MW 100x30 / N38 - magnes neodymowy walcowy
magnes neodymowy walcowy
Numer katalogowy 010002
GTIN/EAN: 5906301810025
Średnica Ø
100 mm [±0,1 mm]
Wysokość
30 mm [±0,1 mm]
Waga
1767.15 g
Kierunek magnesowania
↑ osiowy
Udźwig
215.17 kg / 2110.78 N
Indukcja magnetyczna
318.96 mT / 3190 Gs
Powłoka
[NiCuNi] nikiel
650.01 ZŁ z VAT / szt. + cena za transport
528.46 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?
Zadzwoń już teraz
+48 22 499 98 98
albo napisz za pomocą
formularz zgłoszeniowy
przez naszą stronę.
Masę i kształt magnesów sprawdzisz w naszym
kalkulatorze siły.
Wysyłka tego samego dnia dla zamówień do godz. 14:00.
Dane techniczne produktu - MW 100x30 / N38 - magnes neodymowy walcowy
Specyfikacja / charakterystyka - MW 100x30 / N38 - magnes neodymowy walcowy
| właściwości | wartości |
|---|---|
| Nr kat. | 010002 |
| GTIN/EAN | 5906301810025 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Średnica Ø | 100 mm [±0,1 mm] |
| Wysokość | 30 mm [±0,1 mm] |
| Waga | 1767.15 g |
| Kierunek magnesowania | ↑ osiowy |
| Udźwig ~ ? | 215.17 kg / 2110.78 N |
| Indukcja magnetyczna ~ ? | 318.96 mT / 3190 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [min. - maks.] ? | 12.2-12.6 | kGs |
| remanencja Br [min. - maks.] ? | 1220-1260 | mT |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [min. - maks.] ? | 36-38 | BH max MGOe |
| gęstość energii [min. - maks.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Temperatura Curie TC | 312 - 380 | °C |
| Temperatura Curie TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅cm |
| Siła wyginania | 250 | MPa |
| Wytrzymałość na ściskanie | 1000~1100 | MPa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 10-6 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Analiza inżynierska magnesu neodymowego - parametry techniczne
Poniższe wartości są bezpośredni efekt symulacji fizycznej. Wartości zostały wyliczone na modelach dla klasy Nd2Fe14B. Realne warunki mogą odbiegać od wyników symulacji. Prosimy traktować te dane jako wstępny drogowskaz dla projektantów.
Tabela 1: Udźwig statyczny prostopadły (siła vs dystans) - wykres oddziaływania
MW 100x30 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg/lbs/g/N) | Status ryzyka |
|---|---|---|---|
| 0 mm |
3189 Gs
318.9 mT
|
215.17 kg / 474.37 lbs
215170.0 g / 2110.8 N
|
miażdżący |
| 1 mm |
3143 Gs
314.3 mT
|
208.96 kg / 460.68 lbs
208959.6 g / 2049.9 N
|
miażdżący |
| 2 mm |
3094 Gs
309.4 mT
|
202.53 kg / 446.51 lbs
202531.7 g / 1986.8 N
|
miażdżący |
| 3 mm |
3044 Gs
304.4 mT
|
195.98 kg / 432.07 lbs
195982.5 g / 1922.6 N
|
miażdżący |
| 5 mm |
2939 Gs
293.9 mT
|
182.65 kg / 402.68 lbs
182651.7 g / 1791.8 N
|
miażdżący |
| 10 mm |
2657 Gs
265.7 mT
|
149.35 kg / 329.26 lbs
149349.8 g / 1465.1 N
|
miażdżący |
| 15 mm |
2366 Gs
236.6 mT
|
118.41 kg / 261.05 lbs
118412.6 g / 1161.6 N
|
