MW 100x30 / N38 - magnes neodymowy walcowy
magnes neodymowy walcowy
Numer katalogowy 010002
GTIN/EAN: 5906301810025
Średnica Ø
100 mm [±0,1 mm]
Wysokość
30 mm [±0,1 mm]
Waga
1767.15 g
Kierunek magnesowania
↑ osiowy
Udźwig
215.17 kg / 2110.78 N
Indukcja magnetyczna
318.96 mT / 3190 Gs
Powłoka
[NiCuNi] nikiel
650.01 ZŁ z VAT / szt. + cena za transport
528.46 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?
Zadzwoń już teraz
+48 888 99 98 98
alternatywnie napisz korzystając z
formularz zgłoszeniowy
na naszej stronie.
Moc i kształt magnesu skontrolujesz dzięki naszemu
kalkulatorze mocy.
Zamówienia złożone przed 14:00 realizujemy jeszcze dziś!
Właściwości fizyczne MW 100x30 / N38 - magnes neodymowy walcowy
Specyfikacja / charakterystyka - MW 100x30 / N38 - magnes neodymowy walcowy
| właściwości | wartości |
|---|---|
| Nr kat. | 010002 |
| GTIN/EAN | 5906301810025 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Średnica Ø | 100 mm [±0,1 mm] |
| Wysokość | 30 mm [±0,1 mm] |
| Waga | 1767.15 g |
| Kierunek magnesowania | ↑ osiowy |
| Udźwig ~ ? | 215.17 kg / 2110.78 N |
| Indukcja magnetyczna ~ ? | 318.96 mT / 3190 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [min. - maks.] ? | 12.2-12.6 | kGs |
| remanencja Br [min. - maks.] ? | 1220-1260 | mT |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [min. - maks.] ? | 36-38 | BH max MGOe |
| gęstość energii [min. - maks.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Temperatura Curie TC | 312 - 380 | °C |
| Temperatura Curie TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅cm |
| Siła wyginania | 250 | MPa |
| Wytrzymałość na ściskanie | 1000~1100 | MPa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 10-6 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Analiza fizyczna magnesu - parametry techniczne
Poniższe dane stanowią bezpośredni efekt analizy fizycznej. Wartości bazują na algorytmach dla materiału Nd2Fe14B. Realne warunki mogą różnić się od wartości teoretycznych. Prosimy traktować te dane jako punkt odniesienia podczas planowania montażu.
Tabela 1: Siła prostopadła statyczna (udźwig vs odległość) - spadek mocy
MW 100x30 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg/lbs/g/N) | Status ryzyka |
|---|---|---|---|
| 0 mm |
3189 Gs
318.9 mT
|
215.17 kg / 474.37 lbs
215170.0 g / 2110.8 N
|
krytyczny poziom |
| 1 mm |
3143 Gs
314.3 mT
|
208.96 kg / 460.68 lbs
208959.6 g / 2049.9 N
|
krytyczny poziom |
| 2 mm |
3094 Gs
309.4 mT
|
202.53 kg / 446.51 lbs
202531.7 g / 1986.8 N
|
krytyczny poziom |
| 3 mm |
3044 Gs
304.4 mT
|
195.98 kg / 432.07 lbs
195982.5 g / 1922.6 N
|
krytyczny poziom |
| 5 mm |
2939 Gs
293.9 mT
|
182.65 kg / 402.68 lbs
182651.7 g / 1791.8 N
|
krytyczny poziom |
| 10 mm |
2657 Gs
265.7 mT
|
149.35 kg / 329.26 lbs
149349.8 g / 1465.1 N
|
krytyczny poziom |
| 15 mm |
2366 Gs
236.6 mT
|
118.41 kg / 261.05 lbs
