca w cieple
*Dla standardowych magnesów granica bezpieczeństwa to 80°C.
4. Krzywa odmagnesowania i punkt pracy (B-H)
wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 0.40
Powyższy wykres prezentuje charakterystykę magnetyczną materiału w drugim kwadrancie pętli histerezy. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.
Skład chemiczny materiału
| żelazo (Fe) | 64% – 68% |
| neodym (Nd) | 29% – 32% |
| bor (B) | 1.1% – 1.2% |
| dysproz (Dy) | 0.5% – 2.0% |
| powłoka (Ni-Cu-Ni) | < 0.05% |
Zrównoważony rozwój
| recyklowalność (EoL) | 100% |
| surowce z recyklingu | ~10% (pre-cons) |
| ślad węglowy | low / zredukowany |
| kod odpadu (EWC) | 16 02 16 |
Inne produkty
Wady i zalety magnesów z neodymu Nd2Fe14B.
Korzyści
- Zachowują swoje właściwości przez lata – zakłada się, że po dekadzie słabną o niezauważalny 1%.
- Są stabilne magnetycznie, gdyż wykazują potężną odporność na pola rozmagnesowujące.
- Pokrycie materiałami takimi jak nikiel czy złoto nadaje im elegancki i gładki charakter.
- Indukcja magnetyczna na powierzchni tych magnesów jest imponująca, co czyni je najwydajniejszymi w swojej klasie.
- Wykazują imponującą wytrzymałość termiczną, co pozwala na ich użycie w warunkach do 230°C (dotyczy odpowiednich serii).
- Szerokie możliwości w doborze kształtu i wymiaru to ich wielka zaleta w inżynierii.
- Znajdują powszechne zastosowanie w przemyśle high-tech – od dysków twardych i silników, po precyzyjną aparaturę medyczną.
- Dzięki kompaktowości, zajmują mało miejsca, a jednocześnie zapewniają silne pole.
Ograniczenia
- Kruchość to ich mankament. Łatwo ulegają uszkodzeniu przy upadku, dlatego zalecamy osłony lub montaż w stali.
- Standardowe magnesy tracą moc powyżej 80°C. Jeśli wymagasz pracy w wyższych temperaturach, wybierz serię [AH] (odporną do 230°C).
- Ryzyko korozji: bez osłony magnes zardzewieje na deszczu. Wybierz wersje powlekane tworzywem do zastosowań zewnętrznych.
- Z uwagi na specyfikę materiału, nie zaleca się obróbki mechanicznej magnesu. Prościej użyć magnesu wklejonego w gniazdo z gwintem.
- Zachowaj ostrożność – połknięcie magnesów przez dziecko to stan krytyczny. Ponadto, ich obecność w ciele komplikuje diagnostykę obrazową.
- Za jakość trzeba płacić – magnesy neodymowe są droższe od ceramicznych, co wpływa na budżet projektu.
Parametry udźwigu
Najwyższa nośność magnesu – od czego zależy?
- na bloku wykonanej ze stali miękkiej, optymalnie przewodzącej pole magnetyczne
- o przekroju nie mniejszej niż 10 mm
- charakteryzującej się brakiem chropowatości
- w warunkach idealnego przylegania (metal do metalu)
- przy pionowym przyłożeniu siły odrywającej (kąt 90 stopni)
- w temperaturze pokojowej
Praktyczny udźwig: czynniki wpływające
- Szczelina powietrzna (między magnesem a metalem), ponieważ nawet mikroskopijna odległość (np. 0,5 mm) może spowodować drastyczny spadek siły nawet o 50% (dotyczy to także farby, rdzy czy brudu).
- Sposób obciążenia – deklarowany udźwig dotyczy odrywania w pionie. Przy ześlizgiwaniu, magnes wykazuje dużo słabiej (zazwyczaj ok. 20-30% siły nominalnej).
- Grubość elementu – dla pełnej efektywności, stal musi być wystarczająco masywna. Blacha "papierowa" ogranicza udźwig (magnes „przebija” ją na wylot).
- Skład materiału – nie każda stal przyciąga się identycznie. Wysoka zawartość węgla osłabiają interakcję z magnesem.
- Gładkość – pełny kontakt uzyskamy tylko na gładkiej stali. Wszelkie rysy i nierówności zmniejszają realną powierzchnię styku, osłabiając magnes.
- Temperatura – wzrost temperatury skutkuje osłabieniem indukcji. Warto sprawdzić limit termiczny dla danego modelu.
Udźwig wyznaczano używając wypolerowanej blachy o optymalnej grubości (min. 20 mm), przy działaniu siły prostopadłej, natomiast przy działaniu siły na zsuwanie siła trzymania jest mniejsza nawet 5 razy. Co więcej, nawet drobny odstęp między magnesem, a blachą obniża siłę trzymania.
Ostrzeżenia
Samozapłon
Szlifowanie magnesów neodymowych stwarza ryzyko zapłonu. Pył neodymowy utlenia się błyskawicznie z tlenem i jest trudny do gaszenia.
Bezpieczna praca
Zachowaj rozwagę. Magnesy neodymowe przyciągają z dużej odległości i łączą się z ogromną siłą, często szybciej niż zdążysz zareagować.
Zagrożenie fizyczne
Ryzyko obrażeń: Moc ściskania jest tak duża, że może wywołać krwiaki, zmiażdżenia, a nawet złamania kości. Używaj grubych rękawic.
Zakłócenia GPS i telefonów
Moduły GPS i smartfony są wyjątkowo podatne na wpływ magnesów. Bezpośredni kontakt z silnym magnesem może rozalibrować czujniki w Twoim telefonie.
Zagrożenie dla najmłodszych
Bezwzględnie zabezpiecz magnesy przed najmłodszymi. Niebezpieczeństwo połknięcia jest bardzo duże, a konsekwencje zwarcia magnesów wewnątrz organizmu są nieodwracalne.
Nie zbliżaj do komputera
Potężne pole magnetyczne może zniszczyć zapis na kartach płatniczych, dyskach twardych i innych pamięciach. Zachowaj odstęp min. 10 cm.
Rozprysk materiału
Magnesy neodymowe to materiał ceramiczny, co oznacza, że są bardzo kruche. Gwałtowne złączenie dwóch magnesów wywoła ich rozpryśnięcie na drobne kawałki.
Rozruszniki serca
Uwaga zdrowotna: Magnesy neodymowe mogą wyłączyć stymulatory i defibrylatory. Unikaj kontaktu, jeśli posiadasz implanty elektroniczne.
Dla uczulonych
Niektóre osoby wykazuje alergię kontaktową na nikiel, którym pokryta jest większość magnesy neodymowe. Dłuższy kontakt może wywołać silną reakcję alergiczną. Wskazane jest noszenie rękawic bezlateksowych.
Utrata mocy w cieple
Standardowe magnesy neodymowe (klasa N) tracą właściwości po przekroczeniu temperatury 80°C. Strata siły jest trwała i nieodwracalna.