miażdżący |
| 20 mm |
2081 Gs
208.1 mT
|
91.64 kg / 202.03 lbs
91640.5 g / 899.0 N
|
miażdżący |
| 30 mm |
1573 Gs
157.3 mT
|
52.34 kg / 115.40 lbs
52344.5 g / 513.5 N
|
miażdżący |
| 50 mm |
874 Gs
87.4 mT
|
16.14 kg / 35.58 lbs
16140.3 g / 158.3 N
|
miażdżący |
Tabela 2: Równoległa siła obsunięcia (ściana)
MW 100x30 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg/lbs/g/N) |
|---|---|---|
| 0 mm | Stal (~0.2) |
43.03 kg / 94.87 lbs
43034.0 g / 422.2 N
|
| 1 mm | Stal (~0.2) |
41.79 kg / 92.14 lbs
41792.0 g / 410.0 N
|
| 2 mm | Stal (~0.2) |
40.51 kg / 89.30 lbs
40506.0 g / 397.4 N
|
| 3 mm | Stal (~0.2) |
39.20 kg / 86.41 lbs
39196.0 g / 384.5 N
|
| 5 mm | Stal (~0.2) |
36.53 kg / 80.53 lbs
36530.0 g / 358.4 N
|
| 10 mm | Stal (~0.2) |
29.87 kg / 65.85 lbs
29870.0 g / 293.0 N
|
| 15 mm | Stal (~0.2) |
23.68 kg / 52.21 lbs
23682.0 g / 232.3 N
|
| 20 mm | Stal (~0.2) |
18.33 kg / 40.41 lbs
18328.0 g / 179.8 N
|
| 30 mm | Stal (~0.2) |
10.47 kg / 23.08 lbs
10468.0 g / 102.7 N
|
| 50 mm | Stal (~0.2) |
3.23 kg / 7.12 lbs
3228.0 g / 31.7 N
|
Tabela 3: Siła na ścianie (poślizg) - udźwig wertykalny
MW 100x30 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg/lbs/g/N) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
64.55 kg / 142.31 lbs
64551.0 g / 633.2 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
43.03 kg / 94.87 lbs
43034.0 g / 422.2 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
21.52 kg / 47.44 lbs
21517.0 g / 211.1 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
107.59 kg / 237.18 lbs
107585.0 g / 1055.4 N
|
Tabela 4: Efektywność materiałowa (wpływ podłoża) - straty mocy
MW 100x30 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg/lbs/g/N) |
|---|---|---|
| 0.5 mm |
|
7.17 kg / 15.81 lbs
7172.3 g / 70.4 N
|
| 1 mm |
|
17.93 kg / 39.53 lbs
17930.8 g / 175.9 N
|
| 2 mm |
|
35.86 kg / 79.06 lbs
35861.7 g / 351.8 N
|
| 3 mm |
|
53.79 kg / 118.59 lbs
53792.5 g / 527.7 N
|
| 5 mm |
|
89.65 kg / 197.65 lbs
89654.2 g / 879.5 N
|
| 10 mm |
|
179.31 kg / 395.31 lbs
179308.3 g / 1759.0 N
|
| 11 mm |
|
197.24 kg / 434.84 lbs
197239.2 g / 1934.9 N
|
| 12 mm |
|
215.17 kg / 474.37 lbs
215170.0 g / 2110.8 N
|
Tabela 5: Praca w cieple (zachowanie materiału) - próg odporności
MW 100x30 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig (kg/lbs/g/N) | Status |
|---|---|---|---|
| 20 °C | 0.0% |
215.17 kg / 474.37 lbs
215170.0 g / 2110.8 N
|
OK |
| 40 °C | -2.2% |
210.44 kg / 463.93 lbs
210436.3 g / 2064.4 N
|
OK |
| 60 °C | -4.4% |
205.70 kg / 453.50 lbs
205702.5 g / 2017.9 N
|
|
| 80 °C | -6.6% |
200.97 kg / 443.06 lbs
200968.8 g / 1971.5 N
|
|
| 100 °C | -28.8% |
153.20 kg / 337.75 lbs
153201.0 g / 1502.9 N
|
Tabela 6: Interakcja magnes-magnes (przyciąganie) - siły w układzie
MW 100x30 / N38
| Szczelina (mm) | Przyciąganie (kg/lbs) (N-S) | Siła zsuwania (kg/lbs/g/N) | Odpychanie (kg/lbs) (N-N) |
