MW 100x30 / N38 - magnes neodymowy walcowy
magnes neodymowy walcowy
Numer katalogowy 010002
GTIN/EAN: 5906301810025
Średnica Ø
100 mm [±0,1 mm]
Wysokość
30 mm [±0,1 mm]
Waga
1767.15 g
Kierunek magnesowania
↑ osiowy
Udźwig
215.17 kg / 2110.78 N
Indukcja magnetyczna
318.96 mT / 3190 Gs
Powłoka
[NiCuNi] nikiel
650.01 ZŁ z VAT / szt. + cena za transport
528.46 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?
Dzwoń do nas
+48 22 499 98 98
ewentualnie zostaw wiadomość za pomocą
formularz
przez naszą stronę.
Masę oraz formę magnesu neodymowego testujesz w naszym
kalkulatorze masy magnetycznej.
Zamówienia złożone przed 14:00 realizujemy jeszcze dziś!
Szczegółowa specyfikacja MW 100x30 / N38 - magnes neodymowy walcowy
Specyfikacja / charakterystyka - MW 100x30 / N38 - magnes neodymowy walcowy
| właściwości | wartości |
|---|---|
| Nr kat. | 010002 |
| GTIN/EAN | 5906301810025 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Średnica Ø | 100 mm [±0,1 mm] |
| Wysokość | 30 mm [±0,1 mm] |
| Waga | 1767.15 g |
| Kierunek magnesowania | ↑ osiowy |
| Udźwig ~ ? | 215.17 kg / 2110.78 N |
| Indukcja magnetyczna ~ ? | 318.96 mT / 3190 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [min. - maks.] ? | 12.2-12.6 | kGs |
| remanencja Br [min. - maks.] ? | 1220-1260 | mT |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [min. - maks.] ? | 36-38 | BH max MGOe |
| gęstość energii [min. - maks.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Temperatura Curie TC | 312 - 380 | °C |
| Temperatura Curie TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅cm |
| Siła wyginania | 250 | MPa |
| Wytrzymałość na ściskanie | 1000~1100 | MPa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 10-6 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Analiza techniczna magnesu - raport
Poniższe informacje są bezpośredni efekt analizy inżynierskiej. Wartości bazują na modelach dla materiału Nd2Fe14B. Rzeczywiste parametry mogą nieznacznie odbiegać od wyników symulacji. Traktuj te wyliczenia jako wstępny drogowskaz przy projektowaniu systemów.
Tabela 1: Udźwig statyczny prostopadły (siła vs odległość) - spadek mocy
MW 100x30 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg/lbs/g/N) | Status ryzyka |
|---|---|---|---|
| 0 mm |
3189 Gs
318.9 mT
|
215.17 kg / 474.37 lbs
215170.0 g / 2110.8 N
|
krytyczny poziom |
| 1 mm |
3143 Gs
314.3 mT
|
208.96 kg / 460.68 lbs
208959.6 g / 2049.9 N
|
krytyczny poziom |
| 2 mm |
3094 Gs
309.4 mT
|
202.53 kg / 446.51 lbs
202531.7 g / 1986.8 N
|
krytyczny poziom |
| 3 mm |
3044 Gs
304.4 mT
|
195.98 kg / 432.07 lbs
195982.5 g / 1922.6 N
|
krytyczny poziom |
| 5 mm |
2939 Gs
293.9 mT
|
182.65 kg / 402.68 lbs
182651.7 g / 1791.8 N
|
krytyczny poziom |
| 10 mm |
2657 Gs
265.7 mT
|
149.35 kg / 329.26 lbs
149349.8 g / 1465.1 N
|
krytyczny poziom |
| 15 mm |
2366 Gs
236.6 mT
|
118.41 kg / 261.05 lbs