118412.6 g / 1161.6 N
|
krytyczny poziom |
| 20 mm |
2081 Gs
208.1 mT
|
91.64 kg / 202.03 lbs
91640.5 g / 899.0 N
|
krytyczny poziom |
| 30 mm |
1573 Gs
157.3 mT
|
52.34 kg / 115.40 lbs
52344.5 g / 513.5 N
|
krytyczny poziom |
| 50 mm |
874 Gs
87.4 mT
|
16.14 kg / 35.58 lbs
16140.3 g / 158.3 N
|
krytyczny poziom |
Tabela 2: Siła równoległa obsunięcia (pion)
MW 100x30 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg/lbs/g/N) |
|---|---|---|
| 0 mm | Stal (~0.2) |
43.03 kg / 94.87 lbs
43034.0 g / 422.2 N
|
| 1 mm | Stal (~0.2) |
41.79 kg / 92.14 lbs
41792.0 g / 410.0 N
|
| 2 mm | Stal (~0.2) |
40.51 kg / 89.30 lbs
40506.0 g / 397.4 N
|
| 3 mm | Stal (~0.2) |
39.20 kg / 86.41 lbs
39196.0 g / 384.5 N
|
| 5 mm | Stal (~0.2) |
36.53 kg / 80.53 lbs
36530.0 g / 358.4 N
|
| 10 mm | Stal (~0.2) |
29.87 kg / 65.85 lbs
29870.0 g / 293.0 N
|
| 15 mm | Stal (~0.2) |
23.68 kg / 52.21 lbs
23682.0 g / 232.3 N
|
| 20 mm | Stal (~0.2) |
18.33 kg / 40.41 lbs
18328.0 g / 179.8 N
|
| 30 mm | Stal (~0.2) |
10.47 kg / 23.08 lbs
10468.0 g / 102.7 N
|
| 50 mm | Stal (~0.2) |
3.23 kg / 7.12 lbs
3228.0 g / 31.7 N
|
Tabela 3: Montaż pionowy (ścinanie) - udźwig wertykalny
MW 100x30 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg/lbs/g/N) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
64.55 kg / 142.31 lbs
64551.0 g / 633.2 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
43.03 kg / 94.87 lbs
43034.0 g / 422.2 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
21.52 kg / 47.44 lbs
21517.0 g / 211.1 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
107.59 kg / 237.18 lbs
107585.0 g / 1055.4 N
|
Tabela 4: Efektywność materiałowa (nasycenie) - dobór blachy
MW 100x30 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg/lbs/g/N) |
|---|---|---|
| 0.5 mm |
|
7.17 kg / 15.81 lbs
7172.3 g / 70.4 N
|
| 1 mm |
|
17.93 kg / 39.53 lbs
17930.8 g / 175.9 N
|
| 2 mm |
|
35.86 kg / 79.06 lbs
35861.7 g / 351.8 N
|
| 3 mm |
|
53.79 kg / 118.59 lbs
53792.5 g / 527.7 N
|
| 5 mm |
|
89.65 kg / 197.65 lbs
89654.2 g / 879.5 N
|
| 10 mm |
|
179.31 kg / 395.31 lbs
179308.3 g / 1759.0 N
|
| 11 mm |
|
197.24 kg / 434.84 lbs
197239.2 g / 1934.9 N
|
| 12 mm |
|
215.17 kg / 474.37 lbs
215170.0 g / 2110.8 N
|
Tabela 5: Praca w cieple (zachowanie materiału) - spadek mocy
MW 100x30 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig (kg/lbs/g/N) | Status |
|---|---|---|---|
| 20 °C | 0.0% |
215.17 kg / 474.37 lbs
215170.0 g / 2110.8 N
|
OK |
| 40 °C | -2.2% |
210.44 kg / 463.93 lbs
210436.3 g / 2064.4 N
|
OK |
| 60 °C | -4.4% |
205.70 kg / 453.50 lbs
205702.5 g / 2017.9 N
|
|
| 80 °C | -6.6% |
200.97 kg / 443.06 lbs
200968.8 g / 1971.5 N
|
|
| 100 °C | -28.8% |
153.20 kg / 337.75 lbs
153201.0 g / 1502.9 N
|
Tabela 6: Interakcja magnes-magnes (odpychanie) - zasięg pola
MW 100x30 / N38