|---|---|---|---|
| 0 mm |
492.55 kg / 1085.88 lbs
4 762 Gs
|
73.88 kg / 162.88 lbs
73882 g / 724.8 N
|
N/A |
| 1 mm |
485.56 kg / 1070.47 lbs
6 333 Gs
|
72.83 kg / 160.57 lbs
72834 g / 714.5 N
|
437.00 kg / 963.42 lbs
~0 Gs
|
| 2 mm |
478.33 kg / 1054.54 lbs
6 286 Gs
|
71.75 kg / 158.18 lbs
71749 g / 703.9 N
|
430.50 kg / 949.08 lbs
~0 Gs
|
| 3 mm |
471.01 kg / 1038.40 lbs
6 238 Gs
|
70.65 kg / 155.76 lbs
70652 g / 693.1 N
|
423.91 kg / 934.56 lbs
~0 Gs
|
| 5 mm |
456.15 kg / 1005.64 lbs
6 139 Gs
|
68.42 kg / 150.85 lbs
68422 g / 671.2 N
|
410.53 kg / 905.07 lbs
~0 Gs
|
| 10 mm |
418.11 kg / 921.77 lbs
5 877 Gs
|
62.72 kg / 138.27 lbs
62716 g / 615.2 N
|
376.30 kg / 829.59 lbs
~0 Gs
|
| 20 mm |
341.88 kg / 753.71 lbs
5 314 Gs
|
51.28 kg / 113.06 lbs
51282 g / 503.1 N
|
307.69 kg / 678.34 lbs
~0 Gs
|
| 50 mm |
159.49 kg / 351.61 lbs
3 630 Gs
|
23.92 kg / 52.74 lbs
23923 g / 234.7 N
|
143.54 kg / 316.45 lbs
~0 Gs
|
| 60 mm |
119.82 kg / 264.16 lbs
3 146 Gs
|
17.97 kg / 39.62 lbs
17973 g / 176.3 N
|
107.84 kg / 237.75 lbs
~0 Gs
|
| 70 mm |
89.40 kg / 197.09 lbs
2 718 Gs
|
13.41 kg / 29.56 lbs
13410 g / 131.6 N
|
80.46 kg / 177.38 lbs
~0 Gs
|
| 80 mm |
66.51 kg / 146.64 lbs
2 344 Gs
|
9.98 kg / 22.00 lbs
9977 g / 97.9 N
|
59.86 kg / 131.97 lbs
~0 Gs
|
| 90 mm |
49.50 kg / 109.14 lbs
2 022 Gs
|
7.43 kg / 16.37 lbs
7426 g / 72.8 N
|
44.55 kg / 98.22 lbs
~0 Gs
|
| 100 mm |
36.95 kg / 81.45 lbs
1 747 Gs
|
5.54 kg / 12.22 lbs
5542 g / 54.4 N
|
33.25 kg / 73.31 lbs
~0 Gs
|
Tabela 7: Bezpieczeństwo (BHP) (implanty) - ostrzeżenia
MW 100x30 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 44.0 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 34.5 cm |
| Zegarek mechaniczny | 20 Gs (2.0 mT) | 27.0 cm |
| Telefon / Smartfon | 40 Gs (4.0 mT) | 21.0 cm |
| Immobilizer | 50 Gs (5.0 mT) | 19.0 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 8.0 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 6.5 cm |
Tabela 8: Zderzenia (ryzyko pęknięcia) - ostrzeżenie
MW 100x30 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
15.21 km/h
(4.22 m/s)
|
15.77 J | |
| 30 mm |
22.01 km/h
(6.11 m/s)
|
33.03 J | |
| 50 mm |
26.02 km/h
(7.23 m/s)
|
46.17 J | |
| 100 mm |
35.32 km/h
(9.81 m/s)
|
85.04 J |
Tabela 9: Parametry powłoki (trwałość)
MW 100x30 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
Tabela 10: Dane konstrukcyjne (Strumień)
MW 100x30 / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 269 425 Mx | 2694.3 µWb |
| Współczynnik Pc | 0.40 | Niski (Płaski) |
Tabela 11: Hydrostatyka i wyporność
MW 100x30 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 215.17 kg | Standard |
| Woda (dno rzeki) |
246.37 kg
(+31.20 kg zysk z wyporności)
|
+14.5% |
1. Montaż na ścianie (ześlizg)
*Ważne: Na pionowej ścianie magnes zachowa tylko ~20-30% siły oderwania.