118412.6 g / 1161.6 N
|
krytyczny poziom |
| 20 mm |
2081 Gs
208.1 mT
|
91.64 kg / 202.03 lbs
91640.5 g / 899.0 N
|
krytyczny poziom |
| 30 mm |
1573 Gs
157.3 mT
|
52.34 kg / 115.40 lbs
52344.5 g / 513.5 N
|
krytyczny poziom |
| 50 mm |
874 Gs
87.4 mT
|
16.14 kg / 35.58 lbs
16140.3 g / 158.3 N
|
krytyczny poziom |
Tabela 2: Równoległa siła ześlizgu (pion)
MW 100x30 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg/lbs/g/N) |
|---|---|---|
| 0 mm | Stal (~0.2) |
43.03 kg / 94.87 lbs
43034.0 g / 422.2 N
|
| 1 mm | Stal (~0.2) |
41.79 kg / 92.14 lbs
41792.0 g / 410.0 N
|
| 2 mm | Stal (~0.2) |
40.51 kg / 89.30 lbs
40506.0 g / 397.4 N
|
| 3 mm | Stal (~0.2) |
39.20 kg / 86.41 lbs
39196.0 g / 384.5 N
|
| 5 mm | Stal (~0.2) |
36.53 kg / 80.53 lbs
36530.0 g / 358.4 N
|
| 10 mm | Stal (~0.2) |
29.87 kg / 65.85 lbs
29870.0 g / 293.0 N
|
| 15 mm | Stal (~0.2) |
23.68 kg / 52.21 lbs
23682.0 g / 232.3 N
|
| 20 mm | Stal (~0.2) |
18.33 kg / 40.41 lbs
18328.0 g / 179.8 N
|
| 30 mm | Stal (~0.2) |
10.47 kg / 23.08 lbs
10468.0 g / 102.7 N
|
| 50 mm | Stal (~0.2) |
3.23 kg / 7.12 lbs
3228.0 g / 31.7 N
|
Tabela 3: Montaż pionowy (poślizg) - zachowanie na śliskim podłożu
MW 100x30 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg/lbs/g/N) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
64.55 kg / 142.31 lbs
64551.0 g / 633.2 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
43.03 kg / 94.87 lbs
43034.0 g / 422.2 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
21.52 kg / 47.44 lbs
21517.0 g / 211.1 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
107.59 kg / 237.18 lbs
107585.0 g / 1055.4 N
|
Tabela 4: Grubość stali (nasycenie) - straty mocy
MW 100x30 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg/lbs/g/N) |
|---|---|---|
| 0.5 mm |
|
7.17 kg / 15.81 lbs
7172.3 g / 70.4 N
|
| 1 mm |
|
17.93 kg / 39.53 lbs
17930.8 g / 175.9 N
|
| 2 mm |
|
35.86 kg / 79.06 lbs
35861.7 g / 351.8 N
|
| 3 mm |
|
53.79 kg / 118.59 lbs
53792.5 g / 527.7 N
|
| 5 mm |
|
89.65 kg / 197.65 lbs
89654.2 g / 879.5 N
|
| 10 mm |
|
179.31 kg / 395.31 lbs
179308.3 g / 1759.0 N
|
| 11 mm |
|
197.24 kg / 434.84 lbs
197239.2 g / 1934.9 N
|
| 12 mm |
|
215.17 kg / 474.37 lbs
215170.0 g / 2110.8 N
|
Tabela 5: Praca w cieple (stabilność) - limit termiczny
MW 100x30 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig (kg/lbs/g/N) | Status |
|---|---|---|---|
| 20 °C | 0.0% |
215.17 kg / 474.37 lbs
215170.0 g / 2110.8 N
|
OK |
| 40 °C | -2.2% |
210.44 kg / 463.93 lbs
210436.3 g / 2064.4 N
|
OK |
| 60 °C | -4.4% |
205.70 kg / 453.50 lbs
205702.5 g / 2017.9 N
|
|
| 80 °C | -6.6% |
200.97 kg / 443.06 lbs
200968.8 g / 1971.5 N
|
|
| 100 °C | -28.8% |
153.20 kg / 337.75 lbs
153201.0 g / 1502.9 N
|
Tabela 6: Interakcja magnes-magnes (przyciąganie) - kolizja pól
MW 100x30 / N38
| Szczelina (mm) | Przyciąganie (kg/lbs) (N-S) | Siła ścinająca (kg/lbs/g/N) | Odpychanie (kg/lbs) (N-N) |