| Szczelina (mm) | Przyciąganie (kg/lbs) (N-S) | Siła zsuwania (kg/lbs/g/N) | Odpychanie (kg/lbs) (N-N) |
|---|---|---|---|
| 0 mm |
492.55 kg / 1085.88 lbs
4 762 Gs
|
73.88 kg / 162.88 lbs
73882 g / 724.8 N
|
N/A |
| 1 mm |
485.56 kg / 1070.47 lbs
6 333 Gs
|
72.83 kg / 160.57 lbs
72834 g / 714.5 N
|
437.00 kg / 963.42 lbs
~0 Gs
|
| 2 mm |
478.33 kg / 1054.54 lbs
6 286 Gs
|
71.75 kg / 158.18 lbs
71749 g / 703.9 N
|
430.50 kg / 949.08 lbs
~0 Gs
|
| 3 mm |
471.01 kg / 1038.40 lbs
6 238 Gs
|
70.65 kg / 155.76 lbs
70652 g / 693.1 N
|
423.91 kg / 934.56 lbs
~0 Gs
|
| 5 mm |
456.15 kg / 1005.64 lbs
6 139 Gs
|
68.42 kg / 150.85 lbs
68422 g / 671.2 N
|
410.53 kg / 905.07 lbs
~0 Gs
|
| 10 mm |
418.11 kg / 921.77 lbs
5 877 Gs
|
62.72 kg / 138.27 lbs
62716 g / 615.2 N
|
376.30 kg / 829.59 lbs
~0 Gs
|
| 20 mm |
341.88 kg / 753.71 lbs
5 314 Gs
|
51.28 kg / 113.06 lbs
51282 g / 503.1 N
|
307.69 kg / 678.34 lbs
~0 Gs
|
| 50 mm |
159.49 kg / 351.61 lbs
3 630 Gs
|
23.92 kg / 52.74 lbs
23923 g / 234.7 N
|
143.54 kg / 316.45 lbs
~0 Gs
|
| 60 mm |
119.82 kg / 264.16 lbs
3 146 Gs
|
17.97 kg / 39.62 lbs
17973 g / 176.3 N
|
107.84 kg / 237.75 lbs
~0 Gs
|
| 70 mm |
89.40 kg / 197.09 lbs
2 718 Gs
|
13.41 kg / 29.56 lbs
13410 g / 131.6 N
|
80.46 kg / 177.38 lbs
~0 Gs
|
| 80 mm |
66.51 kg / 146.64 lbs
2 344 Gs
|
9.98 kg / 22.00 lbs
9977 g / 97.9 N
|
59.86 kg / 131.97 lbs
~0 Gs
|
| 90 mm |
49.50 kg / 109.14 lbs
2 022 Gs
|
7.43 kg / 16.37 lbs
7426 g / 72.8 N
|
44.55 kg / 98.22 lbs
~0 Gs
|
| 100 mm |
36.95 kg / 81.45 lbs
1 747 Gs
|
5.54 kg / 12.22 lbs
5542 g / 54.4 N
|
33.25 kg / 73.31 lbs
~0 Gs
|
Tabela 7: Strefy ochronne (elektronika) - środki ostrożności
MW 100x30 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 44.0 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 34.5 cm |
| Zegarek mechaniczny | 20 Gs (2.0 mT) | 27.0 cm |
| Telefon / Smartfon | 40 Gs (4.0 mT) | 21.0 cm |
| Pilot do auta | 50 Gs (5.0 mT) | 19.0 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 8.0 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 6.5 cm |
Tabela 8: Energia uderzenia (energia kinetyczna) - ostrzeżenie
MW 100x30 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
15.21 km/h
(4.22 m/s)
|
15.77 J | |
| 30 mm |
22.01 km/h
(6.11 m/s)
|
33.03 J | |
| 50 mm |
26.02 km/h
(7.23 m/s)
|
46.17 J | |
| 100 mm |
35.32 km/h
(9.81 m/s)
|
85.04 J |
Tabela 9: Odporność na korozję
MW 100x30 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
Tabela 10: Dane elektryczne (Pc)
MW 100x30 / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 269 425 Mx | 2694.3 µWb |
| Współczynnik Pc | 0.40 | Niski (Płaski) |
Tabela 11: Hydrostatyka i wyporność
MW 100x30 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 215.17 kg | Standard |
| Woda (dno rzeki) |
246.37 kg
(+31.20 kg zysk z wyporności)
|
+14.5% |
1. Siła zsuwająca
*Pamiętaj: Na powierzchni pionowej magnes utrzyma zaledwie ułamek siły prostopadłej.
