MPL 5x4x1 / N38 - magnes neodymowy płytkowy
magnes neodymowy płytkowy
Numer katalogowy 020169
GTIN/EAN: 5906301811756
Długość
5 mm [±0,1 mm]
Szerokość
4 mm [±0,1 mm]
Wysokość
1 mm [±0,1 mm]
Waga
0.15 g
Kierunek magnesowania
↑ osiowy
Udźwig
0.32 kg / 3.16 N
Indukcja magnetyczna
232.88 mT / 2329 Gs
Powłoka
[NiCuNi] nikiel
0.1845 ZŁ z VAT / szt. + cena za transport
0.1500 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?
Skontaktuj się z nami telefonicznie
+48 22 499 98 98
ewentualnie pisz poprzez
formularz kontaktowy
przez naszą stronę.
Moc a także formę magnesów neodymowych zweryfikujesz w naszym
kalkulatorze mocy.
Realizacja tego samego dnia przy zamówieniu do 14:00.
Specyfikacja - MPL 5x4x1 / N38 - magnes neodymowy płytkowy
Specyfikacja / charakterystyka - MPL 5x4x1 / N38 - magnes neodymowy płytkowy
| właściwości | wartości |
|---|---|
| Nr kat. | 020169 |
| GTIN/EAN | 5906301811756 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Długość | 5 mm [±0,1 mm] |
| Szerokość | 4 mm [±0,1 mm] |
| Wysokość | 1 mm [±0,1 mm] |
| Waga | 0.15 g |
| Kierunek magnesowania | ↑ osiowy |
| Udźwig ~ ? | 0.32 kg / 3.16 N |
| Indukcja magnetyczna ~ ? | 232.88 mT / 2329 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [min. - maks.] ? | 12.2-12.6 | kGs |
| remanencja Br [min. - maks.] ? | 1220-1260 | mT |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [min. - maks.] ? | 36-38 | BH max MGOe |
| gęstość energii [min. - maks.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Temperatura Curie TC | 312 - 380 | °C |
| Temperatura Curie TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅cm |
| Siła wyginania | 250 | MPa |
| Wytrzymałość na ściskanie | 1000~1100 | MPa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 10-6 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Symulacja fizyczna magnesu - parametry techniczne
Niniejsze wartości stanowią bezpośredni efekt analizy fizycznej. Wyniki zostały wyliczone na algorytmach dla klasy Nd2Fe14B. Rzeczywiste osiągi mogą odbiegać od wyników symulacji. Traktuj te dane jako wstępny drogowskaz podczas planowania montażu.
Tabela 1: Udźwig statyczny prostopadły (siła vs dystans) - charakterystyka
MPL 5x4x1 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg/lbs/g/N) | Status ryzyka |
|---|---|---|---|
| 0 mm |
2327 Gs
232.7 mT
|
0.32 kg / 0.71 lbs
320.0 g / 3.1 N
|
niskie ryzyko |
| 1 mm |
1559 Gs
155.9 mT
|
0.14 kg / 0.32 lbs
143.7 g / 1.4 N
|
niskie ryzyko |
| 2 mm |
876 Gs
87.6 mT
|
0.05 kg / 0.10 lbs
45.3 g / 0.4 N
|
niskie ryzyko |
| 3 mm |
488 Gs
48.8 mT
|
0.01 kg / 0.03 lbs
14.1 g / 0.1 N
|
niskie ryzyko |
| 5 mm |
177 Gs
17.7 mT
|
0.00 kg / 0.00 lbs
1.9 g / 0.0 N
|
niskie ryzyko |
| 10 mm |
31 Gs
3.1 mT
|
0.00 kg / 0.00 lbs
0.1 g / 0.0 N
|
niskie ryzyko |
| 15 mm |
10 Gs
1.0 mT
|
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
niskie ryzyko |
| 20 mm |
4 Gs
0.4 mT
|
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
niskie ryzyko |
| 30 mm |
1 Gs
0.1 mT
|
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
niskie ryzyko |
| 50 mm |
0 Gs
0.0 mT
|
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
niskie ryzyko |
Tabela 2: Siła równoległa obsunięcia (pion)
MPL 5x4x1 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg/lbs/g/N) |
|---|---|---|
| 0 mm | Stal (~0.2) |
0.06 kg / 0.14 lbs
64.0 g / 0.6 N
|
| 1 mm | Stal (~0.2) |
0.03 kg / 0.06 lbs
28.0 g / 0.3 N
|
| 2 mm | Stal (~0.2) |
0.01 kg / 0.02 lbs
10.0 g / 0.1 N
|