|---|---|---|---|
| 0 mm |
492.55 kg / 1085.88 lbs
4 762 Gs
|
73.88 kg / 162.88 lbs
73882 g / 724.8 N
|
N/A |
| 1 mm |
485.56 kg / 1070.47 lbs
6 333 Gs
|
72.83 kg / 160.57 lbs
72834 g / 714.5 N
|
437.00 kg / 963.42 lbs
~0 Gs
|
| 2 mm |
478.33 kg / 1054.54 lbs
6 286 Gs
|
71.75 kg / 158.18 lbs
71749 g / 703.9 N
|
430.50 kg / 949.08 lbs
~0 Gs
|
| 3 mm |
471.01 kg / 1038.40 lbs
6 238 Gs
|
70.65 kg / 155.76 lbs
70652 g / 693.1 N
|
423.91 kg / 934.56 lbs
~0 Gs
|
| 5 mm |
456.15 kg / 1005.64 lbs
6 139 Gs
|
68.42 kg / 150.85 lbs
68422 g / 671.2 N
|
410.53 kg / 905.07 lbs
~0 Gs
|
| 10 mm |
418.11 kg / 921.77 lbs
5 877 Gs
|
62.72 kg / 138.27 lbs
62716 g / 615.2 N
|
376.30 kg / 829.59 lbs
~0 Gs
|
| 20 mm |
341.88 kg / 753.71 lbs
5 314 Gs
|
51.28 kg / 113.06 lbs
51282 g / 503.1 N
|
307.69 kg / 678.34 lbs
~0 Gs
|
| 50 mm |
159.49 kg / 351.61 lbs
3 630 Gs
|
23.92 kg / 52.74 lbs
23923 g / 234.7 N
|
143.54 kg / 316.45 lbs
~0 Gs
|
| 60 mm |
119.82 kg / 264.16 lbs
3 146 Gs
|
17.97 kg / 39.62 lbs
17973 g / 176.3 N
|
107.84 kg / 237.75 lbs
~0 Gs
|
| 70 mm |
89.40 kg / 197.09 lbs
2 718 Gs
|
13.41 kg / 29.56 lbs
13410 g / 131.6 N
|
80.46 kg / 177.38 lbs
~0 Gs
|
| 80 mm |
66.51 kg / 146.64 lbs
2 344 Gs
|
9.98 kg / 22.00 lbs
9977 g / 97.9 N
|
59.86 kg / 131.97 lbs
~0 Gs
|
| 90 mm |
49.50 kg / 109.14 lbs
2 022 Gs
|
7.43 kg / 16.37 lbs
7426 g / 72.8 N
|
44.55 kg / 98.22 lbs
~0 Gs
|
| 100 mm |
36.95 kg / 81.45 lbs
1 747 Gs
|
5.54 kg / 12.22 lbs
5542 g / 54.4 N
|
33.25 kg / 73.31 lbs
~0 Gs
|
Tabela 7: Bezpieczeństwo (BHP) (elektronika) - środki ostrożności
MW 100x30 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 44.0 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 34.5 cm |
| Zegarek mechaniczny | 20 Gs (2.0 mT) | 27.0 cm |
| Telefon / Smartfon | 40 Gs (4.0 mT) | 21.0 cm |
| Kluczyk samochodowy | 50 Gs (5.0 mT) | 19.0 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 8.0 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 6.5 cm |
Tabela 8: Dynamika (ryzyko pęknięcia) - skutki zderzenia
MW 100x30 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
15.21 km/h
(4.22 m/s)
|
15.77 J | |
| 30 mm |
22.01 km/h
(6.11 m/s)
|
33.03 J | |
| 50 mm |
26.02 km/h
(7.23 m/s)
|
46.17 J | |
| 100 mm |
35.32 km/h
(9.81 m/s)
|
85.04 J |
Tabela 9: Parametry powłoki (trwałość)
MW 100x30 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
Tabela 10: Dane elektryczne (Strumień)
MW 100x30 / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 269 425 Mx | 2694.3 µWb |
| Współczynnik Pc | 0.40 | Niski (Płaski) |
Tabela 11: Zastosowanie podwodne
MW 100x30 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 215.17 kg | Standard |
| Woda (dno rzeki) |
246.37 kg
(+31.20 kg zysk z wyporności)
|
+14.5% |
1. Ześlizg (ściana)
*Pamiętaj: Na powierzchni pionowej magnes utrzyma zaledwie ułamek siły oderwania.