2. Wpływ grubości blachy
*Cienka blacha (np. blacha karoseryjna) znacząco ogranicza siłę trzymania.
3. Wytrzymałość temperaturowa
*Dla materiału N38 granica bezpieczeństwa to 80°C.
4. Krzywa odmagnesowania i punkt pracy (B-H)
wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 0.40
Niniejsza symulacja obrazuje stabilność magnetyczną wybranego magnesu w konkretnych warunkach geometrycznych. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.
Skład chemiczny materiału
| żelazo (Fe) | 64% – 68% |
| neodym (Nd) | 29% – 32% |
| bor (B) | 1.1% – 1.2% |
| dysproz (Dy) | 0.5% – 2.0% |
| powłoka (Ni-Cu-Ni) | < 0.05% |
Ekologia i recykling (GPSR)
| recyklowalność (EoL) | 100% |
| surowce z recyklingu | ~10% (pre-cons) |
| ślad węglowy | low / zredukowany |
| kod odpadu (EWC) | 16 02 16 |
Inne propozycje
Zalety i wady neodymowych magnesów Nd2Fe14B.
Korzyści
- Zachowują swoje właściwości przez lata – zakłada się, że po dekadzie słabną o symboliczny 1%.
- Zewnętrzne pola magnetyczne nie wpływają na ich szybkiego rozmagnesowania – posiadają dużą zdolność odporności magnetycznej.
- Łączą moc z estetyką – dzięki powłokom ich powierzchnia jest refleksyjna i prezentuje się elegancko.
- Indukcja magnetyczna na powierzchni tych magnesów jest imponująca, co czyni je najsilniejszymi w swojej klasie.
- Odpowiedni skład sprawia, że wykazują odporność na wysokie temperatury (zależnie od kształtu, nawet do 230°C).
- Wszechstronność kształtowania – można je wykonać w dowolnych formach, idealnych do konkretnego projektu.
- Znajdują powszechne zastosowanie w przemyśle high-tech – od dysków twardych i silników, po precyzyjną diagnostykę.
- Mały rozmiar, wielka moc – przy niewielkich gabarytach oferują potężny udźwig, co jest kluczowe przy miniaturyzacji.
Ograniczenia
- Delikatność mechaniczna to ich słaba strona. Łatwo ulegają uszkodzeniu przy zderzeniu, dlatego warto stosować osłony lub uchwyty.
- Wrażliwość na ciepło: przekroczenie 80°C może trwale osłabić magnes (zależnie od bryły). Rozwiązaniem są nasze magnesy wysokotemperaturowe [AH].
- Brak odporności na wodę skutkuje utlenianiem. Do zadań zewnętrznych sugerujemy wyłącznie magnesy zabezpieczone antykorozyjnie (plastik/guma).
- Trudności montażowe: zamiast próbować robić otwory kruchy magnes, wybierz uchwytów w stalowej obudowie, które posiadają gotowe mocowania.
- Produkt niebezpieczny po połknięciu. Bezwzględnie chronić przed dziećmi. Wewnątrz ciała magnesy mogą się połączyć, powodując poważne urazy.
- Wysoki koszt zakupu w porównaniu do ferrytów to ich minus, szczególnie przy zakupach hurtowych.
Analiza siły trzymania
Maksymalny udźwig magnesu – co się na to składa?