| 3 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
2.0 g / 0.0 N
|
| 5 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
| 10 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
| 15 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
| 20 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
| 30 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
Tabela 3: Siła na ścianie (ścinanie) - udźwig wertykalny
MPL 5x4x1 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg/lbs/g/N) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
0.10 kg / 0.21 lbs
96.0 g / 0.9 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
0.06 kg / 0.14 lbs
64.0 g / 0.6 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
0.03 kg / 0.07 lbs
32.0 g / 0.3 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
0.16 kg / 0.35 lbs
160.0 g / 1.6 N
|
Tabela 4: Efektywność materiałowa (wpływ podłoża) - straty mocy
MPL 5x4x1 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg/lbs/g/N) |
|---|---|---|
| 0.5 mm |
|
0.03 kg / 0.07 lbs
32.0 g / 0.3 N
|
| 1 mm |
|
0.08 kg / 0.18 lbs
80.0 g / 0.8 N
|
| 2 mm |
|
0.16 kg / 0.35 lbs
160.0 g / 1.6 N
|
| 3 mm |
|
0.24 kg / 0.53 lbs
240.0 g / 2.4 N
|
| 5 mm |
|
0.32 kg / 0.71 lbs
320.0 g / 3.1 N
|
| 10 mm |
|
0.32 kg / 0.71 lbs
320.0 g / 3.1 N
|
| 11 mm |
|
0.32 kg / 0.71 lbs
320.0 g / 3.1 N
|
| 12 mm |
|
0.32 kg / 0.71 lbs
320.0 g / 3.1 N
|
Tabela 5: Wytrzymałość temperaturowa (stabilność) - próg odporności
MPL 5x4x1 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig (kg/lbs/g/N) | Status |
|---|---|---|---|
| 20 °C | 0.0% |
0.32 kg / 0.71 lbs
320.0 g / 3.1 N
|
OK |
| 40 °C | -2.2% |
0.31 kg / 0.69 lbs
313.0 g / 3.1 N
|
OK |
| 60 °C | -4.4% |
0.31 kg / 0.67 lbs
305.9 g / 3.0 N
|
|
| 80 °C | -6.6% |
0.30 kg / 0.66 lbs
298.9 g / 2.9 N
|
|
| 100 °C | -28.8% |
0.23 kg / 0.50 lbs
227.8 g / 2.2 N
|
Tabela 6: Interakcja magnes-magnes (przyciąganie) - siły w układzie
MPL 5x4x1 / N38
| Szczelina (mm) | Przyciąganie (kg/lbs) (N-S) | Siła zsuwania (kg/lbs/g/N) | Odpychanie (kg/lbs) (N-N) |
|---|---|---|---|
| 0 mm |
0.67 kg / 1.47 lbs
3 878 Gs
|
0.10 kg / 0.22 lbs
100 g / 1.0 N
|
N/A |
| 1 mm |
0.48 kg / 1.06 lbs
3 959 Gs
|
0.07 kg / 0.16 lbs
72 g / 0.7 N
|
0.43 kg / 0.96 lbs
~0 Gs
|
| 2 mm |
0.30 kg / 0.66 lbs
3 118 Gs
|
0.04 kg / 0.10 lbs
45 g / 0.4 N
|
0.27 kg / 0.59 lbs
~0 Gs
|
| 3 mm |
0.17 kg / 0.38 lbs
2 356 Gs
|
0.03 kg / 0.06 lbs
26 g / 0.3 N
|
0.15 kg / 0.34 lbs
~0 Gs
|
| 5 mm |
0.05 kg / 0.12 lbs
1 302 Gs
|
0.01 kg / 0.02 lbs
8 g / 0.1 N
|
0.05 kg / 0.10 lbs
~0 Gs
|
| 10 mm |
0.00 kg / 0.01 lbs
355 Gs
|
0.00 kg / 0.00 lbs
1 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 20 mm |
0.00 kg / 0.00 lbs
63 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 50 mm |
0.00 kg / 0.00 lbs
5 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 60 mm |
0.00 kg / 0.00 lbs
3 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 70 mm |
0.00 kg / 0.00 lbs
2 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 80 mm |
0.00 kg / 0.00 lbs
1 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 90 mm |
0.00 kg / 0.00 lbs
1 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 100 mm |
0.00 kg / 0.00 lbs
1 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
Tabela 7: Strefy ochronne (implanty) - środki ostrożności
MPL 5x4x1 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 2.0 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 2.0 cm |
| Zegarek mechaniczny | 20 Gs (2.0 mT) | 1.5 cm |