2. Efektywność, a grubość stali
*Cienka blacha (np. obudowa PC 0.5mm) znacząco redukuje udźwig magnesu.
3. Stabilność termiczna
*Dla materiału N38 granica bezpieczeństwa to 80°C.
4. Krzywa odmagnesowania i punkt pracy (B-H)
wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 0.40
Niniejsza symulacja obrazuje stabilność magnetyczną wybranego magnesu w konkretnych warunkach geometrycznych. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.
Skład chemiczny materiału
| żelazo (Fe) | 64% – 68% |
| neodym (Nd) | 29% – 32% |
| bor (B) | 1.1% – 1.2% |
| dysproz (Dy) | 0.5% – 2.0% |
| powłoka (Ni-Cu-Ni) | < 0.05% |
Ekologia i recykling (GPSR)
| recyklowalność (EoL) | 100% |
| surowce z recyklingu | ~10% (pre-cons) |
| ślad węglowy | low / zredukowany |
| kod odpadu (EWC) | 16 02 16 |
Inne oferty
Zalety i wady neodymowych magnesów Nd2Fe14B.
Korzyści
- Ich parametry są stabilne w czasie; po 10 latach eksploatacji zmniejszenie udźwigu to marginalne ~1%.
- Są niewrażliwe na zewnętrzne zakłócenia, co czyni je odpornymi na rozmagnesowanie w wymagającym środowisku.
- Pokrycie materiałami takimi jak nikiel czy złoto nadaje im czysty i gładki charakter.
- Cechują się bardzo wysoką gęstością pola na powierzchni, co umożliwia silne chwytanie nawet małych elementów.
- Posiadają imponującą wytrzymałość termiczną, co umożliwia ich stosowanie w warunkach do 230°C (dotyczy odpowiednich serii).
- Wszechstronność kształtowania – można je wykonać w dowolnych formach, idealnych do konkretnego projektu.
- Są niezbędne w technologiach przyszłości, zasilając silniki, urządzenia medyczne czy komputery.
- Doskonała relacja wielkości do siły – są małe, ale niezwykle mocne, co pozwala na ich montaż w ciasnych przestrzeniach.
Ograniczenia
- Uwaga na uszkodzenia mechaniczne – bez zabezpieczenia mogą pękać przy gwałtownym zwarciu.
- Klasyczne neodymy tracą moc powyżej 80°C. Jeśli potrzebujesz pracy w wyższych temperaturach, zastosuj serię [AH] (odporną do 230°C).
- Są podatne na rdzewienie w kontakcie z wodą. Na zewnątrz zalecamy użycie magnesów hermetycznych (np. w gumie).
- Ze względu na twardość, nie zaleca się gwintowania magnesu. Bezpieczniej użyć magnesu wklejonego w stalowy kubek z gwintem.
- Ryzyko połknięcia – drobne magnesy są niebezpieczne dla najmłodszych. Połknięcie kilku sztuk grozi poważnymi obrażeniami. Dodatkowo mogą utrudniać badania (np. rezonans).
- Cena – są droższe niż magnesy ferrytowe, co przy wielkich nakładach może być barierą.
Charakterystyka udźwigu
Maksymalna siła przyciągania magnesu – co ma na to wpływ?