- przy zastosowaniu zwory ze stali niskowęglowej, zapewniającej pełne nasycenie magnetyczne
- której grubość sięga przynajmniej 10 mm
- o szlifowanej powierzchni kontaktu
- bez najmniejszej warstwy izolującej pomiędzy magnesem a stalą
- dla siły przyłożonej pod kątem prostym (w osi magnesu)
- w temp. ok. 20°C
Praktyczny udźwig: czynniki wpływające
- Dystans – występowanie ciała obcego (rdza, brud, szczelina) przerywa obwód magnetyczny, co redukuje udźwig lawinowo (nawet o 50% przy 0,5 mm).
- Sposób obciążenia – deklarowany udźwig dotyczy ciągnięcia w pionie. Przy próbie przesunięcia, magnes trzyma dużo słabiej (często ok. 20-30% siły nominalnej).
- Masywność podłoża – zbyt cienka blacha nie zamyka strumienia, przez co część mocy ucieka na drugą stronę.
- Skład chemiczny podłoża – stal miękka daje najlepsze rezultaty. Stale stopowe redukują właściwości magnetyczne i udźwig.
- Gładkość podłoża – im równiejsza blacha, tym lepsze przyleganie i silniejsze trzymanie. Chropowatość tworzą dystans powietrzny.
- Temperatura pracy – spieki NdFeB posiadają ujemny współczynnik temperaturowy. Gdy jest gorąco są słabsze, a w niskich zyskują na sile (do pewnej granicy).
Udźwig określano używając blachy o gładkiej powierzchni o optymalnej grubości (min. 20 mm), przy działaniu siły prostopadłej, jednak przy próbie przesunięcia magnesu udźwig jest mniejszy nawet pięć razy. Co więcej, nawet minimalna przerwa pomiędzy powierzchnią magnesu, a blachą zmniejsza udźwig.
Środki ostrożności podczas pracy z magnesami neodymowymi
Uwaga: zadławienie
Produkt przeznaczony dla dorosłych. Drobne magnesy mogą zostać połknięte, co prowadzi do perforacji jelit. Trzymaj z dala od niepowołanych osób.
Ryzyko złamań
Ryzyko obrażeń: Siła przyciągania jest tak duża, że może wywołać krwiaki, zgniecenia, a nawet złamania kości. Używaj grubych rękawic.
Uwaga medyczna
Uwaga zdrowotna: Magnesy neodymowe mogą wyłączyć stymulatory i defibrylatory. Nie zbliżaj się, jeśli posiadasz implanty elektroniczne.
Zagrożenie zapłonem
Obróbka mechaniczna magnesów neodymowych grozi pożarem. Pył neodymowy reaguje gwałtownie z tlenem i jest niebezpieczny.
Reakcje alergiczne
Uwaga na nikiel: warstwa ochronna Ni-Cu-Ni ma w składzie nikiel. W przypadku wystąpienia świądu lub podrażnienia, należy natychmiast przerwać pracę z magnesami i zabezpieczyć dłonie.
Kruchość materiału
Spieki NdFeB to spiek proszkowy, co oznacza, że są łamliwe jak szkło. Zderzenie dwóch magnesów spowoduje ich rozkruszenie na ostre odłamki.
Bezpieczna praca
Przed użyciem, przeczytaj instrukcję. Gwałtowne złączenie może zniszczyć magnes lub uszkodzić palce. Myśl o krok do przodu.
Zagrożenie dla nawigacji
Urządzenia nawigacyjne są niezwykle wrażliwe na wpływ magnesów. Bliskie sąsiedztwo z silnym magnesem może rozalibrować czujniki w Twoim telefonie.
Wrażliwość na ciepło
Uważaj na temperaturę. Podgrzanie magnesu powyżej 80 stopni Celsjusza zniszczy jego domenę magnetyczną i siłę przyciągania.
Niszczenie danych
Bardzo silne oddziaływanie może usunąć informacje na kartach kredytowych, nośnikach HDD i innych pamięciach. Utrzymuj odległość min. 10 cm.