2. Efektywność, a grubość stali
*Cienka blacha (np. obudowa PC 0.5mm) znacząco ogranicza udźwig magnesu.
3. Wytrzymałość temperaturowa
*W klasie N38 krytyczny próg to 80°C.
4. Krzywa odmagnesowania i punkt pracy (B-H)
wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 0.40
Niniejsza symulacja obrazuje stabilność magnetyczną wybranego magnesu w konkretnych warunkach geometrycznych. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.
Analiza pierwiastkowa
| żelazo (Fe) | 64% – 68% |
| neodym (Nd) | 29% – 32% |
| bor (B) | 1.1% – 1.2% |
| dysproz (Dy) | 0.5% – 2.0% |
| powłoka (Ni-Cu-Ni) | < 0.05% |
Zrównoważony rozwój
| recyklowalność (EoL) | 100% |
| surowce z recyklingu | ~10% (pre-cons) |
| ślad węglowy | low / zredukowany |
| kod odpadu (EWC) | 16 02 16 |
Inne propozycje
Zalety i wady magnesów neodymowych Nd2Fe14B.
Korzyści
- Praktycznie nie ulegają osłabieniu w czasie; po 10 latach eksploatacji redukcja udźwigu to marginalne ~1%.
- Trudno je rozmagnesować, gdyż wykazują wysoką odporność na zewnętrzne czynniki.
- Dzięki powłoce (NiCuNi, Au, srebro) zyskują nowoczesny, metaliczny wygląd.
- Wyróżniają się bardzo wysoką gęstością pola na powierzchni, co zapewnia silne chwytanie z dużą mocą.
- Mogą pracować w gorącym otoczeniu – wybrane modele znoszą temperaturę do 230°C (zależnie od wymiarów).
- Opcja produkcji skomplikowanych kształtów sprawia, że są doskonałe do indywidualnych zastosowań.
- Spotkasz je wszędzie tam, gdzie liczy się precyzja: w automatyce, medycynie oraz przemyśle komputerowym.
- Potęga w małej formie – ich mała masa nie przeszkadza w generowaniu dużej siły przyciągania.
Ograniczenia
- Są wrażliwe na uderzenia – materiał jest kruchy i grozi pęknięciem. Zabezpieczenie w postaci obudowy to dobre rozwiązanie.
- Standardowe magnesy tracą moc powyżej 80°C. Jeśli wymagasz pracy w wyższych temperaturach, wybierz serię [AH] (odporną do 230°C).
- Brak odporności na wodę skutkuje utlenianiem. Do zadań zewnętrznych sugerujemy wyłącznie magnesy w pełnej izolacji (plastik/guma).
- Obróbka jest trudna – wiercenie otworów w samym magnesie jest ryzykowne. Lepiej wybrać gotowe uchwyty magnetyczne (magnes w obudowie).
- Ryzyko połknięcia – małe elementy są niebezpieczne dla dzieci. Połknięcie kilku sztuk grozi operacją. Dodatkowo mogą zakłócać badania (np. rezonans).
- Cena – są bardziej kosztowne niż magnesy ferrytowe, co przy wielkich nakładach może być barierą.
Analiza siły trzymania
Maksymalny udźwig magnesu – co ma na to wpływ?