| Telefon / Smartfon | 40 Gs (4.0 mT) | 1.0 cm |
| Kluczyk samochodowy | 50 Gs (5.0 mT) | 1.0 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 0.5 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 0.5 cm |
Tabela 8: Energia uderzenia (energia kinetyczna) - ostrzeżenie
MPL 5x4x1 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
46.59 km/h
(12.94 m/s)
|
0.01 J | |
| 30 mm |
80.68 km/h
(22.41 m/s)
|
0.04 J | |
| 50 mm |
104.16 km/h
(28.93 m/s)
|
0.06 J | |
| 100 mm |
147.30 km/h
(40.92 m/s)
|
0.13 J |
Tabela 9: Odporność na korozję
MPL 5x4x1 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
Tabela 10: Dane elektryczne (Strumień)
MPL 5x4x1 / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 531 Mx | 5.3 µWb |
| Współczynnik Pc | 0.29 | Niski (Płaski) |
Tabela 11: Praca w wodzie (Magnet Fishing)
MPL 5x4x1 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 0.32 kg | Standard |
| Woda (dno rzeki) |
0.37 kg
(+0.05 kg zysk z wyporności)
|
+14.5% |
1. Ześlizg (ściana)
*Uwaga: Na powierzchni pionowej magnes utrzyma jedynie ok. 20-30% nominalnego udźwigu.
2. Nasycenie magnetyczne
*Cienka blacha (np. blacha karoseryjna) znacząco redukuje udźwig magnesu.
3. Praca w cieple
*Dla materiału N38 krytyczny próg to 80°C.
4. Krzywa odmagnesowania i punkt pracy (B-H)
wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 0.29
Niniejsza symulacja obrazuje stabilność magnetyczną wybranego magnesu w konkretnych warunkach geometrycznych. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.
Analiza pierwiastkowa
| żelazo (Fe) | 64% – 68% |
| neodym (Nd) | 29% – 32% |
| bor (B) | 1.1% – 1.2% |
| dysproz (Dy) | 0.5% – 2.0% |
| powłoka (Ni-Cu-Ni) | < 0.05% |
Ekologia i recykling (GPSR)
| recyklowalność (EoL) | 100% |
| surowce z recyklingu | ~10% (pre-cons) |
| ślad węglowy | low / zredukowany |
| kod odpadu (EWC) | 16 02 16 |
Sprawdź inne propozycje
UMP 94x40 [3xM10] GW F550 Silver Black / N52 - uchwyty magnetyczne do poszukiwań
Wady i zalety magnesów z neodymu Nd2Fe14B.
Mocne strony
- Praktycznie nie ulegają osłabieniu w czasie; po 10 latach użytkowania zmniejszenie udźwigu to znikome ~1%.
- Charakteryzują się wyjątkową odpornością na rozmagnesowanie, nawet w silnych polach zewnętrznych.
- Pokrycie materiałami takimi jak nikiel, srebro lub złoto nadaje im elegancki i gładki charakter.
- Oferują maksymalną indukcję magnetyczną w punkcie styku, co gwarantuje ogromną siłę.
- Specjalna mieszanka pierwiastków sprawia, że wykazują odporność na wysokie temperatury (zależnie od kształtu, nawet do 230°C).
- Szerokie możliwości w projektowaniu kształtu i wymiaru to ich ogromny plus w konstrukcjach.
- Stanowią kluczowy element w innowacjach, zasilając układy napędowe, sprzęt szpitalny czy komputery.
- Moc w skali mikro – ich mała masa nie przeszkadza w generowaniu dużej siły przyciągania.
Słabe strony
- Uwaga na uszkodzenia mechaniczne – bez zabezpieczenia mogą pękać przy upadku na twarde podłoże.
- Klasyczne neodymy tracą moc powyżej 80°C. Jeśli wymagasz pracy w wyższych temperaturach, zastosuj serię [AH] (odporną do 230°C).
- Podatność na wilgoć skutkuje utlenianiem. Do zadań zewnętrznych sugerujemy wyłącznie magnesy w pełnej izolacji (plastik/guma).
- Obróbka jest trudna – wiercenie otworów w samym magnesie jest ryzykowne. Lepiej wybrać gotowe uchwyty magnetyczne (magnes w obudowie).
- Ryzyko połknięcia – drobne magnesy są groźne dla najmłodszych. Połknięcie kilku sztuk grozi poważnymi obrażeniami. Dodatkowo mogą utrudniać badania (np. rezonans).