- na płycie wykonanej ze stali miękkiej, doskonale skupiającej strumień magnetyczny
- o grubości przynajmniej 10 mm
- z powierzchnią idealnie równą
- w warunkach braku dystansu (metal do metalu)
- dla siły działającej pod kątem prostym (na odrywanie, nie zsuwanie)
- w temp. ok. 20°C
Czynniki determinujące udźwig w warunkach realnych
- Dystans (między magnesem a blachą), bowiem nawet mikroskopijna przerwa (np. 0,5 mm) skutkuje redukcję udźwigu nawet o 50% (dotyczy to także farby, rdzy czy zanieczyszczeń).
- Kierunek siły – deklarowany udźwig dotyczy ciągnięcia w pionie. Przy próbie przesunięcia, magnes wykazuje znacznie mniejszą moc (zazwyczaj ok. 20-30% siły maksymalnej).
- Grubość elementu – dla pełnej efektywności, stal musi być wystarczająco masywna. Blacha "papierowa" ogranicza udźwig (magnes „przebija” ją na wylot).
- Typ metalu – nie każda stal reaguje tak samo. Wysoka zawartość węgla pogarszają interakcję z magnesem.
- Struktura powierzchni – im równiejsza powierzchnia, tym większa strefa kontaktu i wyższy udźwig. Nierówności tworzą dystans powietrzny.
- Otoczenie termiczne – podgrzanie magnesu skutkuje osłabieniem siły. Należy pamiętać o maksymalną temperaturę pracy dla danego modelu.
Udźwig określano używając gładkiej blachy o właściwej grubości (min. 20 mm), przy prostopadłym działaniu siły odrywającej, natomiast przy próbie przesunięcia magnesu siła trzymania jest mniejsza nawet pięciokrotnie. Ponadto, nawet drobny odstęp między powierzchnią magnesu, a blachą zmniejsza udźwig.
Zasady bezpieczeństwa pracy z magnesami neodymowymi
Zakaz zabawy
Koniecznie chroń magnesy przed najmłodszymi. Niebezpieczeństwo połknięcia jest wysokie, a konsekwencje zwarcia magnesów wewnątrz organizmu są tragiczne.
Zagrożenie zapłonem
Uwaga na ogień: Pył neodymowy jest skrajnie łatwopalny. Nie poddawaj magnesów obróbce w warunkach domowych, gdyż grozi to zapłonem.
Uwaga medyczna
Dla posiadaczy implantów: Silne pole magnetyczne zakłóca urządzenia medyczne. Zachowaj co najmniej 30 cm odstępu lub poproś inną osobę obsługę magnesów.
Wpływ na smartfony
Ważna informacja: magnesy neodymowe wytwarzają pole, które mylą systemy nawigacji. Utrzymuj bezpieczny dystans od telefonu, tabletu i urządzeń GPS.
Wrażliwość na ciepło
Standardowe magnesy neodymowe (typ N) ulegają rozmagnesowaniu po osiągnięciu temperatury 80°C. Uszkodzenie jest permanentne.
Magnesy są kruche
Mimo metalicznego wyglądu, neodym jest delikatny i nie znosi udarów. Nie rzucaj, gdyż magnes może się pokruszyć na drobiny.
Dla uczulonych
Niektóre osoby posiada alergię kontaktową na pierwiastek nikiel, którym powlekane są standardowo nasze produkty. Długotrwała ekspozycja może skutkować zaczerwienienie skóry. Wskazane jest noszenie rękawic bezlateksowych.
Siła neodymu
Stosuj magnesy świadomie. Ich gigantyczny udźwig może zaskoczyć nawet profesjonalistów. Zachowaj czujność i respektuj ich siły.
Nośniki danych
Bezpieczeństwo sprzętu: Magnesy neodymowe mogą zdegradować karty bankomatowe oraz urządzenia precyzyjne (rozruszniki serca, aparaty słuchowe, zegarki mechaniczne).
Poważne obrażenia
Duże magnesy mogą połamać palce błyskawicznie. Pod żadnym pozorem umieszczaj dłoni między dwa silne magnesy.