- na płycie wykonanej ze stali miękkiej, optymalnie przewodzącej strumień magnetyczny
- posiadającej grubość min. 10 mm aby uniknąć nasycenia
- charakteryzującej się brakiem chropowatości
- bez najmniejszej przerwy powietrznej pomiędzy magnesem a stalą
- przy pionowym przyłożeniu siły odrywającej (kąt 90 stopni)
- w warunkach ok. 20°C
Praktyczny udźwig: czynniki wpływające
- Przerwa między powierzchniami – każdy milimetr dystansu (spowodowany np. okleiną lub nierównością) zmniejsza siłę przyciągania, często o połowę przy zaledwie 0,5 mm.
- Kierunek działania siły – maksymalny parametr osiągamy tylko przy ciągnięciu pod kątem 90°. Siła ścinająca magnesu po powierzchni jest standardowo wielokrotnie niższa (ok. 1/5 udźwigu).
- Grubość metalu – im cieńsza blacha, tym słabsze trzymanie. Część pola magnetycznego przechodzi przez materiał, zamiast generować siłę.
- Materiał blachy – stal niskowęglowa daje najlepsze rezultaty. Większa zawartość węgla redukują właściwości magnetyczne i udźwig.
- Gładkość – pełny kontakt uzyskamy tylko na wypolerowanej stali. Wszelkie rysy i nierówności tworzą poduszki powietrzne, redukując siłę.
- Czynnik termiczny – gorące środowisko zmniejsza pole magnetyczne. Przekroczenie temperatury granicznej może trwale uszkodzić magnes.
Pomiar udźwigu wykonywano na blachach o gładkiej powierzchni o odpowiedniej grubości, przy siłach prostopadłych, natomiast przy siłach działających równolegle nośność jest mniejsza nawet pięć razy. Co więcej, nawet drobny odstęp pomiędzy powierzchnią magnesu, a blachą obniża nośność.
Bezpieczna praca z magnesami neodymowymi
Temperatura pracy
Chroń przed wysoką temperaturą. Magnesy neodymowe są nieodporne na ciepło. Jeśli wymagasz odporności powyżej 80°C, wybierz magnesy odporne na ciepło (H, SH, UH).
Magnesy są kruche
Chroń oczy. Magnesy mogą eksplodować przy niekontrolowanym uderzeniu, wyrzucając ostre odłamki w powietrze. Ochrona wzroku wymagana.
Niebezpieczeństwo przytrzaśnięcia
Silne magnesy mogą połamać palce błyskawicznie. Pod żadnym pozorem wkładaj dłoni między dwa silne magnesy.
Obróbka mechaniczna
Uwaga na ogień: Pył neodymowy jest wysoce łatwopalny. Nie modyfikuj mechanicznie magnesów amatorsko, gdyż grozi to zapłonem.
Produkt nie dla dzieci
Te produkty magnetyczne nie są przeznaczone dla dzieci. Przypadkowe zjedzenie dwóch lub więcej magnesów może skutkować ich złączeniem się w jelitach, co stwarza stan krytyczny i wymaga natychmiastowej operacji.
Nośniki danych
Unikaj zbliżania magnesów do portfela, komputera czy ekranu. Pole magnetyczne może trwale uszkodzić te urządzenia oraz wymazać paski magnetyczne z kart.
Kompas i GPS
Uwaga: magnesy neodymowe wytwarzają pole, które mylą elektronikę precyzyjną. Zachowaj odpowiednią odległość od telefonu, tabletu i urządzeń GPS.
Dla uczulonych
Badania wskazują, że powłoka niklowa (standardowe zabezpieczenie magnesów) jest silnym alergenem. Jeśli masz uczulenie, unikaj trzymania magnesów gołą dłonią lub zakup magnesy powlekane tworzywem.
Siła neodymu
Zanim zaczniesz, przeczytaj instrukcję. Niekontrolowane przyciągnięcie może zniszczyć magnes lub zranić dłoń. Myśl o krok do przodu.
Ostrzeżenie dla sercowców
Osoby z stymulatorem serca muszą utrzymać bezpieczną odległość od magnesów. Pole magnetyczne może rozregulować pracę implantu.