- Nie należą do tanich – ich cena jest wyższa niż ferrytów, co należy uwzględnić przy planowaniu kosztów.
Charakterystyka udźwigu
Maksymalny udźwig magnesu – od czego zależy?
- na płycie wykonanej ze stali konstrukcyjnej, optymalnie przewodzącej strumień magnetyczny
- o przekroju nie mniejszej niż 10 mm
- charakteryzującej się równą strukturą
- w warunkach bezszczelinowych (powierzchnia do powierzchni)
- przy prostopadłym kierunku działania siły (kąt 90 stopni)
- w temperaturze pokojowej
Udźwig magnesu w użyciu – kluczowe czynniki
- Dystans (między magnesem a metalem), gdyż nawet niewielka odległość (np. 0,5 mm) może spowodować drastyczny spadek udźwigu nawet o 50% (dotyczy to także farby, rdzy czy brudu).
- Kąt odrywania – pamiętaj, że magnes ma największą siłę prostopadle. Przy zsuwaniu w dół, udźwig spada drastycznie, często do poziomu 20-30% wartości nominalnej.
- Grubość blachy – zbyt cienka stal nie zamyka strumienia, przez co część mocy marnuje się w powietrzu.
- Materiał blachy – stal niskowęglowa daje najlepsze rezultaty. Większa zawartość węgla redukują właściwości magnetyczne i udźwig.
- Struktura powierzchni – im gładsza i bardziej polerowana blacha, tym większa strefa kontaktu i silniejsze trzymanie. Nierówności tworzą dystans powietrzny.
- Ciepło – magnesy neodymowe posiadają wrażliwość na temperaturę. W wyższych temperaturach tracą moc, a w niskich mogą być silniejsze (do pewnej granicy).
Udźwig wyznaczano stosując gładkiej blachy o właściwej grubości (min. 20 mm), przy siłach działających pionowo, z kolei przy siłach działających równolegle udźwig jest mniejszy nawet pięciokrotnie. Dodatkowo, nawet minimalna przerwa pomiędzy powierzchnią magnesu, a blachą redukuje udźwig.
BHP przy magnesach
Implanty kardiologiczne
Ostrzeżenie medyczne: Magnesy neodymowe mogą dezaktywować stymulatory i defibrylatory. Nie zbliżaj się, jeśli masz wszczepione urządzenia wspomagające.
Interferencja magnetyczna
Intensywne promieniowanie magnetyczne zakłóca działanie magnetometrów w smartfonach i urządzeniach lokalizacyjnych. Zachowaj odstęp magnesów do smartfona, aby nie uszkodzić czujników.
Ryzyko uczulenia
Część populacji posiada nadwrażliwość na pierwiastek nikiel, którym powlekane są standardowo nasze produkty. Dłuższy kontakt może powodować wysypkę. Rekomendujemy stosowanie rękawic bezlateksowych.
Obróbka mechaniczna
Szlifowanie magnesów neodymowych stwarza ryzyko zapłonu. Pył neodymowy reaguje gwałtownie z tlenem i jest niebezpieczny.
Rozprysk materiału
Chroń oczy. Magnesy mogą pęknąć przy niekontrolowanym uderzeniu, wyrzucając kawałki metalu w powietrze. Zalecamy okulary ochronne.
Zagrożenie dla najmłodszych
Neodymowe magnesy nie są przeznaczone dla dzieci. Przypadkowe zjedzenie dwóch lub więcej magnesów może doprowadzić do ich przyciągnięciem przez ścianki jelit, co stwarza śmiertelne niebezpieczeństwo i wiąże się z koniecznością pilnej interwencji chirurgicznej.
Ryzyko zmiażdżenia
Duże magnesy mogą połamać palce błyskawicznie. Nigdy wkładaj dłoni między dwa silne magnesy.
Maksymalna temperatura
Chroń przed wysoką temperaturą. Magnesy neodymowe są nieodporne na ciepło. Jeśli wymagasz odporności powyżej 80°C, zapytaj nas o magnesy odporne na ciepło (H, SH, UH).
Zagrożenie dla elektroniki
Bezpieczeństwo sprzętu: Magnesy neodymowe mogą uszkodzić nośniki danych oraz delikatną elektronikę (rozruszniki serca, aparaty słuchowe, czasomierze).
Moc przyciągania
Zanim zaczniesz, przeczytaj instrukcję. Gwałtowne złączenie może połamać magnes lub zranić dłoń. Bądź przewidujący.
